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Abstract

Background: The balance between reactive oxygen species (ROS) and endogenous anti-oxidants
is important in maintaining healthy tissues. Excessive ROS states occur in diseases such as ARDS
and ldiopathic Pulmonary Fibrosis. Redox imbalance breaks down the extracellular matrix
component hyaluronan (HA) into fragments that activate innate immune responses and perpetuate
tissue injury. HA fragments, via a TLR and NF-«xB pathway, induce inflammatory gene expression
in macrophages and epithelial cells. NAC and DMSO are potent anti-oxidants which may help

balance excess ROS states.

Methods: We evaluated the effect of H,0,, NAC and DMSO on HA fragment induced

inflammatory gene expression in alveolar macrophages and epithelial cells.

Results: NAC and DMSO inhibit HA fragment-induced expression of TNF-o. and KC protein in
alveolar and peritoneal macrophages. NAC and DMSO also show a dose dependent inhibition of
IP-10 protein expression, but not IL-8 protein, in alveolar epithelial cells. In addition, H,O,
synergizes with HA fragments to induce infllmmatory genes, which are inhibited by NAC.
Mechanistically, NAC and DMSO inhibit HA induced gene expression by inhibiting NF-xB
activation, but NAC had no influence on HA-fragment-AP-1 mediated gene expression.

Conclusion: ROS play a central role in a pathophysiologic "vicious cycle" of inflammation: tissue
injury generates ROS, which fragment the extracellular matrix HA, which in turn synergize with
ROS to activate the innate immune system and further promote ROS, HA fragment generation,
inflammation, tissue injury and ultimately fibrosis. The anti-oxidants NAC and DMSO, by inhibiting
the HA induced inflammatory gene expression, may help re-balance excessive ROS induced

inflammation.
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Background

In normal physiological conditions a homeostatic bal-
ance exists between the formation of reactive oxygen spe-
cies (ROS) and their removal by endogenous antioxidant
scavenging compounds [1]. ROS are commonly produced
during inflammatory processes and play an important
role in host defense against infections. ROS are also
involved in signal transduction and gene activation, and
can contribute to host cell and organ damage [2]. When
cellular production of ROS overwhelms its antioxidant
capacity, a state of oxidative stress is reached leading to
serious cellular injuries and contributing to the pathogen-
esis of several diseases like ARDS, Asthma, COPD, cancer
and Idiopathic Pulmonary Fibrosis [3]. The redox imbal-
ance is evident in the interstitial disease Idiopathic Pul-
monary Fibrosis in which median time to death after
diagnosis is 3 years [4,5]. However, recent reports suggest
that counteracting this state of oxidative stress with the
anti-oxidant N-acetylcysteine slows down the progression
of this deadly disease [6].

Redox imbalance also leads to the breakdown of the extra-
cellular matrix [7-9]. In lung inflammation and fibrosis,
the extracellular matrix is not only a target of destruction
but also plays an important role in perpetuating and aug-
menting tissue injury and inflammation via induction of
cytokines, chemokines and modulatory enzymes.
Hyaluronan (HA), a negatively charged normally high
molecular weight glycosaminoglycan, is ubiquitously dis-
tributed in the extracellular matrix [10,11]. It is found in
the basement membrane of normal lungs, joints and vit-
reous fluid and makes up about 70% of the gly-
cosaminoglycan content of the lung [12]. It is primarily
produced by fibroblasts and to a lesser degree by smooth
muscle cells and appears to function in water homeosta-
sis, plasma protein distribution and transportation, joint
lubrication, and matrix structure [10,11]. In vivo, at sites of
inflammation, the high molecular weight HA (size 1 x 10°
KDa) can be depolymerized to lower molecular weight
(size 2 x 105 KDa) fragments via oxygen radicals and enzy-
matic degradation by hyaluronidase, B-glucuronidase and
hexosaminidase [8,9,13]. Furthermore, increased concen-
trations of HA have been found in bronchoalveolar fluid
from patients with sarcoidosis, idiopathic pulmonary
fibrosis as well as in the joints of patients with rheumatoid
arthritis [14-16]. Recently, HA fragments have been dem-
onstrated to play a significant role in the development of
lung inflammation and fibrosis in the bleomycin model
of lung injury [17,18].

