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Abstract 
Background.   Patients with brain tumors demonstrate heterogeneous patterns of cognitive impairment, likely 
related to multifactorial etiologies and variable tumor-specific factors. Cognitive phenotyping offers a patient-
centered approach to parsing heterogeneity by classifying individuals based on patterns of impairment. The aim of 
this study was to investigate the neuroanatomical patterns associated with each phenotype to gain a better under-
standing of the mechanisms underlying impairments.
Methods.   Patients with primary brain tumors were recruited for a prospective, observational study. Patients were 
cognitively phenotyped using latent profile analysis in a prior study, revealing 3 distinct groups: generalized, iso-
lated verbal memory, and minimal impairment. Whole brain cortical thickness (CT), fractional anisotropy, and 
mean diffusivity (MD) were compared across phenotypes, and associations between imaging metrics and cogni-
tive scores were explored.
Results.   Neurocognitive, structural MRI, and diffusion MRI data were available for 82 participants at base-
line. Compared to the minimal impairment group, the generalized impairment group showed a widespread, 
bi-hemispheric pattern of decreased CT (P-value range: .004–.049), while the verbal memory impairment group 
showed decreased CT (P-value range: .006–.049) and increased MD (P-value range: .015–.045) bilaterally in the tem-
poral lobes. In the verbal memory impairment group only, increased parahippocampal MD was associated with 
lower verbal memory scores (P-values < .01).
Conclusions.   Cognitive phenotypes in patients with brain tumors showed unique patterns of brain pathology, 
suggesting different underlying mechanisms of their impairment profiles. These distinct patterns highlight the bio-
logical relevance of our phenotyping approach and help to identify areas of structural and microstructural vulner-
ability that could inform treatment decisions.

Key Points

•	 Cognitive phenotypes in patients with primary brain tumors had unique neuroanatomical 
profiles

•	 Patients with impaired verbal memory had circumscribed temporal lobe abnormalities

•	 Patients with generalized impairments showed widespread cortical atrophy patterns

Neuroanatomical profiles of cognitive phenotypes in 
patients with primary brain tumors  
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Patients with primary brain tumors demonstrate hetero-
geneous patterns of cognitive impairment, likely related 
to multifactorial etiologies and variable tumor-specific 
factors (eg, location, size, histology, and rate of growth). 
This heterogeneity poses a significant challenge in exam-
ining specific links between brain structure and cognitive 
functioning when patients are studied as a single group. 
Cognitive phenotyping offers a patient-centered approach 
by classifying individuals based on patterns of impair-
ment, which may lead to a more precise understanding 
of pathological features driving cognitive impairments in 
each subgroup. This approach has shown utility for deter-
mining risk for disease progression in neurological dis-
orders such as epilepsy,1,2 mild cognitive impairment,3,4 
and multiple sclerosis5 but has only recently been applied 
to patients with primary brain tumors. In a recent study, 
we identified 3 unique cognitive phenotypes in patients 
with brain tumors, including a group with isolated memory 
impairment, a group with global cognitive impairment, de-
fined as an impairment in 3 or more cognitive domains), 
and a minimally impaired group, characterized by no im-
pairment in any cognitive domain.6 Interestingly, these 3 
groups did not differ in their tumor location, laterality, or 
size. However, the biological bases of these phenotypes 
have not yet been explored in terms of neuroanatomical 
and microstructural underpinnings.

