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SUMMARY

Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have 

crucial functions that depend on their structures. However, since native ssRNAs constitute a 

highly heterogeneous conformer population, their structural characterization poses challenges. 

One important question regards the role of sequence in influencing ssRNA structure. Here, we 

adopt an integrated approach that combines solution-based measurements, including small-angle 

X-ray scattering (SAXS) and Förster resonance energy transfer (FRET), with experimentally 

guided all-atom molecular dynamics (MD) simulations, to construct structural ensembles of a 

30-nucleotide RNA homopolymer (rU30) and a 30-nucleotide RNA heteropolymer with an A-/C-

rich sequence. We compare the size, shape, and flexibility of the two different ssRNAs. While 

the average properties align with polymer-physics descriptions of flexible polymers, we discern 

distinct, sequence-dependent conformations at the molecular level that demand a more detailed 

representation than provided by polymer models. These findings emphasize the role of sequence in 

shaping the overall properties of ssRNA.
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Single-stranded RNAs (ssRNAs) are highly flexible molecules that play crucial roles in various 

biological processes, with their structure often influencing their function. Wang et al. compare 

a 30-nucleotide homopolymer and an A-/C-rich heteropolymer, finding that they have distinct 

conformational propensities that traditional polymer models may not capture.

INTRODUCTION

RNA macromolecules can adopt a wide variety of structures that facilitate their many 

functions. Some RNAs possess well-defined secondary and tertiary (folded) structures 

enabled by evolutionarily deliberate base-pairing schemes, such as the canonical examples 

of tRNA and ribozymes.1–3 Other biologically important RNA regions lack base pairs, 

instead sampling a heterogeneous conformational ensemble in cells. Importantly, this 

disorder appears to be essential for function. Single-stranded RNA (ssRNA) regions are 

found in viral, long non-coding, and messenger RNA.4–7 Disorder also enables variations 

in shape and surface electrostatics that create binding sites for proteins, small molecules, 

and other RNAs.6,8–14 Finally, ssRNAs can phase separate to form both functional and 

pathological biomolecular condensates, where their ability to sample many configurations 

and interact at multiple sites allows for transient, multivalent contacts.15–20 These roles are 

often specific to particular RNA sequences.

Despite the functional importance of disordered ssRNAs and the recognized connection 

between structure and function for most biomolecules, their sequence-dependent structures 
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remain elusive. Structural studies of disordered ssRNA are reminiscent of work on 

intrinsically disordered proteins (IDPs).21,22 However, the more limited building blocks 

in the former, as well as the uniform negative charge of RNA chains, hint that the 

methods and properties used to study IDPs may not be directly applicable toward 

the study of ssRNA. Past efforts have revealed some biophysical properties of single-

stranded nucleic acids.23–25 Additional computational efforts are beginning to explore 

the conformational dynamics of ssRNA in greater detail, but they suffer from a lack 

of experimental validation.26–30 Significant efforts have focused mainly on characterizing 

small (around 5-nucleotide) ssRNA motifs.31–33 Longer (~30 nucleotides) homopolymeric 

chains have been explored in experiments and appear more complicated than Gaussian 

coils and worm-like chains; in particular, sequence-dependent base-stacking interactions 

in ssRNA present a challenge when applying polymer physics models.34–36 Thus, while 

informative, single-value descriptors such as the Flory scaling parameter only offer a limited 

representation of flexible biopolymers.37,38 Long heteropolymeric ssRNAs have rarely been 

considered structurally. As a first step, there is a need for approaches that characterize the 

conformations of dynamic ssRNA molecules.

A comprehensive characterization of ssRNA warrants combining information from multiple 

experimental and computational techniques to sample different aspects of the conformers 

within the structural ensemble. In this study, we employ small-angle X-ray scattering 

(SAXS) and single molecule Förster resonance energy transfer (FRET) to investigate the 

conformational properties of ssRNA. We determine the conformations of an adenine- (A) 

and cytosine (C)-rich 30-ribonucleotide heteropolymer and compare them with those of a 

homopolymer containing only uracil (U) bases. Although the two sequences show similar 

end-to-end distances via FRET measurements, SAXS suggests a more compact state for the 

mixed sequence. We use molecular dynamics (MD) simulations to generate conformational 

pools that satisfy the constraints of both SAXS and FRET and elucidate atomically detailed 

differences between the sequences. Validation as well as additional insight into helical 

content are provided by fluorescence correlation spectroscopy (FCS) and circular dichroism 

(CD). We utilize polymer-derived structural parameters to uncover the average structure; 

both shared features and variations among the sequences are investigated. Given that 

most of the elements within the conformational ensemble of highly flexible ssRNAs are 

concealed by random structures, we 3D classify the structural ensembles using network 

graphs that capture pairwise similarities between each conformation. This spectral clustering 

routine reveals sub-ensembles of well-defined conformations from the seemingly random 

ssRNA ensemble. These conformations are influenced by transient hydrogen bonding and 

base-stacking interactions, which play a crucial role in shaping the overall structure of the 

ssRNA molecules. This work represents a significant step toward developing a generalizable 

approach for generating and analyzing highly flexible sequences of ssRNAs. The outlined 

approach, systematic integration of multiple experimental and computational tools within 

a single framework, will assist in addressing how sequence influences the structure and, 

consequently, the function of highly flexible biomolecules.
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RESULTS

rU30 and mixed-sequence ssRNA have distinct compaction states

We measured the sequence-dependent conformational preferences of our two ssRNA 

molecules using solution measurements. Interestingly, the two sequences display distinct 

structural properties when measured under identical solution (salt) conditions (Figure 1; 

Table 1). SAXS measurements report that the radius of gyration (Rg) of the mixed-sequence 

RNA was 16.4% lower than that of rU30, indicating greater compaction in the former. 

