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1  | BACKGROUND

Genetic sex determination is common in both plants and animals 
(Bachtrog et al., 2014) and the pair of chromosomes where the 
sex-determination gene resides are referred to as the sex chro-
mosomes. Sex chromosomes are hypothesized to often emerge 
from autosomes once they have acquired a novel mutation for 
sex determination (Abbott, Nordén, & Hansson, 2017; Bachtrog 
et al., 2014). Linked, sexually antagonistic alleles can help to drive 
a novel sex-determination allele to a higher frequency in the popu-
lation (van Doorn & Kirkpatrick, 2010) and mechanisms that reduce 
recombination between sexually antagonistic loci and the novel 
sex-determination locus are selectively favoured (Charlesworth, 
Charlesworth, & Marais, 2005; Rice, 1987). Due to the reduction 
in recombination, deleterious mutations accumulate and gradually 
decay the gene content within this region (Bachtrog, 2013; Blaser, 
Grossen, Neuenschwander, & Perrin, 2012). In some systems, large-
scale deletions or expansions of repetitive elements occur and lead 

to heteromorphic sex chromosomes (Bachtrog, 2013; Charlesworth 
et al., 2005). As a result of this process, sex chromosomes exist on 
a spectrum between harbouring a single nucleotide polymorphism 
(SNP) responsible for sex determination with no reduction in re-
combination from the surrounding region, as seen in fugu (Kamiya 
et al., 2012), to the highly decayed and heteromorphic sex chromo-
somes observed in many eutherian mammals (Bellott et al., 2014; 
Cortez et al., 2014).

Two common methods have been developed to identify sex chro-
mosomes at different points on this spectrum using next-generation 
sequencing data sets. In the more advanced stages of sex chromo-
some evolution the X- and Y-chromosome share little genomic con-
tent. As a result, short reads from the Y-chromosome align poorly to 
an X-chromosome reference, resulting in a higher coverage in females 
than in males. These differences in coverage between males and fe-
males can be used to detect putatively nonrecombining regions of 
sex chromosomes (Fraïsse, Picard, & Vicoso, 2017; Huylmans, Toups, 
Macon, Gammerdinger, & Vicoso, 2019; Pal & Vicoso, 2015; Roesti, 
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Abstract
Sewall Wright developed FST for describing population differentiation and it has since 
been extended to many novel applications, including the detection of homomorphic 
sex chromosomes. However, there has been confusion regarding the expected esti-
mate of FST for a fixed difference between the X- and Y-chromosome when compar-
ing males and females. Here, we attempt to resolve this confusion by contrasting two 
common FST estimators and explain why they yield different estimates when applied 
to the case of sex chromosomes. We show that this difference is true for many allele 
frequencies, but the situation characterized by fixed differences between the X- and 
Y-chromosome is among the most extreme. To avoid additional confusion, we recom-
mend that all authors using FST clearly state which estimator of FST their work uses.
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Moser, & Berner, 2013; Vicoso & Bachtrog, 2011, 2013, 2015; Vicoso, 
Kaiser, & Bachtrog, 2013). In the less advanced stages of sex chromo-
some evolution, the X- and Y-chromosome differ only by a few base 
substitutions. Therefore, short reads from the X- and Y-chromosome 
align in nearly equal proportions to an X-chromosome reference 
and the identification of sex chromosomes instead relies on differ-
ences in allele frequencies in males and females (Böhne et al., 2019; 
Conte, Gammerdinger, Bartie, Penman, & Kocher, 2017; Dixon, 
Kitano, & Kirkpatrick, 2018; Fontaine et al., 2017; Gammerdinger, 
Conte, Acquah, Roberts, & Kocher, 2014; Gammerdinger, Conte, 
Baroiller, D’Cotta, & Kocher, 2016; Gammerdinger, Conte, Sandkam, 
Penman, & Kocher, 2019; Gammerdinger, Conte, Sandkam, & 
Ziegelbecker, 2018; Toups, Rodrigues, Perrin, & Kirkpatrick, 2018; 
Veltsos et al., 2019). Typically, SNPs are first identified among sub-
populations of males and females, and regions with high levels of ge-
netic differentiation between males and females are presumed to be 
sex-linked. This genetic differentiation between males and females 
is often described in terms of FST.