Investigating the neuroanatomical correlates of such 
cognitive phenotypes in patients with brain tumors may 
lead to a better understanding of the mechanisms un-
derlying different patterns of cognitive impairment while 
also elucidating specific risk factors for cognitive decline. 
Although tumor-specific factors such as location and his-
tology can be major determinants of the onset, progres-
sion, and severity of impairment,7–9 studies also show 
network disruptions10,11 extending beyond the immediate 
proximity of tumors underlying cognitive changes in this 
population. Evidence of changes to both gray and white 
matter structures outside the primary tumor site supports 
the notion that brain tumors have the potential to cause 
whole-brain dysfunction and non-focal patterns of cogni-
tive change.12

The current study investigated the neuroanatomical pro-
files that underlie cognitive phenotypes in patients with 
primary brain tumors before adjuvant treatment. To accom-
plish this goal, we examined whole-brain structural and 
diffusion MR imaging in a cohort of primary brain tumor 
patients categorized by cognitive phenotype. Cognitive phe-
notype groups were hypothesized to show neuroanatomical 

differences in line with their cognitive profiles; the isolated 
verbal memory group was expected to show patholog-
ical changes in medial temporal lobe regions subserving 
memory function while the generalized impairment group 
was expected to show more diffuse patterns of change. 
Importantly, due to the presence of cognitive and functional 
network dysfunction13,14 even in patients with focal tumors, 
these differences were hypothesized to be only minimally 
influenced by specific tumor location.

Materials and Methods

Participants

Patients with primary brain tumors were recruited for an 
ongoing prospective, observational study examining the 
effects of fractionated, partial brain radiotherapy on brain 
microstructure and cognition between 2014 and 2023. The 
study was approved by the University of California, San 
Diego Institutional Review Board and written informed 
consent was obtained from all patients. Eligibility criteria 
included age >18 years, Karnofsky performance status >70, 
estimated life expectancy >1 year, and ability to undergo 
neurocognitive testing in English. Patients who had re-
ceived prior brain radiotherapy were excluded. At the time 
of the current study, complete baseline neurocognitive, 
structural MRI, and diffusion MRI data were available for 
82 participants prior to radiation treatment.

MRI Acquisition and Processing

MRI scans were collected on a 3.0T 750 GE scanner using 
an 8-channel head coil. Anatomical images were acquired 
using a 3-dimensional (3D) volumetric T1-weighted in-
version recovery spoiled gradient-echo sequence (TE/
TR = 2.8/6.5 ms; inversion time = 450 ms; flip angle = 8°; 
FOV = 24 cm). Diffusion data were acquired with a 
single-shot pulsed-field gradient spin EPI (echo-planar 
imaging) sequence (TE/TR = 96 ms/17 s; FOV = 24 cm, ma-
trix = 128 × 128 × 48; 1.87 × 1.875 in-plane resolution; slice 
thickness = 2.5 mm; 48 slices) with b = 0, 500, 1500, and 
4000 s/mm2, with 1, 6, 6, and 15 unique gradient directions 
for each b-value respectively, and 1 average for each non-
zero b-value. For use in nonlinear B0 distortion correction, 2 
additional b = 0 volumes were acquired with either forward 
or reverse phase-encode polarity.

Importance of the Study

Neuropsychological and neuropathological heteroge-
neity pose significant challenges in examining specific 
links between brain structure and cognitive functioning 
in patients with brain tumors. The current study lever-
ages cognitive phenotyping, a patient-centered ap-
proach to classifying individuals based on patterns of 
impairment, to better understand the neuroanatomical 
profiles underlying such patterns. The results highlight 