Further supporting this trend, the hydrodynamic radius (Rℎ) measured by FCS was found 

to be 13.5% lower in the mixed RNA compared to rU30 (Figure S1; Table S1). The Rg, 

describing the distribution of a macromolecule’s mass, and the Rℎ, describing the aura 

of space that a macromolecule samples through diffusion, both provide complimentary 

information about the average size and compaction state of the structural ensemble. To 

describe the RNA-solvent interactions and the overall size of molecules, we employed the 

swollen Gaussian coil form factor to fit the Kratky plots. This model is commonly used to 

characterize disordered polymers.39 Based on the Gaussian model, we determined a scaling 

factor of (ν ≈ 0.55) for rU30, suggesting a swollen random walk conformation. In contrast, 

the mixed sequence displayed ν ≈ 0.49, resembling a polymer in a theta solvent (Figure 1).

The experimental data (Table 1) suggest that the mixed-sequence RNA ensemble is on 

average more compact than the homopolymer rU30. For a deeper understanding of the 

differences between the two ensembles, we performed complementary single-molecule 

FRET measurements. The Förster radius was observed to be 2.45 Å greater for mixed 

ssRNA than rU30 (Figure S2; Tables S2–S4). This difference may result from the interaction 

of donor fluorophores with different bases. Indeed, despite a significantly greater apparent 

FRET efficiency measured for the mixed ssRNA, the increased Förster radius results in 

approximately equal end-to-end distances for both molecules (Table 1). The similarity 

of end-to-end distances, given differences in the Rg invites deeper investigation of the 

conformational ensembles, which we have accomplished by applying MD simulations.

Maximum entropy approach generates experimentally consistent ssRNA structural 
ensembles

The solution-based measurements provide quantitative evidence for sequence-dependent 

conformations of ssRNA. However, the information obtained from the polymer physics 

interpretation is insufficient to fully characterize the conformational differences and to 

understand how sequence dictates conformational propensities. To address these important 

questions, we leveraged a computational approach that utilizes atomistic details as well 

as explicit solvent RNA interactions. To ensure experimental consistency we sampled 

conformations committed to satisfy both SAXS and FRET constraints. The details of our 

workflow can be found in (Figure 2) and in the experimental procedures section.

MD simulations were conducted to generate conformational pools for each molecule 

using two different methods. The first involved running unbiased simulations, where 

conformational sampling was based on the empirical potential alone. In the second, we add 

the SAXS data to guide the conformational sampling. A third pool was also generated from 
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the latter by re-weighting the SAXS-guided conformational pools to ensure consistency 

with the FRET measurements (see experimental procedures and Figure 2 for detailed 

information). Full atomic coordinates of the conformational ensembles with their associated 

weights and a representative structure from each cluster are provided in the supplemental 

information for further analysis (Data S1 and Data S3).

The unbiased simulations yielded high errors, which can be attributed to insufficient 

sampling of flexible ssRNA conformations and imperfections in the force fields (Figures 

3A and 3B). The application of SAXS-driven MD resulted in a notable reduction in the 

χ2 value compared to brute force MD. Specifically, for rU30, the χ2 value decreased from 

15.46 to 0.96, and for the mixed sequence, it decreased from 8.14 to 2.42. (Figure 3B, 

blue vs. red). In our context, the χ2 reports on the agreement between the experimental 

data and theoretical data computed from MD-derived conformers, where values closer to 1.0 

indicate better agreement. Its full calculation is described in the supplemental experimental 

procedures section “computing SAXS from explicit-solvent MD simulations.” Despite the 

good agreement with the SAXS data, the SAXS-driven MD ensembles still exhibited 

significant deviation from the FRET experiments (Figure S3), indicating that SAXS and 

FRET observables provide mostly orthogonal constraints and unique information about 

the conformational states. Re-weighting the SAXS-driven MD pool using the FRET data 

exhibited good agreement with SAXS and FRET simultaneously (orange color) (Figures 

3A–3D).

To further evaluate the accuracy of the pools, we computed each ssRNA’s ensemble-level 

Rg and Rℎ and compared them with independent measurements for cross validation. The 

agreement between these computed and measured parameters demonstrates the success of 

our methodology (Figures 3E and 3F).

rU30 and mixed-sequence RNA have different sizes and shapes

Having generated ssRNA conformational pools consistent simultaneously with experimental 

SAXS profiles and EFRET histograms (Figure 3), we aimed to gain a more comprehensive 

understanding of the sequence-dependent global size and shape of the ssRNAs and their 

interactions with the solvent. For that purpose, we revisited the Scaling Law analysis 

introduced in Figure 1. Consistent with the previous analysis, we observed that the 

computational ensemble generated for rU30 shows a higher Flory exponent (ν) than for the 

mixed sequence, suggesting more swollen chain conformations for the homopolymer. While 

the analysis yielded the same trend, ν values obtained directly from simulations and those 

derived by fitting the SAXS curve to the Gaussian chain model are not the same (Figure 

1 vs. Figure 4A). Direct computation of ν from simulations via scaling law relationships, 

exhibited ν ≈ 0.76, while the fitting procedure of the SAXS curve resulted in ν ≈ 0.55 for 

rU30. Similarly, for the mixed sequence, values obtained by the two approaches deviated 

significantly. As the measured SAXS curves are in excellent agreement with those computed 

from simulation, these deviations likely arise from the fact that the first method assumes a 

Gaussian coil homopolymer chain, whereas the second method does not.
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To systematically characterize the conformations sampled by each sequence, we projected 

the RNA conformations onto tensors of the Rg and persistence and contour lengths (Figure 

4). The projected parameters are represented as heat maps, illustrating their distribution 

within the conformational pool (Figure 4). We compared the shape and size of rU30 with the 

mixed sequence.

Based on this analysis, we conclude that the two ssRNA sequences explore different regions 

of conformational space, and rU30 exhibited higher contour and persistence lengths. We 

further found that rU30 and Mixed RNA differ in their distributions of Δ and S parameters 

(which are defined in the supplemental experimental procedures section “additional analyses 

of ssRNA structural ensembles” and describe the deviation of the ensemble from being 

spherical), further elucidating their different structural behaviors (Figures 4D and 4E vs. 

Figures 4H and 4I).