Upon a noxious insult such as an infection, ischemia, or
environmental toxin, the generation of reactive oxygen
species (ROS) and hyaluronidases act to break down the
extracellular matrix component HA into lower molecular
weight fragments [8,9,13]. HA fragments themselves act
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as endogenous danger signals and activate innate immune
responses similar to microbial antigens [19]. Via the Toll
like Receptor-2 (TLR-2) pathway, these matrix fragments
induce inflammatory gene expression in alveolar macro-
phages and airway epithelial cells [19]. HA fragments
induce the expression of a wide array of inflammatory
genes in such as MIP-1a, MIP-1B, RANTES, MCP, IL-8, IP-
10, IL-12, MIG, KC, TNF-a, metalloproteases and nitric
oxide synthase [20-25].

The potent antioxidants N-acetylcysteine (NAC) and
dimethyl sulfoxide (DMSQO) have been shown to possess
both anti-inflammatory and anti-fibrotic properties
[26,27]. They have been shown to inhibit the progression
of lung fibrosis in both humans and animal models [6,27-
31]. NAC contains a sulfhydryl (SH) group and is metab-
olized rapidly to L-cysteine, which is a direct precursor to
the intracellular antioxidant glutathione (GSH). In addi-
tion to restoring the intracellular GSH pool and being a
source of intra- and extracellular SH groups, NAC can also
act as a direct scavenger of free radicals such as OH and
H,0,. NAC has been shown to have influence on redox-
sensitive cell-signaling and transcription pathways, such
as NF-«B dependent gene expression [26]. DMSO, a
hydroxy radical scavenger, is believed to induce its inhib-
itory effects via suppression of NF-«B activation [32].

In this report we demonstrate the ability of the antioxi-
dants NAC and DMSO to inhibit HA fragment induced
inflammatory gene expression. Furthermore, we demon-
strate that ROS synergize with HA fragments to induce
inflammatory gene expression. Since ROS are involved in
both the generation of HA fragments and enhancing HA
fragment induced inflammatory genes, we propose a cru-
cial role for ROS in mediating the inflammatory proper-
ties of HA fragments. As HA fragments have been
implicated in promoting lung inflammation and fibrosis,
the importance of ROS in the generation of and subse-
quent inflammation induced by HA fragments highlights
a potentially important pathway and therapeutic target for
inflammatory and fibrotic lung diseases.

Methods

Cells

The mouse alveolar macrophage cell line MH-S was pur-
chased from American Type Culture Collection, Rockville,
MD. NCI-H292 airway epithelium-like cells (derived
from a human pulmonary mucoepidermoid carcinoma)
were obtained from the American Type Culture Collection
and have been shown to be LPS hyporesponsive [33]. Thi-
oglycollate-elicited peritoneal macrophages were lavaged
from female C;H/HeJ LPS hyporesponsive mice 4 days
after injection of 2 ml of sterile thioglycollate (Sigma-
Aldrich). All animal experiments were approved by the
Johns Hopkins Committee on Animal Use, and experi-
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ments were conducted in accordance to their guidelines
and regulations. To exclude effects of contaminating LPS
on experimental conditions, cell stimulation was carried
out in the presence of polymixin B 10 pg/ml (Calbiochem
Novabiochem, La Jolla, CA). We assessed effects of NAC
and DMSO on cell viability by trypan blue exclusion as
well as by FACS for annexin.