specific neurobiological vulnerabilities using imaging 
biomarkers unique to different phenotypes, as well as 
group-specific associations with neuropsychological 
performance. Examining how these phenotypes evolve 
over the course of treatment could be additionally 
helpful for understanding the effects of different inter-
ventions on cognition, and for identifying patients at risk 
for treatment-related decline.
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Anatomical scans were processed using FreeSurfer ver-
sion 5.3.015,16 to extract cortical thickness (CT) measure-
ments from ROIs using the Desikan-Killiany atlas.17 CT 
is calculated as the closest distance from the gray/white 
boundary to the gray/CSF boundary at each vertex on 
the tessellated surface,18 and is often used to detect gray 
matter changes or cortical atrophy in both the healthy and 
diseased human brain. Diffusion tensors were calculated 
using mono-exponential fitting from b = 0, 500, and 1500 s/
mm2 to extract estimates of fractional anisotropy (FA) and 
mean diffusivity (MD). FA is a normalized measure corre-
sponding to the degree of anisotropic diffusion, or direc-
tionality of diffusion, in a given region, often thought to 
reflect white matter integrity.19 MD is an index of the mo-
lecular diffusion rate and tends to be higher in damaged 
tissues as a result of increased free diffusion. Diffusion 
tensor imaging (DTI) metrics were calculated from the 
co-registered DTI maps by sampling the white matter 
from the gray-white boundary up to 5 mm below the white 
matter surface normal at each vertex and then averaging 
within each ROI volume from the Desikan-Killiany atlas.20,21 
Tumor, surgical cavity, necrotic tissue, and regions of 
edema were manually censored for each patient and ex-
cluded from final ROIs prior to analysis (ie, such areas were 
treated as having missing data).22,23 In terms of quality as-
sessment procedures, the FurferSurfer surfaces were care-
fully examined on a slice-by-slice basis to detect any errors 
in the automated segmentation. The assessment was con-
ducted independently by 2 physicians who reviewed each 
MRI slice by slice and subsequently reached a consensus.

Neuropsychological Data

All participants completed a comprehensive neuropsy-
chological battery prior to radiation treatment, including 

measures of verbal and visual learning and memory, lan-
guage, processing speed, and executive function (Table 
1). Individual test scores were used for phenotyping (see 
Reyes et al. 2023 for detailed methods).6 Differences in neu-
ropsychological test scores across cognitive phenotypes 
are provided in Supplementary Table 1. Verbal memory 
was evaluated using the Hopkins Verbal Learning Test-
revised,24 resulting in Total Learning and Delayed Recall 
scores. A global cognitive composite score (GCC) was also 
calculated for each patient by averaging T-scores within 
and across all neuropsychological domains. HVLT-R and 
GCC scores were used for behavioral correlations as noted 
below. Quality of life was assessed with the Functional 
Assessment of Cancer Therapy-Brain25 and symptoms 
of depression and anxiety were assessed using the Beck 
Depression Inventory-226 and Beck Anxiety Inventory, 
respectively.27

Statistical Approach

Patients were cognitively phenotyped using latent pro-
file analysis (LPA) in a prior study (Reyes et al., in press)6, 
which revealed an optimal solution of 3 distinct groups: 
those with generalized impairments (13.4%), those with 
isolated verbal memory impairments (18.3%), and those 
with minimal impairments (68.3%). Statistical analyses 
were conducted in R28 and plots were created using the 
“ggplot2”29 and “ggseg” packages.30 Cognitive pheno-
types were compared using separate ANCOVAs for CT, 
FA, and MD in each ROI while controlling for age, educa-
tion, and sex. Follow-up pairwise comparisons were con-
ducted for regions exhibiting significant omnibus effects 
with Tukey31 adjustment for multiple comparisons. Cohen’s 
D was calculated as an effect size estimate for significant 
group differences. Pearson correlations were performed to 

Table 1.  Neuropsychological Tests

Test Domain Corrections

Hopkins verbal learning test-revised (HVLT)a Memory Age

Brief visuospatial memory test (BVMT)b Memory Age

Boston naming test (BNT)c Language Age, education, sex, race

Delis-Kaplan executive function system (D-KEFS) letter fluencyd Language Age

D-KEFS category fluencyd Language Age

D-KEFS color-word interference test (CWIT) color namingd Processing speed Age

D-KEFS CWIT word readingd Processing speed Age

Wechsler adult intelligence scale fourth (WAIS-IV) coding subtestee Processing speed Age