FST is a relative measure of population differentiation 
(Cruickshank & Hahn, 2014) and was outlined along with other F-
statistics by Sewall Wright (Wright, 1949). Estimates of FST have 
been used for many novel applications, such as examining par-
allel adaptation in sticklebacks (Hohenlohe, Bassham, Etter, & 
Cresko, 2010), introgression in canaries (Lopes et al., 2016) and 
local adaptation in high-altitude populations of Tibetans (Peng 
et al., 2011; Xu et al., 2011). Recent work has used estimates of 
FST to identify and describe the divergence between relatively ho-
momorphic sex chromosomes (Bergero, Gardner, Bader, Yong, & 
Charlesworth, 2019; Böhne et al., 2019; Conte et al., 2017; Dixon 
et al., 2018; Fontaine et al., 2017; Gammerdinger et al., 2014, 2016, 
2018, 2019; Kirkpatrick & Guerrero, 2014; Natri, Shikano, & Merilä, 
2013; Rodrigues & Dufresnes, 2017; Toups et al., 2018; Veltsos 
et al., 2019). However, there is a discrepancy within the literature re-
garding the expected estimate of FST for a fixed difference between 
the X- and Y-chromosome. When comparing males and females for 
an allele that is either fixed on the X- or Y-chromosome of an XY 
pair, some studies expect an FST estimate of 0.333 (Gammerdinger 
et al., 2014, 2016, 2018, 2019; Kirkpatrick & Guerrero, 2014; Toups 
et al., 2018), while other studies expect an FST estimate of 0.5 (Böhne 
et al., 2019; Fontaine et al., 2017; Rodrigues & Dufresnes, 2017). The 
difference in these expectations is not typically justified, nor is the 
specific estimator of FST employed stated, leading to some confusion 
in the field.

A recent study highlighted inconsistencies between different es-
timators of FST (Berner, 2019) and in particular pointed out that, for 
an SNP fixed on the Y-chromosome, one common estimator of FST 
yields a value of 0.333 (Nei, 1973) while another yields 0.5 (Weir & 
Cockerham, 1984). How other popular estimators behave for an SNP 
that is alternatively fixed between the X- and Y-chromosome, and, 
importantly, why these discrepancies arise, have yet to be system-
atically reviewed.

Here, we aim to clarify why such discrepancies in the expected 
estimates of FST can arise when comparing males and females for 

alternatively fixed alleles between the X- and Y-chromosome. Note 
that this difference in expectations of FST is symmetric for ZW sys-
tems, so this analysis will only describe an XY system. Importantly, 
while this analysis focuses on the specific case of sex chromosomes, 
we also illustrate that the difference between FST estimators can 
be substantial for a wide range of allele frequencies, making direct 
comparisons of FST estimates between studies problematic in many 
contexts. Last, we apply a variety of population genetics software 
packages, which often generically refer to FST, to estimate FST for 
alternatively fixed alleles between the X- and Y-chromosome under 
various sampling schemes. Because these programs use different es-
timators and corrections for sample size and composition, a diverse 
range of expected FST values can be recovered (0.16–0.67) and, as a 
result, further complicates the interpretation of experimental stud-
ies that use FST to assess sex chromosome differentiation.

2  | METHODS

We evaluated estimators of FST across different commonly used 
software packages, including vcftools version 0.1.15 (Danecek 
et al., 2011), arlequin 3.5 (Excoffier & Lischer, 2010), genepop 1.0.5 
(Rousset, 2008), popgenome 2.61 (Pfeifer, Wittelsbürger, Ramos-
Onsins, & Lercher, 2014), hierfstat 0.04-29 (Goudet, 2005), diversity 
1.9.90 (Keenan, McGinnity, Cross, Crozier, & Prodöhl, 2013) and dnasp 
6.12.03 (Rozas et al., 2017). Programs that used R were run on R 3.5.1 
(R Core Team, 2016). Scripts for software packages that did not have a 
GUI are provided in File S1. During our use of these software packages, 
we analysed the effect of sample sizes on FST estimators. To perform 
this analysis, we created mock VCF files containing 20 fixed differ-
ences between the X- and Y-chromosome for males and females (File 
S1) following the defined VCF format (Danecek et al., 2011). When 
necessary, we used pgdspider (Lischer & Excoffier, 2012) to convert our 
mock VCF files into fasta, arlequin, fstat and genepop formats.