Chemicals and reagents

Purified HA fragments from human umbilical cords (Cal-
biochem Novabiochem) are free of protein and other gly-
cosaminoglycans with a peak molecular weight of
200,000 D. The HA fragments still retained their ability to
signal despite treatment with proteinase K, DNAse and
heat inactivation that effectively removes protein, DNA
and heat labile LPS contaminants (data not shown). How-
ever, after full digestion with hyaluronidase, the frag-
ments no longer induce gene expression, further negating
the effects of possible contaminants. DMSO, H,0, and N-
acetylcysteine were obtained from Sigma.

ELISA for protein secretion

ELISA for TNF-a, KC, IL-8 and IP-10 were performed per
manufacturer's guidelines (R & D, Minneapolis, MN).
Colorimetric changes were measured in an ELISA plate
reader and analyzed with Microplate Manager III (Bio-
Rad) software.

Transient Transfections

Transient transfections were performed using lipo-
fectamine 2000 (Invitrogen) or Fugene 6 per manufac-
turer's guidelines. P-NIFTY NF-xB luciferase reporter
construct was purchased from Invivogen and the AP-1
reporter was a kind gift Dr Sekar Reddy. Luciferase expres-
sion was measured with a Dual Luciferase Kit (Promega)
and a Zylux femtomaster FB-12 luminometer.

Statistics

Each condition was performed in triplicate for each exper-
iment, and the data presented represent the average of
three or more unique experiments. Differences between
groups were analyzed using ANOVA with Fisher's PLSD
test for pair-wise comparisons (Graphpad). A p-value <
0.05 was considered significant.

Results

DMSO inhibits HA fragment induced TNF-c and KC
expression macrophages

DMSO is a common solvent used to dissolve many bio-
logical substances and we have used diluted DMSO alone
as a vehicle control. DMSO is also a powerful anti-oxidant
that has been reported to decrease LPS induced gene
expression [34]. Thus, we wanted to determine the effect
of DMSO on HA fragment-induced gene expression. We
stimulated the alveolar macrophage cell line MH-S with
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HA fragments and DMSO for 18 h and cell supernatants
were harvested and analyzed for specific chemokine and
cytokine expression by ELISA. DMSO markedly inhibits
HA fragment induced TNF-o by up to 87% (p-value <
0.03) and inhibits KC by up to 83% (p =< 0.0194) (Figure
1A &1B). To demonstrate that the ability of DMSO to
inhibit HA-fragment induced cytokine expression was not
idiosyncratic to the MH-S alveolar macrophage cell line,
we examined its effect on HA fragment-stimulated genes
in primary macrophages. Thioglycollate elicited perito-
neal macrophages (PEC) from C3H/Hej LPS hyporespon-
sive mice were stimulated with HA fragments in the
presence of different concentrations of DMSO for 18 h
and TNF-a was measured in cell supernatants. DMSO sig-
nificantly inhibited HA fragment induced TNF-a in pri-
mary macrophages in a dose dependent fashion between
49-83%, p = 0.0081(Figure 1C). The fact that these C3H/
Hej primary macrophages are LPS resistant further sup-
ports the specificity of the HA fragments to induce the
inflammatory genes and thus, the inhibitory effect of
DMSO. The inhibition of HA fragment induced genes by
DMSO was not due to increased cell death as there was
equal survival of cells per trypan blue exclusion and FACS
for annexin (data not shown). Thus, DMSO inhibits HA
fragment induced inflammatory gene expression.