D-KEFS category fluency switching accuracyd Executive function Age

D-KEFS CWIT inhibitiond Executive function Age

Wisconsin card sorting test preservative errors f Executive function Age, education

aBenedict RH, Schretlen D, Groninger L, Brandt J. Hopkins Verbal Learning Test-Revised: Normative data and analysis of inter-form and test-retest 
reliability. The Clinical Neuropsychologist 1998;12:43-55.
bBenedict RH. Brief visuospatial memory test-revised: PAR, 1997.
cKaplan E, Goodglass H, Weintraub S. Boston naming test. 2001.
dDelis DC, Kaplan E, Kramer JH. Delis-Kaplan executive function system. Assessment 2001.
eWechsler D. Wechsler adult intelligence scale. Archives of Clinical Neuropsychology 1955.
fHeaton RK, Staff P. Wisconsin card sorting test: computer version 2. Odessa: Psychological Assessment Resources 1993;4:1-4.
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examine the associations between neurocognitive test per-
formance and structural and diffusion metrics in regions 
exhibiting significant pairwise differences. To minimize the 
number of statistical tests, the selection of neuropsycho-
logical measures for correlational analyses was informed 
by the phenotype exhibiting the significant difference in 
structural metrics (ie, verbal memory measures for the 
verbal memory impairment group and a GCC score for the 
generalized impairment group).

Results

Participant Characteristics

Participant characteristics of each cognitive phenotype are 
summarized in Table 2. Differences were observed across 
phenotype groups in years of education and sex. The 
verbal memory impairment group had fewer years of ed-
ucation on average compared to the minimal impairment 
group (P = .063) and a lower proportion of female patients 
than the other groups (P = .004). There were no statisti-
cally significant differences among the groups in age, race/
ethnicity, history of surgery or seizures, use of antiseizure 
medications, or other tumor characteristics (type, grade, 
side, location, or IDH mutation status). Overall quality of 
life was significantly lower in the generalized impairment 
group compared to both the minimally impaired group 
(P < .001) and verbal memory impairment group (P = .001). 
The average level of depressive and anxiety-related symp-
toms was also higher in the generalized impairment 
group, though not significantly different than in the other 
phenotypes.

Differences in Cortical Thickness and DTI Metrics

Compared to the minimal impairment group, the gen-
eralized impairment group showed significantly lower 
CT in the left caudal anterior cingulate, cuneus, frontal 
pole, paracentral gyrus, precuneus, rostral middle 
frontal gyrus, superior frontal gyrus, and superior pari-
etal lobule and right caudal middle frontal gyrus, insula, 
precentral gyrus, and superior parietal lobule (Figure 1A). 
The verbal memory impairment group showed lower CT 
compared to the minimal impairment group bilaterally in 
the entorhinal cortices and parahippocampal gyri, and in 
the right inferior temporal gyrus (Figure 1B). Effect sizes 
for all pairwise differences ranged from medium to large 
(Table 3).

The verbal memory impairment group additionally dem-
onstrated higher MD compared to the minimal impairment 
group bilaterally in the temporal lobes, including bilateral 
entorhinal cortices and parahippocampal gyri, as well as 
in the left fusiform gyrus, inferior temporal gyrus, middle 
temporal gyrus, and superior temporal gyrus (Figure 2). 
Effect sizes for these group differences in MD also ranged 
from medium to large (Table 3). There were no significant 
differences in MD between the generalized and minimal 
impairment phenotypes, and there were no significant dif-
ferences in FA across the groups.

Correlations With Cognitive Test Scores

Greater MD in the left parahippocampal gyrus was signif-
icantly associated with poorer HVLT Learning (r = 0.784; 
P < .001) and Delayed Recall (r = 0.528; P < .01) scores in the 
verbal memory impairment group (Figure 3). These asso-
ciations were specific to the left parahippocampal region, 
with no significant association in the corresponding right 
hemisphere region. Additionally, there was no significant 
association between parahippocampal MD and verbal 
memory scores in the minimal impairment group. CT was 
not associated with verbal memory test scores in the verbal 
memory impairment group, nor with global cognitive com-
posite scores in the generalized impairment group.