A-/C-rich mixed RNA is more helical than rU30

After determining the ensemble behaviors of both ssRNA constructs, we delved deeper 

into their unique properties and the local geometries that govern their overall ensembles. 

Firstly, we aimed to understand whether any local structures are present within the mixed-

sequence ensemble, which contains many A and C bases. Consistent with previous studies, 

we observe that rU30 exhibits Gaussian coil behavior with limited secondary structure. 

Meanwhile, this study newly reveals that the C-rich sequence shows a strong propensity 

for helical structures. To our knowledge, there are no comparable studies of rC30. We 

further conducted circular dichroism (CD) experiments on the mixed ssRNA, using rU30 

and rA30 as limiting cases representing mostly unstructured and structured helical strands 

(Figure 5A). Our results indicate that the degree of helicity in the mixed sequence is 

intermediate between these two extremes (Figure 5A). To further quantify this observation, 

we computed the orientational correlation function (OCF) between the chain phosphates in 

the conformational pools.40 As depicted in Figure 5B, the OCF profiles computed for the 

mixed sequence and rU30 exhibit oscillatory behavior reflecting orientational order. The 

shorter periodicity observed in the mixed sequence reflects stronger correlations between 

local bases compared to rU30.

To provide additional context for the higher correlations observed in mixed sequence, we 

computed the tortuosity (degree of twist) and the amount of base-stacking events (Figures 

5C and 5D). Our analysis reveals that the mixed ssRNA exhibits a larger tortuosity and 

a higher number of base-stacking events compared to rU30 (Figure 5D). This increase in 

stacking events is likely attributed to the greater prevalence of purine (A) bases in the mixed 

sequence. However, we did not observe significant differences in the base-base stacking 

preferences between the A-rich and C-rich regions of the mixed sequence (Figure S5), 

suggesting C bases also have a propensity to stack, supporting previous studies on short 

ssRNA.41 The C-rich region of the mixed sequence also displayed a higher level of order 

compared to the homopolymeric rU30 in our study, as evidenced by its higher oscillatory 

periodicity (Figure S5A and Figure 5B).

We also utilized a contact map analysis to visualize the local structures of the two 

conformational ensembles (see supplemental experimental procedures section “contact map 
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analysis”). As shown in Figures S6A and S6B, A wider band along the diagonal direction 

indicates a higher number of contacts between adjacent/neighboring residues as observed 

in the mixed RNA compared to rU30. This observation is consistent with the greater 

helicity exhibited by the mixed RNA in comparison to rU30. Conversely, rU30 demonstrates 

frequent hairpin loop formation events at both ends of the chain (Figure S6).

Overall, these findings indicate a higher degree of helicity in the A-/C-rich mixed-sequence 

ssRNA, which is likely facilitated by an increased number of intra-strand interactions among 

the more diverse set of bases. Among these interactions, base stacking plays a prominent 

role and appears to be more prevalent in the mixed sequence. The helical behavior of the 

mixed ssRNA falls between the extremes represented by rU30 and rA30, suggesting that the 

inclusion of A and C bases enhances the occurrence of base stacking interactions compared 

to rU30, although not to the same extent as a sequence composed entirely of A bases.

Specific RNA conformations are sequence dependent

Ensemble averaging, which provides an average picture, has proven useful for benchmarking 

our findings against bulk measurements. However, it does not provide insights into how 

individual molecules within each sequence compare with one another. To explore in greater 

detail how the differences at the sequence level manifest, and to gain a deeper understanding 

of the structural underpinnings of our ensemble-level polymer metrics, we conducted 

3D classification and averaging to determine sub-families of structures within the RNA 

ensembles. This allowed us to decompose each ensemble into a handful of characteristic 

conformations for tangible visualization in real space. To do so, we constructed network 

graphs based on spatial proximity followed by spectral clustering to identify distinct groups 

or subfamilies of similar structures within each ensemble (Figure 6); see experimental 

procedures for details. As a metric of spatial variability within each sub-family, we used the 

spatial variance at each phosphorus position, δRi = δXi
2 + δY i

2 + δZi
2  where each component of 

the variance is defined as δγ = E γ − μγ
2  where E .  is the expectation value and μγ is the 

mean value of component γ. The spatial variance is found to be less than 50 Å2 across the 

majority of the RNA backbones and the individual conformers are visually similar to the 

average conformers (Figure 6), indicating that the individual structures align well with each 

other and share similarities within their respective subfamilies. Higher spatial variability 

is observed in certain regions, particularly at the ends of the RNA molecules where the 

backbone can exhibit diverse orientations.

By examining the unique structural classes identified using our approach, we observe the 

impact of enhanced helicity of the A-/C-rich mixed-sequence ssRNA compared to rU30. 

The greater orientational variability along the backbone of the mixed RNA contributes to its 

lower persistence length in comparison to rU30. Additionally, the more pronounced helicity 

in the mixed RNA leads to its conformations having less radial deviation from its long axis, 

in contrast to rU30, which exhibits wider bends along the backbone due to longer featureless 

stretches. Furthermore, we observe an increased prevalence of strand fold-overs at the ends 

of the ssRNA chain in rU30, as reflected in the contact maps (Figure S6). The visualization 

also provides a real-space explanation for why the rU30 and mixed RNA conformations 

display comparable end-to-end distance distributions despite the lower Rg observed in mixed 
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RNA compared to rU30. Specifically, the ensemble of rU30 structures may exist within a 

larger sphere of mass as the molecules fluctuate and tumble in solution, leading to greater 

experimental values of Rg and Rℎ obtained through time-averaged measurements.

Compared to rU30, the structural ensemble of the mixed-sequence RNA exhibits a higher 

level of connectivity, as evidenced by the approximately 2-fold increase in closeness 

centrality and significantly greater degree centrality (Figure S7). In graph space, this 

indicates that the nodes in the mixed RNA ensemble are closer together, and there are 

more edges connecting the nodes. Specifically, the graph of mixed RNA contains 810 

edges, compared to 506 edges in the rU30 graph, despite having the same number of 

nodes. This suggests that the structures within the mixed RNA ensemble are more similar 

to each other, while the rU30 homopolymer exhibits greater structural variability. This 

observation is further supported by the presence of outlying nodes in the rU30 graph, which 

primarily represent highly extended structures (Figure S8). In contrast, there are no outliers 

in the mixed RNA graph, indicating the absence of highly extended structures beyond the 

identified classes.