NAC inhibits HA fragment induced gene expression in
macrophages

Next we wanted to determine if the effect of DMSO was
due to its antioxidant properties. Thus, we stimulated
macrophages with HA fragments in the presence of the
anti-oxidant N-acetylcysteine (NAC), a drug demon-
strated to inhibit the progression of lung fibrosis [6]. MH-
S macrophages were stimulated with HA fragments and
NAC for 18 h and cell supernatants were harvested and
analyzed for specific chemokine and cytokine expression
by ELISA. We demonstrated that NAC markedly inhibits
HA fragment-induced TNF-a by up to 96% (p < 0.0023)
and inhibits KC by 29-83% (p < 0.03) (Figure 2A &2B).
Furthermore, NAC also inhibited HA fragment-induced
genes in primary peritoneal macrophages (PEC). PECs
were stimulated with HA fragments and NAC for 18 h and
TNF-a and KC were measured in cell supernatants. NAC
significantly inhibited HA fragment induced TNF-a (42—
98%, p < 0.01) and KC (48-99%, p = 0.001) in a dose
dependent fashion (Figure 1C &1D). The inhibition of
HA fragment induced genes by NAC was not due to
increased cell death as there was equal survival of cells per
trypan blue exclusion and FACS for annexin (data not
shown). Thus, the antioxidant NAC significantly inhibits
HA fragment-induced inflammatory gene expression.
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DMSO inhibits HA fragment induced TNF-a and KC expression macrophages. ELISA for TNF-a and KC of cul-
tured cell supernatants from (A, B) MH-S cells stimulated with HA fragments (250 pg/ml) in the presence of DMSO at 37°C
for 18 h. (C) PECs were stimulated with HA fragments (250 pg/ml) in the presence of DMSO in concentrations as indicated at
37°C for 18 h and TNF-a was measured in cell supernatants. These data represent the average of 3 identical, independent

experiments.

NAC inhibits HA fragment-induced gene expression in
airway epithelial cells

As we have demonstrated that HA fragments significantly
induce inflammatory gene expression in airway epithelial
cells, we wanted to determine if the anti-oxidant NAC
could inhibit HA fragment-induced inflammatory gene
expression in alveolar epithelial cells. Thus, cells from the
alveolar epithelial cell line H292 were stimulated with HA
fragments and NAC for 18 h; cell supernatants were har-
vested and analyzed for specific chemokine and cytokine
expression by ELISA. As was the case for macrophages,
NAC markedly inhibits HA fragment-induced IP-10 by
75-100% (p < 0.03) but did not inhibit IL-8 (Figure 3A
&3B). Interestingly, NAC did not inhibit HA induced IL-8
induction in the airway epithelial cells. These observa-
tions serve to demonstrate the relative specificity of the
NAC effect. That is, NAC is not generically inhibiting all
HA-induced cytokines, further supporting our observa-
tions that NAC (and DMSO) do not affect the viability of

the HA fragment stimulated cells. Interestingly, we have
previously demonstrated that HA fragments induce IP-10
in airway epithelial cells via a NF-xB dependent pathway
where as HA fragments induce IL-8 in the same cells via
AP-1 mediated pathway [33]. Thus, NAC inhibits HA frag-
ment-induced IP-10 but not IL-8 in the airway epithelial
cell line H292.

ROS synergize with HA fragments to induce inflammatory
gene expression

Given that ROS are often found in the inflammatory
milieu and that ROS can fragment high molecular weight
HA into the inflammatory lower molecular weight frag-
ments, we wanted to evaluate the effect of ROS on HA
fragment-induced inflammatory gene expression. MH-S
alveolar macrophages were stimulated with HA fragments
in the presence of H,0, and or NAC. Although HA frag-
ments induced TNF-o protein expression, neither H,0,
nor NAC alone induced appreciable levels of TNF-a (Fig-
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Figure 2

NAC inhibits HA fragment-induced Gene expression in macrophages. ELISA for TNF-a and KC of cultured cell
supernatants from MH-S (A, B) or PEC (C, D) cells stimulated with HA fragments (250 pg/ml) in the presence of NAC in con-
centrations as indicated at 37°C for 18 h. These data represent the average of 3 identical, independent experiments.

ure 4). However, HA fragments synergized with H,0, to
significantly increase TNF-o expression (Figure 4). Fur-
thermore, NAC was able to inhibit both HA fragment-
induced gene expression as well as the synergy between
HA and H,0,. Thus, ROS can synergize with HA fragments
to augment inflammatory gene expression by macro-
phages.