Discussion

Cognitive phenotyping offers a promising approach to un-
derstanding the heterogeneity that exists among patients 
with neurological disease and to studying the mechanisms 
and pathophysiology underlying neuropsychological dys-
function that is obscured when patients are studied in ag-
gregate. To the best of our knowledge, only 2 studies have 
taken this approach to characterize cognitive impairments 
in adults with brain tumors. These studies identified similar 
neurocognitive profiles despite differences in the patient 
samples, including a group with learning memory impair-
ments, a group with generalized impairment, and a group 
with minimal or no impairments.32 In the current study, we 
build on our prior phenotyping work and identify distinct 
brain signatures associated with cognitive phenotypes in 
a cohort of patients with primary brain tumors prior to ra-
diation treatment. The unique patterns of brain pathology 
identified on structural and diffusion imaging suggest dif-
ferent tumor and treatment-related influences related to 
each profile of impairment. Irrespective of tumor charac-
teristics such as type, grade, size, and location, patients 
exhibiting an isolated verbal memory impairment showed 
neuropathological differences circumscribed to the medial 
and lateral temporal lobes, while those with generalized 
impairments showed a diffuse and bi-hemispheric pat-
tern of cortical thinning. These results highlight the impor-
tance of taking a patient-centered approach to the study of 
neurotomical correlates underlying cognitive impairments 
in heterogeneous groups of patients, as individuals with 
similar profiles of impairment are likely to display similar 
neurobiological vulnerabilities.

Diffuse Structural Changes Related to Brain 
Tumors

Despite the assumption that the location of a brain tumor 
should be the primary driver of a patient’s cognitive profile, 
neuroimaging studies have revealed an impact on gray 
matter tissue both proximal to and distant from the tumor 
location. For example, there has been the suggestion of 
homotopic reorganization characterized by increased 
gray matter volume in regions contralateral to brain tu-
mors.33 Such changes in brain structure may be related to 
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Table 2.  Demographic and Clinical Characteristics Across Cognitive Phenotypes

Generalized Verbal memory Minimal P-value*

N 11 15 56 —

Percent of sample 13.4% 18.3% 68.3% —

Age 41.64 (11.81) 43.87 (11.94) 46.43 (13.32) .476

Education 15.20 (3.01) 13.75 (2.87) 15.98 (2.31) .063

Sex: female 7 (63.6%) 1 (6.7%) 28 (50.0%) .004

Race/Ethnicity .358

 � White 9 (81.8%) 12 (80%) 49 (87.5%)

 � African American 0 (0%) 1 (7.7%) 0 (0%)

 � Asian 0 (0%) 1 (7.7%) 3 (5.4%)

 � Hispanic/Latinx 2 (15.4%) 1 (7.7%) 7 (12.5%)

 � Mixed 2 (15.4%) 1 (7.7%) 4 (7.1%)

Tumor type .181

 � Glioma 9 (81.8%) 10 (66.7%) 30 (53.6%)

 � Other 2 (18.2%) 5 (33.3%) 26 (46.4%)

IDH statusa .153

 � Wild-type 5 (45.5%) 4 (26.7%) 8 (14.3%)

 � Mutant 4 (36.4%) 6 (40%) 22 (39.3%)

Grade .717

 � Low 3 (33.3%) 2 (20%) 10 (33.3%)

 � High 6 (66.7%) 8 (80%) 20 (66.7%)

Side .149

 � Left 8 (72.7%) 9 (60%) 22 (39.3%)

 � Right 2 (18.2%) 3 (20%) 26 (46.4%)

 � Central 1 (9.1%) 3 (20%) 8 (14.3%)

Location .159

 � Temporal 3 (23.1%) 6 (46.2%) 9 (16.1%)

 � Frontal 5 (38.5%) 4 (30.8%) 18(32.1%)

 � Other 5 (38.5%) 3 (23.1%) 29 (51.8%)

Surgery .759

 � GTR/STR 9 (81.8%) 13 (86.6%) 41 (73.2%)

 � Other 2 (18.1% 2 (13.3%) 15 (26.8%)

Time between surgery and baseline testing (months) 1.0 (0.047) .9 (0.335) 1.19 (0.496) .393