While graph theory enabled us to examine the connectivity of conformations according to 

their structural similarity, we also employed MD trajectories to characterize the network of 

kinetically accessible conformational transitions and time evolution of the structural metrics 

(Figures S9–S13 and S14–S18; supplemental experimental procedures section “additional 

analyses of ssRNA structural ensembles” for the details of connectivity network analysis). In 

addition, we provide a movie showcase the dynamics of each sequence in the supplemental 

information (Video S1). Trajectory analysis of rU30 reveals a dynamic exchange of 

conformations centered around four major structures, unveiling a highly interconnected 

network of transitions accessible within the simulation timescale. All conformations exhibit 

similar tendencies in base stacking, while measures of tortuosity and chain size (quantified 

by radius of gyration and end-to-end distance) display notable variations. Predominant 

clusters encompass both helical and random structures, showcasing collapsed as well 

as highly extended polymer conformations. Comparatively, mixed-sequence structures 

demonstrate heightened base stacking and helical content in contrast to rU30. Notably, in the 

mixed sequence, we observe a prominent conformational switch between bent and straight 

helical geometries. The conformational heterogeneity of mixed sequence is facilitated by 

excursions to high-energy states through clusters 3 and 4 (see Figure S14).

DISCUSSION

Structurally characterizing a highly disordered macromolecule, particularly ssRNA, requires 

experimental measurements that capture the full range of conformational variability of the 

molecule. Such measurements often come at the cost of resolution due to spatial averaging. 

In this study, we aim to overcome this limitation and venture beyond coarse-grained polymer 

models such as the Gaussian and worm-like chains which are commonly used to interpret 

experimental data. Instead, we examine the specific conformers of ssRNA in detail. To do 

this, we employ an integrated approach, generating all-atom ssRNA conformers by MD in 

a thermodynamically accurate maximum entropy framework and employing a combination 

of SAXS, FRET, FCS, and CD. These methods, when synthesized, provide a definitive 
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representation of the ssRNA conformers likely present in the solution at near-physiological 

ionic strength. Overall, the use of unique experimental metrics compounds the amount 

of useful information and results in a consistent description of the disordered system: 

MD provides physically plausible all-atom conformations, SAXS provides the distribution 

of paired distances and dictates the overall compaction state of the actual structural 

ensemble through the Rg, FCS validates this latter measurement by providing hydrodynamic 

radii, FRET offers end-to-end dimensions, and CD evaluates helical content. Recent 

characterizations of both disordered nucleic acids and IDPs also combine computational 

and experimental approaches to determine accurate structural ensembles, demonstrating the 

utility of an integrated approach toward characterizing disordered macromolecules.21,22,42

We apply our integrated approach to compare the solution structures of rU30 and a 30mer 

A-/C-rich mixed sequence (Figure 1A). As most biological RNA sequences contain a 

combination of purines and pyrimidines, studying mixed sequences is desirable. Tracts 

of repeated bases are often observed in physiologically relevant ssRNAs, such as those 

that are U-rich,4,5,43,44 A-rich,8,10 and C-rich sequences.6,9 From our results, we find 

unique structural behaviors of A, C, and U tracts, developing the notion that base identity 

influences the average shape and size of the RNA molecules. Furthermore, it governs unique 

structural tendencies among sequences, which are likely to impact their functions.45 This 

study extends previous descriptions of ssDNA and ssRNA, which ascribe the behavior of 

pyrimidine homopolymers like rU30 to resemble an unstructured Gaussian coil.33,34

We find that the structures of ssRNA are by no means random. We first notice the 

discrepancy in ν values of the ssRNA derived from fitting a swollen Gaussian coil form 

factor to the SAXS data (Figure 1B) vs. computing the internal scaling plots ( i − j  vs. R) of 

the conformers in the pool directly (Figure 5A), which result in ν values that have the same 

trend but are 30–40% higher. This suggests that the Gaussian coil does not accurately model 

ssRNAs, supporting the effort to determine all-atom pools. Interestingly, the mixed sequence 

appears to have two distinct structural behaviors corresponding to its two distinct purine- (A) 

and pyrimidine (C)-rich sequence fragments (Figure S19). The C-rich portion has a more 

pronounced twist, while the A-rich segment appears less tortuous—these differences may 

reflect different types of helicity. These structural preferences are especially perceptible in 

cluster 0, and cluster 3 for the mixed sequence in Figure 6. Within the mixed sequence, the 

backbone conformation of the C-rich tract is different from the A-rich tract, and the presence 

of both tracts offers a glimpse as to why mixed ssRNA differs from both rU30 and rA30 

in its secondary structure (Figure 5A). We note also the presence of G bases in the mixed 

ssRNA sequence, whose structural contribution is difficult to deduce as they are sparsely 

present and not in tracts. G bases are known to have a strong π − π interaction potential, 

so it is conceivable that they would contribute to the elevated base stacking behavior in 

the mixed sequence.46 The distinct behavior of A-/C-rich mixed ssRNA sequence within 

the same strand acknowledges the pivotal effect of sequence on ssRNA structure and the 

potential contribution to ssRNA design that our research offers.

Finally, this study combines data from SAXS and FRET to refine the ssRNA structural 

ensembles. Past work has questioned their compatibility, due to discrepancies between 
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Flory ν parameters obtained from both techniques and the observation that FRET dyes 

may artificially collapse some proteins.47–49 In the current study, we observe that EFRET

reweighting of the ssRNA structural ensembles did not result in appreciable modifications 

in the Rg of the structural ensemble outside error margins (27.2 ± 3.4 Å to 25.8 Å for rU30 

and 24.7 ± 2.2 Å to 23.3 Å for mixed). We also measured a significant difference in the Rg

between rU30 and mixed ssRNA without an appreciable change in the REE (Figures 1C and 

1E), demonstrating that the two metrics from SAXS and FRET are not necessarily coupled. 