NAC and DMSO inhibit HA fragment-induced NF-xB
activation

Given the differential inhibition of HA fragment-induced
gene expression in airway epithelial cells, we wanted to
determine if NAC and DMSO were inhibiting HA frag-
ment induced gene expression via NF-kB. MH-S cells were
transiently transfected with an NF-xB driven luciferase
reporter construct for 18 h prior to stimulation with HA
fragments and NAC for an additional 18 h. Cell lysates

were harvested and assayed for luciferase expression. NAC
markedly inhibited HA fragment-induced NF-xB activa-
tion by 64%, p = 0.0281 (Figure 5A). To determine if
DMSO was also inhibiting HA fragment-induced gene
expression via a NF-kB dependent pathway, MH-S cells
were transiently transfected with an NF-xB driven luci-
ferase reporter construct for 18 h prior to stimulation with
HA fragments and DMSO for an additional 18 h. Cell
lysates were harvested and assayed for luciferase expres-
sion. DMSO markedly inhibited LMW HA-induced NF-xB
activation by 55%, p = 0.003 (Figure 5B).

Similarly, H292 airway epithelial cells were transiently
transfected with an NF-xB driven luciferase reporter con-
struct for 18 h prior to stimulation with HA fragments and
NAC for an additional 18 h. Cell lysates were harvested
and assayed for luciferase expression. NAC markedly
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NAC inhibits HA fragment-induced gene expression
in airway epithelial cells. ELISA for (A) IP-10 and (B) IL-8
of cultured cell supernatants from NCI H292 cells stimulated
HA fragments (250 pg/ml) in the presence of NAC in con-
centrations as indicated at 37°C for 18 h. These data repre-
sent the average of 4 identical, independent experiments.

inhibited HA fragment-induced NF-kB activation by 42%,
p = 0.03 (Figure 5C). Since, HA-induced IL-8 expression is
AP-1 dependent we wanted to determine the affect of
NAC on AP-1 driven reporter constructs. H292 airway epi-
thelial cells were transiently transfected with an AP-1
driven luciferase reporter construct for 18 h prior to stim-
ulation with HA fragments and NAC for an additional 18
h. Cell lysates were harvested and assayed for luciferase
expression. NAC did not inhibit HA fragment-induced
AP-1 activation consistent with the inability of NAC to
inhibit HA fragment-induced IL-8 (Figure 5D). Thus, the
antioxidants NAC and DMSO inhibit HA fragment-
induced inflammatory via a NF-xB dependent pathway
but do not affect HA-induced AP-1.

Discussion

The microenvironment of injured tissues and cells plays
an essential role in determining the extent and intensity of
the inflammatory milieu. Although ROS are important in
the successful resolution of certain inflammatory states,
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ROS synergize with HA fragments to induce inflam-
matory gene expression. ELISA for TNF-a. of cultured
cell supernatants from MH-S cells stimulated with HA frag-
ments (250 pg/ml) in the presence of H,O, (1000 pM) +/-
NAC (20 mM) for 18 h. These data represent the average of
4 identical, independent experiments.