3  | WRIGHT’S F S T

Since Wright introduced FST (Wright, 1949), it has been unclear if this 
definition represents a parameter or an estimate of the parameter 
(Hahn, 2018; Holsinger & Weir, 2009). Nonetheless, FST for a biallelic 
system is most traditionally described as:

where �2
p
 is the variance in the allele frequency for p and p and q are 

the average allele frequencies across the subpopulations for p and 
q, respectively (Hedrick, 2005; Weir & Cockerham, 1984). When 
comparing the sex chromosomes of males and females, we will 
define subpopulation 1 to be males and subpopulation 2 to be fe-
males, while p is the frequency of the allele on the X-chromosome 
and q is the frequency of the allele on the Y-chromosome (Table 1). 

(1)FST=
�
2

p

pq
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When using Equation 1 and the values in Table 1, the resulting FST 
is 0.333.

4  | ESTIMATORS OF F S T

In practice, the parameter values for allele frequencies are unknown 
and thus many methods have been proposed to estimate FST. Here, 
we contrast two common estimators of FST, which we will denote as 
F̂STNei and F̂STHudson. The difference between these estimators has been 
previously discussed by others (Bhatia, Patterson, Sankararaman, 
& Price, 2013; Charlesworth, 1998), but not specifically in the con-
text of sex chromosomes. While some estimators handle multiple 
alleles and multiple subpopulations, we will be considering only the 
biallelic state for two subpopulations. We make these simplifica-
tions because they provide a direct comparison between estimators 
and they reflect a situation with alternatively fixed alleles on the 
X- and Y-chromosome when comparing males and females. Also, 
we will focus on the example of a fixed difference between the X- 
and Y-chromosome because it is the fundamental component of 
these elevated estimates of FST. However, FST estimates for various 
degrees of difference in the allele frequencies between males and 
females, going from equal frequencies in both sexes to alternatively 
fixed differences between the X- and Y-chromosome, can be found 
in Figure S1. In an empirical study, the identification of an XY sys-
tem would typically show a region overrepresented with these fixed 
differences between the X- and Y-chromosome.

4.1 | Nei's estimator of FST

One estimator of FST comes from Nei (1973) and is often referred to 
as GST. GST uses heterozygosity data to estimate FST. GST quantifies 
the difference between the total heterozygosity of the population 
and the average heterozygosity of the subpopulations and normal-
izes this difference by the total heterozygosity of the population. It 
was defined by Nei (1973) as:

When considering two alleles in two subpopulations, this estima-
tor can be simplified to:

Thus, by comparing males and females for an allele that is alter-
natively fixed on the X- and Y-chromosome using Nei’s (1973) esti-
mator, the expected estimate of FST is 0.333.

A similar estimator of FST, called γST, is generally used in the 
context of haplotypes and estimates FST using nucleotide diversity. 
Nucleotide diversity, π, is the mean number of nucleotide differences 
between two randomly selected sequences from a population. γST is 
described as the difference between the total nucleotide diversity of 
the population and the average nucleotide diversity of the subpopu-
lations normalized to the total nucleotide diversity of the population 
(Nei, 1982). Nei (1982) defined γST as:

where πT the total nucleotide diversity of the population and πS is the 
mean of the subpopulations’ nucleotide diversities. Notably, when con-
sidering a single, biallelic SNP, GST and γST are equivalent (Nei, 1982). As 
a result, we will describe nucleotide diversities in terms of p and q, since 
nucleotide diversities and heterozygosities are equivalent for a SNP. 
We introduce γST because it will lead to the most direct comparison 
between Nei’s (1973) estimator and Hudson, Slatkin, et al. (1992) esti-
mator in the next section.