Seizures: yes 4 (36.4%) 10 (66.7%) 25 (44.6%) .230

ASM: yes 6 (54.5%) 11 (73.3%) 29 (51.8%) .326

Steroid medication: yes 4 (36.4%) 8 (53.3%) 14 (25.0%) .186

PTV 184.1 (31.6) 194.5 (49.5) 141.4 (16.9) .317

BDI-2 total 13.00 (7.55) 7.92 (4.89) 8.33 (9.17) .093

BAI total 12.73 (8.53) 8.49 (7.78) 5.31 (6.02) .066

FACT-BR total 111.63 (22.74) 145.03 (22.61) 143.81 (21.23) <.001

Abbreviations: ASM, antiseizure medications; BAI, Beck Anxiety Inventory; BDI-2, Beck Depression Inventory-2; FACT-BR, Functional Assessment 
of Cancer Therapy-Brain; GTR, gross total resection; PTV, planning target volume; STR, subtotal resection.
Parentheses include standard deviation or percentages.
Low: World Health Organization (WHO) grades 1 and 2; High: WHO grades 3 and 4.
Tumor Other: meningiomas, craniopharyngiomas, chondrosarcoma, pituitary adenoma, schwannoma, papillary pineal, ependymoma, germinoma.
Location Other: base of skull, cerebellar, occipital, parietal, pineal, suprasellar, thalamic.
Surgery Other: biopsy, laser interstitial thermal therapy, none.
aComparisons only made for patients with gliomas.
*P-value corresponds to Pearson Chi-Square test or ANOVA F-test as appropriate; significant differences in bold.
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compensatory processes and reflect neuroplasticity,34,35 
in addition to direct disease-related changes in the areas 
immediately surrounding the tumor. Similarly, previous re-
search has shown that left frontal gliomas can have global 
effects on cortical structure in both hemispheres, with de-
creases in CT and fractal dimension, a measure of topo-
logical complexity, in the contralesional hemisphere.36 As 
in our study, these structural differences were notably ob-
served irrespective of tumor volume, location, or grade. 
Such studies highlight the importance of considering the 
overall cortical networks disrupted in brain tumor patients 
when seeking to understand the mechanisms underlying 
their cognitive impairment profiles.

In addition to gray matter changes, the verbal memory 
impairment phenotype demonstrated higher MD of the 
white matter immediately underlying bilateral medial 
and left lateral temporal lobe regions. Higher MD is often 
thought of as an index of poorer white matter integrity, 
potentially reflecting edema or neuroinflammation.37,38 
A handful of previous diffusion MRI studies support the 
presence of white matter changes in regions far beyond 