Furthermore, we readily obtained ssRNA structural ensembles that agree simultaneously 

with SAXS and FRET. The results of this study demonstrate the possibility of integrating 

SAXS and FRET in a congruous manner, and the benefit of FRET providing an additional 

readout of the REE distribution. Similar conclusions were also arrived at in Gomes et al.21 

and Fuertes et al.50

Given that our method provides atomically detailed representations of these flexible 

molecules, we would be remiss to not address possible structural changes resulting from 

the presence of the dyes. To this end, we compare the structures determined by SAXS-driven 

MD with the FRET-data refined ensembles (Figure S20), along with a description of their 

similarities and differences. The salient features that characterize the ensemble, specifically 

the OCF and base stacking (Figure S21) deviate only slightly between the two differently 

derived ensembles; the distinct features and conformations that define ensembles for each 

construct are consistently reported by both methods. Differences between the ensembles 

mainly reflect the loss of the most extended structures from the SAXS pools, consistent with 

the absence of zero FRET (highly extended) states from our FRET measurements (Figure 

S3), and structures reveal no obvious dye-dye or dye-backbone interactions (Figure S20). 

This is, of course, subject to any limitations imposed by the sampling and the force fields 

used to create the pools. We also compared structural parameters obtained from unbiased 

and biased simulations. The average structural properties across three ensembles (unbiased, 

SAXS-driven, SAXS-FRET refined) were similar for both sequences, particularly in rU30. 

Differences between simulations were primarily attributed to variations in local base 

stacking, with brute force MD simulations showing an over-stabilization of base stacking, 

especially noticeable in mixed sequences. Biased simulations induced modifications to the 

conformational ensemble compared to unbiased simulations, particularly affecting global 

chain properties. FRET reweighting had minimal impact on the global structural parameters 

of rU30 but led to higher deviations in mixed sequences, with parameters S and Δ showing 

the largest differences between ensembles. Cross-validation of the ensemble’s hydrodynamic 

radius revealed similar performance between the pools, suggesting that the conformations 

contributing to the overall behavior of this global property remain similar across the 

methodologies (Figure S22).

While we have modeled the conformational ensembles of ssRNA in detail, we must be 

careful not to overinterpret the results. We confidently provide the backbone conformations 

but further structural detail, for example orientation of the nucleotide bases, requires 

additional experimental validation. To obtain this level of detail, techniques such as NMR 

on short stretches of ssRNA molecules could be integrated into a future workflow. To 

better evaluate the influence of sequence on the structural dynamics of ssRNAs, sequences 
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with varying nucleobase compositions are desirable. However, such high-throughput studies 

are quite demanding with our current methodology, limiting its use to more targeted 

sequences. Moreover, ongoing improvements to MD force fields, especially those directed 

toward modeling electro-statically dense nucleic acids, will allow more realistic ssRNA 

conformations to be sampled and may also allow for the explicit account of phenomena such 

as base stacking.51 Surpassing this hurdle would allow for the additional detailed modeling 

of constructs such as rA30 that are known to undergo extensive π−π stacking.34

In summary, by integrating multiple experimental techniques with all-atom MD simulations, 

we have constructed plausible structural ensembles of a ssRNA homopolymer (rU30) 

and heteropolymer (A-/C-rich mixed sequence) that agree simultaneously with SAXS, 

FRET, and FCS measurements. The two ssRNAs are distinct in their conformational 

landscapes, with the increased compaction of the mixed sequence stemming from enhanced 

base stacking leading to greater helicity. Through graph theory, we developed a method 

of 3D class averaging of the disordered structures and identified 4–5 main backbone 

conformations that describe the structural variability in each of the ensembles. The greater 

helicity in the mixed sequence relative to rU30 can be seen in real space through these 

backbone conformations, and distinct behavior arises in both the A- and C-rich halves 

of the molecule. Overall, we demonstrated that not all disordered RNA molecules are 

alike—disparate conformational landscapes and structural features are present between two 

distinct sequences and a generalized random walk model can fail to capture these subtle 

differences. The framework developed in this study is readily applicable to the detailed study 

of more ssRNA sequences, an important advance given the physiological relevance of these 

molecules.

EXPERIMENTAL PROCEDURES

ssRNA sample preparation

We identified a 30-nucleotide heteropolymer sequence with minimal secondary structure and 

intermolecular hybridization. This construct has the sequence 5′-AA GAAUAAAAGAG 

AAGCCACCCCACCCAGA-3′ and is referred to as “mixed” ssRNA. We also studied a 

30-nucleotide poly-uridine RNA, which is amenable to solution experiments and is expected 

to have minimal structure.33,34 While designing the mixed sequence, we limited our use of 

U bases to better contrast with rU30. To avoid any secondary and tertiary interactions, we 

also limited the use of repeated G bases to prevent quadruplex formation. We focused on A 

and C tracts due to their physiological relevance and unique interactions (see discussion). 

Unlabelled RNA samples for SAXS and RNA doubly labeled with 5′ cyanine-3 (cy3) dye 

and 3′ cyanine-5 (cy5) were purchased from Integrated DNA Technologies (Coralville, IA, 

USA). For SAXS experiments, unlabelled RNA was desalted and buffer exchanged into 100 

mM NaCl, 10 mM MOPS pH 7.0, 20 μM EDTA using 3k MWCO 0.5mL centrifugal filters. 

For FRET measurements, doubly labeled RNA was diluted to 300p.m. concentration (in the 

single molecule regime) in the same 100 mM NaCl buffer used for SAXS. FRET samples 

were prepared in borosilicate chambered coverglass (Nu-Tek, Aberdeen MD, USA) that was 

passivated overnight at room temperature in 600 μL of 1 % casein to prevent non-specific 
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surface association. Before measurement, all RNA samples were annealed at 100 mM NaCl 

by heating the sample to 90°C for 3 min and snap cooling at 4°C for 20 min.