πT estimates nucleotide diversity from p and q, the mean of p 
and q across the subpopulations, respectively. Importantly, πT makes 
comparisons between all alleles in the whole population. When con-
sidering a biallelic SNP in two subpopulations, πT in Nei’s (1982) esti-
mator can be simplified to:

Using the values from Table 1, we can estimate πT as 0.375. The 
nucleotide diversity, π, of each subpopulation can be computed 
using Nei and Li’s (1979) definition for this statistic and averaged to-
gether to become πS. For a biallelic SNP in two subpopulations, πS 
can be simplified to:

(2)GST=
HT−HS

HT

(3)F̂STNei =

(

p1−p2
)2

(

p1+p2
) (

q1+q2
)

(4)�ST=
�T−�S

�T

(5)�T=

(

p1+p2
) (

q1+q2
)

2

(6)�S=p1q1+p2q2

TA B L E  1   Description of values for p and q in males and females

Subpopulation 1 (males) Subpopulation 2 (females)
Average of the 
subpopulations FST

p (frequency of the allele fixed on the 
X-chromosome)

p1 = 0.5 p2 = 1 p = 0.75 0.333

q (frequency of the allele fixed on the 
Y-chromosome)

q1 = 0.5 q2 = 0 q = 0.25
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When utilizing the values in Table 1, πS is 0.25 and therefore 
Equation 4 recovers an expected estimate of FST to be 0.333.

4.2 | Hudson, Slatkin and Maddison's 
estimator of FST

A second, alternative estimator of FST comes from Hudson, Slatkin, 
et al. (1992). This estimator considers the difference in the average 
nucleotide diversity between subpopulations and the average sub-
population nucleotide diversity and then normalizes this difference 
to the average nucleotide diversity between subpopulations. This 
estimator of FST is defined as:

where πW is similar to Nei’s (1982) πS, except πW excludes pairwise com-
parisons of haplotypes against themselves and is thus dependent on 
the subpopulation sample sizes. πW can be expressed as:

where n1 and n2 are the number of diploid individuals sampled from 
subpopulation 1 and 2, respectively. (A full derivation that can be found 
in the supplementary information of Bhatia et al. (2013). Note that in 
the Bhatia et al. (2013) derivation, n1 and n2 represent allele counts 
not diploid individual counts as are used here). As the subpopulation 
sample sizes go to infinity, πW will approach πS and thus the difference 

between πS and πW is often negligible with large subpopulation sample 
sizes. πB is an alternative estimator of nucleotide diversity, defined by 
Nei and Li (1979) as πXY, and it can be quite numerically different from 
πT. πXY is the mean number of nucleotide differences between two ran-
domly selected DNA sequences, each of which is drawn from separate 
subpopulations. In the case of a biallelic SNP in two subpopulations, 
Hudson, Slatkin, et al. (1992) estimator for πB can be rewritten as:

The values in Table 1 yield an estimate of πB to be 0.5. As subpop-
ulation sample sizes approach infinity, estimating FST for a biallelic 
locus in two subpopulations with this estimator can be written as:

As subpopulation sizes go to infinity and using either Equation 
7 or 10 with the values in Table 1, we arrive at an estimate of FST 
approaching 0.5. FST estimates for finite sample sizes using this es-
timator are demonstrated in Figure 1. Importantly, regardless of the 
subpopulation sample sizes employed, Nei’s (1973) estimator and 
Hudson, Slatkin, et al. (1992) estimator are always quite different for 
the case of sex chromosomes (Figure 1).

4.3 | Why is there a difference in the expected 
estimate of FST?