such as infections, an imbalance in the redox homeostasis
can result in excessive tissue injury and cell death [3]. We
propose one mechanism by which oxidative stress may
augment and perpetuate inflammation is via ROS
induced fragmentation of the extracellular matrix [8,9]. In
particularly, ROS lead to degradation of the normally pro-
tective high molecular weight HA into pro-inflammatory
HA fragments [8,9]. These low molecular weight frag-
ments further exacerbate the inflammation via the induc-
tion of inflammatory chemokines and cytokines by
macrophages and lung epithelial cells. In this manuscript,
we demonstrate for the first time synergy between HA
fragments and ROS to induce inflammatory gene expres-
sion and the inhibition of these genes by anti-oxidants.
The anti-oxidants NAC and DMSO strongly inhibit HA
fragment induced TNF-a and KC in alveolar macrophages.
The effect of anti-oxidants was not limited to phagocytic
cells as we demonstrate a similar inhibition of HA frag-
ment induced IP-10 in a human airway epithelial cells.
Mechanistically the anti-oxidants NAC and DMSO inhibit
the HA fragment activation of NF-«B in these cells. The
anti-oxidants NAC and DMSO had no effect on HA frag-
ment induced AP-1 activation and IL-8 expression in alve-
olar epithelial cells. Thus, the anti-oxidants NAC and
DMSO can mitigate effects of the pro-inflammatory HA
fragments released at sites of tissues injury and redox
imbalance.
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NAC and DMSO inhibit HA fragment-induced NF-kB, but not AP-1 activation. MH-S cells were transiently trans-
fected with an NF-kxB driven luciferase reporter construct for 18 h prior to stimulation with HA fragments (250 pg/ml) +/- 10
nM NAC (A) or DMSO [% (B) for an additional 18 h. Cell lysates were harvested and assayed for luciferase expression and
results are displayed as fold induction of luciferase activity. NCI H292 cells were transfected with NF-xB (C) or AP-1 (D) luci-
ferase reporter constructs for 18 h prior to stimulation with HA fragments (250 pig/iml) +/- 10 nM NAC for an additional 18 h.
Promoter activity was assayed by luciferase activity and results are displayed as fold induction of luciferase activity. These data

represent the average of 6 identical, independent experiments.

We have demonstrated that HA fragments, as an endog-
enous danger signal, activate an innate immune response
via TLR-2 ligation and NF-kB activation in macrophages
and epithelial cells [19,33]. However, others have demon-
strated that other forms of LMW HA fragments can signal
via TLR-4 or both TLR-2 and TLR-4 [17,35,36]. Activated
alveolar macrophages are a major source of endogenous
ROS and exhibit the most potent capacity to generate ROS
compared to macrophages from other anatomic compart-

ments [37]. ROS generation in alveolar macrophages in
response to TLR ligation has been reported for the TLR-4
ligand LPS [38]. Ndengle et al demonstrate in alveolar
macrophages that ROS enhance the gene transcription of
TNF-a in response to LPS [38]. Involvement of ROS in
inflammatory gene expression by TLR-4 has been sug-
gested using antioxidants [39]. Pre-treatment of neu-
trophils with the anti-oxidant NAC or tocopherol
prevented LPS-induced production of pro-inflammatory
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cytokines [39]. The exact molecular source of ROS upon
LPS challenge was recently discovered by Park et al who
showed that LPS-induced ROS generation is mediated by
direct interaction of TLR-4 with NADPH oxidase 4 (Nox4)
[40]. LPS-signaling via TLR 4 shares many similarities to
HA fragment signaling via TLR-2 [19]. Thus it was impor-
tant to exclude LPS signaling effects via LPS contamina-
tion of LMW HA fragment preparations. To this end, all
experiments were performed in the presence of polymyxin
B and the primary macrophages were derived from LPS
hyporesponsive CeH/He] mice. It has been shown in the
past that under these conditions LPS fails to induce
inflammatory gene up-regulation [21,22,25].

Our data add to the growing body of literature highlight-
ing the role of ROS as important signaling molecules that
are able to modulate various gene transcription via activa-
tion of redox-sensitive protein kinases and transcription
factors [41]. ROS have been identified as second messen-
gers in cells, and play a role in receptor signaling and post-
translational modification of signaling molecule activity
[41,42]. Many kinases involved in direct or indirect activa-
tion of NF-«B are affected by oxidants and therefore, have
the potential to alter NF-«B activity [41,42]. The transcrip-
tion factor NF-xB plays a major role in coordinating
innate and adaptive immunity, cellular proliferation,
apoptosis and development and is a key transcription fac-
tor for many HA fragment induced inflammatory gene
expression. In macrophages and alveolar epithelial cells,
HA fragments can induce chemokines via activation of the
NF-«xB pathway [33,43]. We have shown that the anti-oxi-
dants NAC and DMSO inhibit the HA fragment induced
inflammatory gene expression by interfering with HA
fragment-induced activation of NF-«B. This finding is in
line with other investigations showing the importance of
ROS in the activation of NF-kB [44]. Schreck et al. were
the first to demonstrate that direct addition of ROS, spe-
cifically H,O, to the culture medium of a subclone of Jur-
kat cells could activate NF-xB. Now several lines of
evidence support a model suggesting that ROS mainly
activate NF-«xB via IKK activation and IxBa degradation
[2,44].