Solution X-ray scattering

SAXS measurements on the heteropolymeric RNA were performed on a BioXolver 

laboratory X-ray source (Xenocs, Grenoble France), averaging 10 frames, each with 120 

s exposure time for each sample. The images were azimuthally integrated such that the 

scattering intensity I q  is plotted as a function of the scattering vector q: q = 4π sin θ
λ , where 

λ is the wavelength of incident X-ray radiation and θ is one-half the scattering angle. Data 

points at q < 0.05 Å −1 were acquired for multiple RNA concentrations. These curves 

were linearly extrapolated to zero concentration to eliminate inter-particle effects. SAXS 

data on homopolymeric poly-uridine RNA were acquired as previously described.34 The 

radius of gyration (Rg) was determined by employing the Guinier approximation of Gaussian 

scattering at qRg < 1.3 (Figure S23).

I q = I 0 e−q2Rg
2/3 .

(Equation 1)

We also performed a dimensionless Kratky transformation of the axes to visualize geometric 

differences between the two disordered RNA constructs

q, I q qRg, I q q2Rg
2

I 0 .

(Equation 2)

This approach normalizes out size information and amplifies differences at q values 

above those in the Guinier regime (qRg > 1.3), allowing for a comparison of the overall 

shapes of the two constructs. Data reduction and processing were performed in BioXTAS 

RAW.52 In addition, the SAXS data were fit to the semi-analytic form factor of a swollen 

Gaussian chain to obtain experimental estimates for the Flory scaling parameter ν, described 

previously.39,53

Förster resonance energy transfer

Dual color FRET measurements were performed using alternating laser excitation.54 Photon 

traces were recorded in 30-x 30-s segments. Burst analysis was performed using in-house 

software written in MATLAB (Mathworks, Natick, MA, USA). Photon count channels were 

partitioned into 1 ms bins, intentionally longer than the dwell time of the molecules in 

the confocal volume (measured by FCS to be about 200 μs, see supplemental experimental 

procedures). Fluorescence intensity (I) was determined as the number of photons per time 

interval and was background corrected by subtracting the average I. The apparent FRET 

efficiency Eapp was computed as
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Eapp = IA, 532 − αID, 532 − δΙA, 640
γΙD, 532 + IA, 532 − αID, 532 − δΙA, 640

.

(Equation 3)

Here, Ix, y corresponds to the fluorescence intensity of x=cy3 donor (D) or cy5 acceptor (A) 

under y = 532nm (excites donor) or 640nm (excites acceptor) laser excitation. Along the 

second axis, the apparent stoichiometry ratio (Sapp) of fluorophores was computed as

Sapp = IA, 532 − αID, 532 − δΙA, 640
1
β ΙA, 640 + γΙD, 532 + IA, 532 − αID, 532 − δΙA, 640

.

(Equation 4)

where α, δ, β, and γ are correction coefficients accounting for leakage of donor fluorescence, 

direct acceptor excitation, and differences in excitation and detection efficiencies of the 

optical system.

A dual channel burst search algorithm was employed to remove artifacts from fluorophore 

bleaching and blinking.55 This left a 2D Eapp − Sapp histogram with a single population at 

S ∈ 0.3, 0.7  (the regime for doubly labeled molecules), which was fit to a single Gaussian 

function (Figure S2). Data from six independent measurements were pooled, and the mean 

Eapp value was determined from the measurement series, with errors estimated by the 

standard error in the mean (Table S2).

To convert the measured apparent FRET efficiency into the absolute end-to-end ssRNA 

distance (R), we used the relation

< Eapp > = 1

1 + R
R0

6 .

(Equation 5)

Here, < Eapp > is given in Equation 3 and R0 is the experimentally determined Förster radius. 

A more detailed account of the fluorescence instrumentation and experimental controls, 

as well as the experimental setups of FCS and CD, are provided in the supplemental 

experimental procedures and Figure S24.

Computational modeling of RNA structural ensembles based on SAXS and FRET data

We conducted all-atom brute force MD simulations, followed by multi-replica SAXS-driven 

MD simulations and ensemble refinement to derive pools consistent with experimental data. 

Each of the steps in the aforementioned approach is elaborated upon in the supplemental 

experimental procedures. Below, we provide a concise summary of our experimentally 

guided computational methodology for studying RNA structural ensembles.
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First, we placed the RNA molecules in a simulation box (12 × 12× 16 nm3) with 

explicit water and ions mimicking experimental conditions (Table S5). Molecular dynamics 

simulations were conducted using GROMACS 2018.556 with the Amber force field, 

incorporating χOL3 correction57 representing the RNA. A 200 ns-long brute force MD 

simulation was conducted at 300K and sampled conformations were clustered using RMSD 

to create four replicas representing different regions of the conformational states.

Subsequently, we performed multi-replica SAXS-driven MD simulations (see Figures S25 

and S26), which employed a hybrid energy function Ehybrid = EFF + ESAXS, where the energy 

from the MD force field (EFF) was combined with a time-dependent penalty term for each 

replica system (ESAXS), as defined in58,59:

ESAXS R1, …, RN, Iexp, t

= α t kcNΩkBT
nq

∑
i = 1

nq Icomp qi, R1, …, RN, t − Iexp qi
2

σ2 qi

(Equation 6)

Here, R1, ..RN represents the coordinates of the replicas, α t  is a time-dependent function 

that gradually couples SAXS data to the Hamiltonian, and nq is the number of scattering 

vectors of q. Here, the factor kcNΩ adjusts the weight of the SAXS potential ESAXS relative 

to the force field potential EFF while the summation measures the difference between 

the replica-averaged scattering amplitude computed from simulations, Icomp qi, R1, …, RN, t , 

and the experimental scattering amplitude Iexp qi . The difference is scaled by possible 

uncertainties. These uncertainties were modeled as an independent sum of experimental, 

statistical, and systematic errors, σ2 qi = σexp
2 qi + σcomp

2 qi + σbuffer
2 qi . All snapshots with χ2 < 

2.5 selected from the 400-ns-long simulation were then used to generate a conformational 

pool for each sequence. Details on the settings of the SAXS-driven MD simulation can be 

found in the supplemental experimental procedures.