By comparing Equations 4 and 7 with large subpopulation sample 
sizes, it is clear that the important difference in Nei’s (1973, 1982) 

(7)F̂STHudson =
�B−�W

�B

(8)�W=p1q1+p2q2+
p1q1

2n1−1
+

p2q2

2n2−1

(9)�B=p1q2+p2q1

(10)F̂STHudson =

(

p1−p2
)2

p1q2+p2q1

F I G U R E  1   Various estimates of FST for a fixed difference between the X- and Y-chromosome when (a) using equal subpopulation sample 
sizes for two subpopulations, males and females, and (b) using unequal subpopulation sample sizes for the two subpopulations, males and 
females, while keeping the total sample size constant

Weir and Cockerham, 1984
Hudson, Slatkin and Maddison, 1992
Nei, 1973
Nei and Chesser, 1983
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estimator and Hudson, Slatkin, et al. (1992) estimator arises in how 
they handle πT and πB. Nei’s (1982) πT uses two randomly drawn se-
quences from the population as a whole, while Hudson, Slatkin, 
et al. (1992) πB requires that the two randomly drawn sequences be 
from the separate subpopulations. Figure 2 illustrates the differ-
ence between these two estimators for (a) a biallelic SNP present 
on an autosome in two subpopulations and for (b) sex chromosomes 
when comparing males and females. Figure 3 shows the FST esti-
mates produced from Nei’s (1973) estimator and Hudson, Slatkin, 
et al. (1992) estimator when considering infinitely large subpopu-
lation sample sizes, as well as the difference between these two 

estimators. Interestingly, the regions corresponding to an SNP that 
is alternatively fixed between the X- and Y-chromosome are among 
the regions where the difference in these estimators is highest. 
However, these estimators can differ substantially across the range 
of plausible allele frequencies observed in two subpopulations. For 
example, SNPs that are not yet fixed differences between the X- and 
Y-chromosome also show this discordance between FST estimators 
(Figure 3; Figure S1). Additionally, the difference in these two FST 
estimates when p1 is 0.20, p2 is 0.80 and both subpopulation samples 
sizes are 20 is slightly larger than the difference produced by sex 
chromosomes. This importantly illustrates that the disagreement in 

F I G U R E  2   Comparison of the nonzero 
components of πB in Hudson, Slatkin, 
et al. (1992) estimator and πT in Nei’s 
(1973) estimator for biallelic SNPs in (a) 
two subpopulations and (b) an XY system. 
Each bar under the alleles represents a 
nonzero comparison that occurs in the 
formulation of πB or πT. The curly bracket 
beneath females in the sex chromosome 
comparison illustrates that females are 
homomorphic for this allele despite 
being diploid and thus only one nonzero 
comparison is made

Hudson, Slatkin and Maddison, 1992 Nei, 1973

Two biallelic subpopulations

Sex chromosomes

Nei, 1973
Males MalesFemales Females

(a)

(b)

Subpopulation 1

A1 A2
A1 A2 A1 A2

A1 A2

Subpopulation 2 Subpopulation 1 Subpopulation 2

Y XXX Y XXX

Hudson, Slatkin and Maddison, 1992

F I G U R E  3   Visualizations of Nei (1973), Hudson, Slatkin, et al. (1992) and the difference between the two estimators. (a) Estimates of 
FST using the Nei (1973) estimator with white being no differentiation and dark blue being complete differentiation. (b) Estimates of FST 
using the Hudson, Slatkin, et al. (1992) estimator given infinitely large subpopulation sizes with white being no differentiation and dark blue 
being complete differentiation. (c) A heatmap of the difference between Hudson, Slatkin, et al. (1992) estimator and Nei’s (1973) estimator 
for FST (Hudson, Slatkin, et al. (1992) minus Nei (1973)) given infinitely large subpopulation sample sizes and the allele frequencies of p in 
subpopulations 1 and 2. Warmer colours show more difference between the estimators, while cooler colours show less difference between 
the estimators. Because the assignment of p and q along with subpopulation 1 and 2 is arbitrary, we have placed black boxes at all of the 
locations that could fit the description of a fixed difference between the X- and Y-chromosome and provided an arrow to the scenario we 
outlined in Table 1. Dotted lines show an FST estimate equal to 0.1, dashed lines show an FST estimate equal to 0.5 and solid lines show an FST 
estimate equal to 0.9. Black dotted, dashed and solid lines are used to signify Nei’s (1973) estimator in panels (a) and (c), while purple dotted, 
dashed and solid lines are used to signify Hudson, Slatkin, et al. (1992) estimator in panels (b) and (c)
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FST estimators is not the byproduct of the unique scenario of sex 
chromosomes, but is a disagreement that many researchers using FST 
estimators should consider.