Pulmonary fibrosis is associated with chronic inflamma-
tion, increased ROS, and accumulation and turnover of
extracellular matrix. During lung inflammation in both
human diseases and bleomycin injured animal models,
activated phagocytes release large amounts of reactive
oxygen species (ROS) that have been demonstrated to be
involved in tissue injury and to impede tissue repair, thus
leading to pulmonary fibrosis [3,27]. Anti-oxidant treat-
ment protects against bleomycin-induced lung damage in
rodents [27-30]. Additionally, mice deficient in extracellu-
lar Superoxide Dismutase (SOD) develop an exaggerated
fibrosis in response to bleomycin [45]. Inghilleri et al.

http://www.journal-inflammation.com/content/5/1/20

compared the in situ oxidative burden and anti-oxidant
enzyme activity in bleomycin-injured rat lungs and nor-
mal controls and found after treatment with bleomycin,
ROS production was enhanced in both phagocytes and in
type Il alveolar epithelial cells [46]. Interestingly Manoury
et al. have demonstrated that mice deficient in the
p47phox subunit of the NADPH oxidase complex are
unable to produce ROS via the NADPH oxidase pathway
and do not develop pulmonary fibrosis after intranasal
administration of bleomycin [47]. In addition, recent
clinical trials show favorable effects on lung function
decline in patients with idiopathic pulmonary fibrosis
treated with high doses of N-acetylcysteine [6].

Conclusion

In conclusion we have shown that the anti-oxidant NAC
inhibits HA fragment-induced cytokine expression via NF-
kB inhibition in macrophages and epithelial cells. Taken
together our data provides further insight into the basic
mechanisms of beneficial effects anti-oxidants have dem-
onstrated in animal models of pulmonary fibrosis and
possibly in patients with Idiopathic Pulmonary Fibrosis.
The findings in this investigation point towards a central
role of ROS in the pathophysiologic "vicious cycle" of
inflammation: tissue injury generates ROS, which gener-
ate fragments of the extracellular matrix HA, which in turn
synergize with the ROS to activate the innate immune sys-
tem via TLR-2. Activation of the immune system leads to
further production of ROS by activated macrophages, acti-
vation of NF-kB and induction inflammatory cytokines
and chemokines that promote further inflammation and
continued fragmentation of the extracellular matrix HA,
generation of ROS, more injury, more inflammation and
ultimately fibrosis (Figure 6). Thus, multi-targeted thera-
peutic interventions addressing this self perpetuating spi-
ral of tissue injury, ROS production, matrix degradation
that leads to further matrix-induced inflammation may
hold a promise of improving clinical outcomes in patients
with inflammatory diseases in the future.
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The central role of ROS in a pathophysiologic "vicious cycle": A) Tissue injury generates ROS, which mediate fragmen-
tation of the extracellular matrix HA. B) Fragmented HA and ROS synergize to activate the innate immune system via TLR-2,
followed by further production of ROS, activation of NF-kB and expression of inflammatory cytokines and chemokines, pro-
moting further inflammation. This cycle perpetuates continued fragmentation of the extracellular matrix HA and generation of
ROS, thus leading to further injury, inflammation and ultimately fibrosis. Anti-oxidants have the potential to ameliorate this

vicious cycle.
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