Multi-replica SAXS-driven MD simulations yield SAXS-consistent conformations that 

follow a Boltzmann distribution within the modified potential energy function, with the 

probability distribution defined as P0 X ∝ e−βV X , where X represents the sampled states 

and β = 1/kBT . To minimally bias the probability distribution and generate an ensemble 

consistent with FRET experiments, we employed the Maximum Entropy reweighting 

method (see Figures S27 and S28).60–63 In this approach, the ensemble is reweighted 

by maximizing Shannon’s entropy between the prior and posterior distributions, given by 

S P P0 = − ∫ dXP X ln P X
P0 X , while satisfying the following conditions:
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PME X = arg max S P P0

∫ dXf X P X = fexp

∫ dXP X = 1

(Equation 7)

where f X  and fexp are the FRET energy distributions computed from simulations and 

measured in experiments. To achieve this, we initially computed the FRET efficiencies for 

each conformation generated by SAXS-driven MD using the HandyFRET program,64 and its 

particular implementation to RNA is described in the supplemental experimental procedures 

(“computing FRET efficiency from MD simulations”).51 Subsequently, we fit the data into a 

Gaussian function for both the simulated and experimental FRET data. To solve Equation 7, 

we used the code provided in ref. 29 after modifications.

Data analysis and visualization

We used the ensemble-weighted conformational pool to characterize both the global and 

local structural properties of the sequences. We computed various structural parameters, 

including Flory scaling law, global shape parameters (Rg,Δ,S), end-to-end, persistence and 

contour lengths (REE, LP, LC), the orientational correlation function of base pairs (OCF), 

and the base stacking propensity for each sequence. Furthermore, spectral clustering was 

employed to classify and visualize the distinct structural ensembles.

Namely, we calculated the scaling properties, represented as R i − j ∝ i − j v, where v denotes 

the scaling exponent, and i − j  represents the distance between phosphate groups of residue 

pairs.65 To assess the global shape of the RNAs, we utilized the eigenvalues of the tensor 

of inertia, from which we compute Rg, Δ, S (see supplemental experimental procedures for 

details). Here, Rg quantifies the overall size of the chain, the parameter Δ quantifies the 

degree of deviation from spherical symmetry, and the parameter S characterizes whether 

the chain’s shape is prolate (S > 0) or oblate (S < 0) ellipsoid. To determine the persistence 

length, we fit Rg to the worm-like chain model. Base stacking is monitored using Barnaba 

package66 with default settings. We also utilized contact map analysis to elucidate local 

structural features. Finally, to evaluate structural correlations, we computed the orientation 

correlation function between base pairs (OCF)34,40 A detailed description of each observable 

is described in the supplemental experimental procedures.

To visualize the disordered ssRNA conformational ensembles in real space, we employed 

a class averaging method based on spectral clustering. A visual overview of the method 

is shown in Figure S29. First, we aligned the select conformations using PyMOL v2.4.0 

(Schrodinger, LLC) and computed the root-mean-square distance (RMSD) between each 

pair of structures after alignment.
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These values were then input into a Nstructures × Nstructures symmetric matrix of pairwise RMSD 

distances. A binary, symmetrical adjacency matrix showing which structures are connected 

(sufficiently similar in space) was computed by setting an RMSD threshold of 7 Å and 

declaring that a pair of structures j is connected if RMSDj < RMSDtℎresℎ. The structures 

were then mapped to a graph space by using the adjacency matrix, containing information 

on which pairs of structures (nodes) are connected, as an input into the spectral clustering 

algorithm.67 Briefly, we computed the Laplacian

L = D−1/2AD−1/2

(Equation 8)

where A is the adjacency matrix and D is a diagonal matrix determined from A, containing 

the number of connections at each node. The first k eigenvectors were then sampled from L
to represent the number of subgroups present in the data. These k subgroups were identified 

through K-means clustering using MATLAB. The closeness and degree centrality metrics 

were utilized to quantify the degree of connectivity within the structural ensemble networks. 

Upon classifying the RNA ensembles into sub-families, the structures were coarse grained 

by sampling the positions of the phosphorus atoms along the backbone, further aligned by 

RMSD minimization, and averaged to determine the characteristic 3D chain conformation of 

each sub-family.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by 

the lead contact, Serdal Kirmizialtin (serdal@nyu.edu).

Materials availability

This study did not generate new unique materials or reagents.

Data and code availability

All data related to the reported analyses are included in the paper and supplemental 

information. Atomic coordinates of the structural ensembles are provided in the 

supplemental information, and SAXS data are available on the Small Angle Scattering 

Biological DataBank (SASBDB) through the identifiers SASDSN5 and SASDFK9. Code 

for class averaging via spectral analysis is available at https://github.com/TongGeorgeWang/

CASA-ToDiMo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Coupling simulations with FRET and SAXS resolves ssRNA structures

Graph theory-based class averaging identifies sequence-dependent conformational states

SsRNAs of different sequence have similar lengths but different conformation states

The A-/C-rich and rU30 ssRNAs have distinct conformations not explained by polymer 

models
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Figure 1. Experimental observables of rU30 and mixed-sequence ssRNA
(A and B) (A) rU30 homopolymer and mixed-sequence heteropolymer RNA sequences 

employed in this study, colored by nucleotide identity A, adenine; U, uracil; C, cytosine; 

G, guanine. For both RNA constructs, we show (B) SAXS measurements, plotted along 

dimensionless Kratky axes to emphasize differences in the overall shape of the structural 

ensembles. Errorbars denote experimental error in the SAXS measurement. Data are fit to 

the swollen Gaussian chain model.

(C) Experimentally determined radii of gyration and hydrodynamic radii. Errorbars 

represent errors in Guinier fits to determine Rg (see “solution X-ray scattering”) and 

propagated error in Rℎ calculation (see supplemental experimental procedures section 

“determination of hydrodynamic radius”).