4.4 | Additional corrections to FST

There are several estimators of FST that attempt to provide correc-
tions for sampling biases and can cause further deviations from the 
expected estimate of FST. Some estimators, such as that proposed 
by Hudson, Slatkin, et al. (1992), change with the total number 
of individuals sampled (Hudson, Boos, & Kaplan, 1992; Hudson, 
Slatkin, et al., 1992; Nei & Chesser, 1983) (Figure 1a; Table 2). 
Additionally, some estimators change as the proportion of indi-
viduals sampled from each subpopulation changes even when the 

total number of individuals sampled is held constant (Hudson, Boos, 
et al., 1992; Hudson, Slatkin, et al., 1992; Nei & Chesser, 1983; Weir 
& Cockerham, 1984) (Figure 1b; Table 2).

As similarly pointed out by Berner (2019), Weir and Cockerham’s 
(1984) estimator appears to respond dramatically to unequal 
numbers of males and females. As the proportion of the males in 
a constant sample size increases, the total variance of the sam-
ple increases and thus decreases the estimate of FST (Figure 1b). 
Regardless, in the case of a fixed difference between the X- and 
Y-chromosome, p is defined as 0.75. Thus, there is little need to cor-
rect for subpopulation sample sizes because this differentiation is 
similar whether a single male and female are analysed or a very large 
number of each sex are considered. However, this type of sample 
size correction may be applicable when considering SNPs that are 
more frequent on the Y-chromosome but not yet fixed or if it is 

TA B L E  2   Software packages for estimating FST and their estimates using mock input. These input files contained fixed differences 
between the X- and Y-chromosome for various sample sizes of males and females

Package (version) Option

5 Males 
and 5 
females

10 Males 
and 10 
females

20 Males 
and 20 
females

5 Males 
and 15 
females

15 Males 
and 5 
females Referenced estimator

vcftools (0.1.15) weir-fst-pop 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham, (1984)

popgenome (2.61) F_ST.stats: nucleotide.F_ST 0.444 0.474 0.487 0.444 0.483 Hudson, Slatkin, et al. (1992)

F_ST.stats: 
nuc.F_ST.pairwise

0.444 0.474 0.487 0.444 0.483 Hudson, Slatkin, et al. (1992)

F_ST.stats: Nei.G_ST 0.333 0.333 0.333 0.333 0.333 Nei (1973)

F_ST.stats: 
Nei.G_ST.pairwise

0.333 0.333 0.333 0.333 0.333 Nei (1973)

F_ST.stats: Hudson.H_ST 0.296 0.316 0.325 0.45 0.163 Hudson, Boos, et al. (1992)a 

F_ST.stats: Hudson.G_ST 0.286 0.310 0.322 0.378 0.195 Hudson, Boos, 
et al. (1992)b ,c 

diversity (1.9.90) diffCalc(fst = TRUE) 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham (1984)

diffCalc() 0.286 0.310 0.322 0.3023 0.3023 Nei and Chesser (1983)

hierfstat (0.04–29) pairwise.fst 0.333 0.333 0.333 0.429 0.2 Nei (1973)c 

genet.dist(method = Nei87) 0.5 0.5 0.5 0.5 0.5 Nei (1987)d 

pairwise.neifst 0.5 0.5 0.5 0.5 0.5 Nei (1987)d 

basic.stats(fst) 0.333 0.333 0.333 0.333 0.333 Nei (1987)

genet.dist(method = WC84) 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham, (1984)

pairwise.WCfst 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham, (1984)

genepop (1.0.5) Fst 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham, (1984)

arlequin (3.5) Compute pairwise FST 0.444 0.474 0.487 0.647 0.362 Excoffier, Smouse, and 
Quattro (1992)

dnasp (6.12.03) Gene Flow and Genetic 
Differentiation: GST

0.286 0.310 0.322 0.378 0.194 Nei (1973)b ,c 

Gene Flow and Genetic 
Differentiation: GammaSt

0.333 0.333 0.333 0.429 0.2 Nei (1982)c 

Gene Flow and Genetic 
Differentiation: Fst

0.444 0.474 0.487 0.444 0.483 Hudson, Slatkin, et al. (1992)

aThis implementation appears to use a wi =
ni − 2

n1 + n2 − 4
 weighting factor. 