(D) Histogram of FRET efficiency (EFRET) values. Data from 3 out of 6 total experiments are 

pooled. Data are fited to a Gaussian function and the mean (μ) and standard deviation (σ) are 

shown at the top of the plots.

(E) FRET-derived end-to-end distances ± propagated error (see supplemental experimental 

procedures section “determination of Förster radii”).
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Figure 2. Computational approach for determining RNA conformational ensembles guided by 
SAXS and FRET data
The integrated approach begins with an RNA model. We then conduct explicit-solvent MD 

simulations to generate a pool of possible ssRNA conformations (blue block). Subsequently, 

a clustering analysis identifies accessible states, which are used to initiate parallel replica 

SAXS-driven MD simulations. During the SAXS-driven MD simulations, we explore 

conformations guided by SAXS and committed to the maximum entropy principle. This 

procedure produces a pool of conformations that satisfy the SAXS measurements, referred 

to as the SAXS-restrained ensemble (red ellipse). Next, we calculate the FRET profiles 

of the conformations in the SAXS-restrained ensemble (See supplemental experimental 

procedures section “computing FRET efficiency from MD simulations”). The conformations 

are re-weighted by the maximum entropy principle against the FRET data (experimental 

procedures). The re-weighted pool is named the FRET-refined ensemble (orange ellipse), 

which is later cross-validated against an independent experiment. The validated pool of RNA 

conformers was used for structural characterizations.
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Figure 3. Agreement between the final RNA conformational ensemble with experimental 
measurements
(A) Agreement with measured SAXS profiles for rU30 and Mixed RNA (blue, brute 

force MD; red, SAXS-driven MD; orange, FRET-refined ensemble), and residuals between 

experimental and theoretical curves are shown below the plots.

(B) The agreement between the computed profiles and the SAXS data was quantified using 

the χ2 metric.

(C) The SAXS profiles of the FRET-refined ensembles are shown on the Kratky axis to 

emphasize the mid-q regime.

(D) Agreement of FRET efficiency distributions computed directly from the final ensembles 

of structures with experimental measurements.

(E and F) Comparison between theoretical and experimentally determined Rg and Rh, and 

experimental errorbars are delineated in Figure 1C.
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Figure 4. Shape features of single-stranded rU30 and Mixed RNA structural ensemble
(A) Flory’s scaling law analysis for rU30 and Mixed, respectively.

(B–E) 2D parameterizations of the Persistence length (LP), Contour length (LC), Radius 

of gyration (Rg), End-to-end distance (REE), Spherical deviation of the ensemble (Δ), and 

Ellipsoidal nature of the ensemble (S). Pairs of these metrics are plotted for rU30. The color 

scale corresponds to the logarithm of the weighted probability.

(F–I) presents the same 2D parameterized LP‐LC plot, Rg−REE plot, Rg‐Δ plot, and Rg-S plots 

of Mixed RNA. A comparative analysis of brute force and SAXS-driven MD ensembles 

is provided in Figure S4. See supplemental experimental procedures section “additional 

analyses of ssRNA structural ensembles” for the precise definitions of these metrics.

Wang et al. Page 25

Cell Rep Phys Sci. Author manuscript; available in PMC 2024 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Order parameters describing the intra-chain structural properties of single-stranded 
rU30 and Mixed RNA
(A) Comparison of experimental circular dichroism spectra of rA30, rU30, and Mixed RNA, 

showing generally how helical each ssRNA species is.

(B) A comparison between the Orientational correlation function (OCF) curves of rU30 and 

Mixed RNA.

(C) Comparison of the tortuosity of rU30 structures with that of Mixed RNA.

(D) Histogram analysis of base-base stacking for the conformation pool of rU30 and 

Mixed. Metrics shown in B-D) are computed from the refined RNA structural ensembles 

and errorbars represent the variance within the datasets, while A) is derived from an 

experimental measurement of ssRNA samples.
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Figure 6. 3D classification and averaging identify 4–5 characteristic structural sub-families in 
rU30 and mixed-sequence ssRNA
K-means clustered network graphs of RNA conformers are shown after spectral clustering 

based on pairwise RMSD values. Above that, the averaged backbone conformation of each 

cluster is shown, colored by the spatial variance of the cluster average. Each dot in the 

backbone represents the mean position of a phosphorus atom. Every structure in each cluster 

is plotted along with the averaged structure in pale gray.
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Table 1.

Experimental observables of homopolymeric and mixed-sequence ssRNA

Parameter Technique rU30 Mixed sequence

Radius of gyration SAXS 26.80 ± 0.62 Å 22.40 ± 0.48 Å

Flory parameter SAXS 0.551 ± 0.003 0.495 ± 0010

Diffusion coefficient FCS 89.24 ± 4.31 μm2/s 103.20 ± 2.27 μm2/s
Hydrodynamic radius FCS 24.46 ± 1.18 Å 21.15 ± 0.47 Å

Mean FRET efficiency FRET 0.328 ± 0.007 0.390 ± 0.007

StD FRET efficiency FRET 0.1810 0.2242

Förster radius FRET 53.30 ± 3.70 Å 55.75 ± 3.87 Å

End to end distance FRET 59.40 ± 4.16 Å 59.52 ± 4.16 Å

Cell Rep Phys Sci. Author manuscript; available in PMC 2024 December 26.


	SUMMARY
	Graphical Abstract
	INTRODUCTION
	RESULTS
	rU30 and mixed-sequence ssRNA have distinct compaction states
	Maximum entropy approach generates experimentally consistent ssRNA structural ensembles
	rU30 and mixed-sequence RNA have different sizes and shapes
	A-/C-rich mixed RNA is more helical than rU30
	Specific RNA conformations are sequence dependent

	DISCUSSION
	EXPERIMENTAL PROCEDURES
	ssRNA sample preparation
	Solution X-ray scattering
	Förster resonance energy transfer
	Computational modeling of RNA structural ensembles based on SAXS and FRET data
	Data analysis and visualization

	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.