bThese estimates are most consistent with Nei and Chesser (1983), which is also discussed in Hudson, Boos, et al. (1992). 
cThese metrics appear to use a wi =

ni

n1 + n2
 weighting factor, while Nei (1982) and Nei and Chesser (1983) state that in most practices the 

subpopulations can be assumed to be weighted equally. 
dThe referenced estimator is consistent with F′ST in Nei (1987). 
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unknown whether an SNP is alternatively fixed between the X- and 
Y-chromosome.

An additional correction considers the number of subpopula-
tions sampled (Hedrick, 2005; Weir & Cockerham, 1984). This cor-
rection is related to an infinite island model that assumes that the 
researcher is sampling a few subpopulations from a larger meta-
population. Because there are only two subpopulations, males and 
females, these corrections are probably unsuitable in this context.

Additionally, it has also been pointed out that FST underestimates 
differentiation at highly polymorphic loci, such as microsatellites 
(Charlesworth, 1998; Hedrick, 2005; Meirmans & Hedrick, 2011). 
Some estimators are particularly concerned with correcting for this 
bias (Hedrick, 2005; Meirmans & Hedrick, 2011); however, this cor-
rection for highly polymorphic loci is unlikely to be necessary for the 
biallelic locus in question.

While some of these corrections are probably inappropriate, au-
thors may be using them as some software packages refer to their 
implementation generically as FST (Table 2). Table 2 and Figure 1 
highlight the wide range of results that researchers could get for 
estimating FST depending on the subpopulation sample sizes and 
estimator employed. One may argue that any large deviation away 
from zero in FST estimates is sufficient enough evidence for sex 
chromosomes. However, estimates of FST that include the various 
aforementioned corrections may never reach 0.333 or 0.5 (Table 2) 
and thus the expected maximum estimate of FST for a particular data 
set should ideally be considered and stated. Otherwise, deviations 
from the theoretical maximum due to these corrections could lead 
to an erroneous interpretation that there are no fixed differences 
between the X- and Y-chromosome.

While the particular case of variants on sex chromosomes leads 
to some of the largest differences between these estimators, sub-
stantial differences can occur under alternative scenarios as well, and 
it would often be helpful to know how much of the variance between 
studies is driven by how FST is estimated. For instance, whether sex-
ually antagonistic selection can explain the range of FST values that 
are found between males and females of different species (Cheng & 
Kirkpatrick, 2016; Flanagan & Jones, 2017; Lucotte, Laurent, Heyer, 
Ségurel, & Toupance, 2016; Wright et al., 2018; Wright, Rogers, 
Fumagalli, Cooney, & Mank, 2019) has recently been the subject 
of debate (Kasimatis, Nelson, & Phillips, 2017; Kasimatis, Ralph, & 
Phillips, 2019). While Kasimatis et al. (2019) compare Wright's FST to 
Weir and Cockerham's estimator of FST, the variability introduced by 
the various estimators used in the previously cited experimental work 
(Hudson, Slatkin, et al., 1992; Nei, 1986; Weir, 1996; Wright, 1949) 
was not considered. In the future, we strongly urge researchers to 
justify their estimator, so that appropriate FST estimators are em-
ployed and estimates from various studies can be comparable.

5  | CONCLUSIONS

When considering fixed differences between the X- and 
Y-chromosome, we conclude that it is appropriate to use Nei’s (1973) 

estimator since it is most consistent with the work of Wright and 
others. However, both Nei’s (1973) and Hudson, Slatkin, et al. (1992) 
estimators are useful estimators of differentiation and there could 
be questions, such as those regarding polymorphisms that are not 
fully linked to the X- or Y-chromosome, which are better answered 
with different estimators that implement some of the previously 
mentioned corrections. Moving forward, we encourage researchers 
to state which estimator they choose, their rationale for that choice 
and what the expected estimate of FST is for the data set they are 
investigating.
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