the primary tumor and edematous regions.39–41 Jütten et 
al. demonstrated decreased FA of normal-appearing white 
matter remote from the tumor location in glioma patients, 
which was associated with poorer cognitive performance.42 
Similarly, a prior study showed reduced FA within a broad 
structural network in glioma patients with tumor loca-
tions throughout the cerebrum. Notably, reduced FA was 
associated with visuospatial test impairments in a subset 
of patients with right temporal lobe tumors.43 These DTI 
studies provide important insight into the potential mech-
anisms by which brain tumors impact cognitive abilities, 
suggesting that they are not limited to the focal region of 
the tumor itself. This is especially important in light of the 
reconceptualization of glioma and other brain tumors as 
a systemic rather than focal neurological disease,44 with 
the potential to impact extensive cerebral networks.45 Such 
results also speak to the sensitivity of diffusion MRI to 
microstructural changes associated with cognition in brain 
tumors,20,21,23,46 as well as evidence that tissue microstruc-
ture may be more sensitive to cognitive changes than cor-
tical thinning.47
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Figure 1.  Cortical thickness (CT) differences are plotted across the whole brain in rows one and 3 for the generalized and verbal impairment 
groups respectively, compared to the minimal impairment group. Significant differences following correction for multiple comparisons are high-
lighted in rows 2 and 4. (A) The generalized impairment group showed significantly decreased CT compared to the minimal impairment group 
in the left caudal anterior cingulate (P = .049), cuneus (P = .007), frontal pole (P = .025), paracentral gyrus (P = .031), precuneus (P = .022), ros-
tral middle frontal gyrus (P = .042), superior frontal gyrus (P = .025), and superior parietal lobule (P = .022) and right caudal middle frontal gyrus 
(P = 0.004), insula (P = .032), precentral gyrus (P = .021), and superior parietal lobule (P = .012). (B) The verbal memory impairment group showed 
decreased CT in the left entorhinal cortex (P = .049) and parahippocampal gyrus (P = .015) and right entorhinal cortex (P = .049), inferior temporal 
gyrus (P = .043), and parahippocampal gyrus (P = .039).
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Figure 2.  Mean diffusivity (MD) differences are plotted across the whole brain in row one for the verbal impairment group compared to the 
minimal impairment group. Significant differences following correction for multiple comparisons are highlighted in row two. There were no signif-
icant differences in MD between the generalized and verbal impairment phenotypes. The verbal memory impairment group showed significantly 
increased MD compared to the minimal impairment group bilaterally in the temporal lobes, including in the left entorhinal cortex (P = .040), fu-
siform gyrus (P = .041), inferior temporal gyrus (P = .037), middle temporal gyrus (P = .015), parahippocampal gyrus (P = .026), and superior tem-
poral gyrus (P = .045) and right entorhinal cortex (P = .026) and parahippocampal gyrus (P = .040).
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Delayed Recall (r = 0.528; P < .01) scores in the verbal memory impairment group, but not in the minimal impairment group. This association was 
not observed in the right parahippocampal gyrus.
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Cognitive Phenotype-Specific Neuroanatomical 
Profiles

Although less than half of patients in the verbal memory 
impairment group had tumors located in the temporal 
lobes (6/13), the parahippocampal gyri and entorhinal cor-
tices demonstrated greater structural and microstructural 
abnormalities compared to those with minimal cognitive 
impairment. Specifically, CT was reduced and MD was 
greater bilaterally in the parahippocampal and entorhinal 
regions, suggesting that local gray and white matter 
changes may underlie their impairment profiles. However, 
only higher MD in the left parahippocampal gyrus bore a 
significant association with impaired verbal memory, sug-
gesting some specificity or a stronger association with this 
region. Notably, there was a greater proportion of male 
than female participants in this phenotype. This sex differ-
ence may be partially explained by a female advantage in 
verbal memory, with studies showing that females typi-
cally perform better in verbal memory tests than males.48,49 
In the presence of brain pathology, this advantage likely 
increases cognitive reserve, though the neurobiological 
underpinnings of this sex difference in neurocognitive per-
formance remain to be established.

Both the parahippocampal gyrus and entorhinal cortex 
are involved in learning and memory, containing important 
efferent and afferent connections to the hippocampus.50,51 
The perforant pathway arises from this region, patholog-
ical changes to which have been implicated in Alzheimer’s 
disease52 and epilepsy.53 Importantly, it has also been sug-
gested to support other neuropsychological functions, 
such as visuospatial processing54 and language.55,56 Thus, 
it is unsurprising that it has been identified as playing an 
important role across a broad range of neurological57–61 
and psychiatric60,62–65 conditions. Patients with brain tu-
mors who exhibit deficits in verbal memory may there-
fore not only be vulnerable to additional memory decline 
as a result of local treatment-related effects but may also 
show susceptibility to changes in other cognitive domains 
as a result of further damage to medial temporal lobe 
structures and their connections. This is especially impor-
tant in light of previous studies demonstrating selective 
vulnerability of both gray matter66 and superficial white 
matter20 in certain regions underlying higher-order cog-
nition. Importantly, these patients demonstrated medial 
temporal lobe anomalies prior to the initiation of RT. Given 
the increased susceptibility of the temporal lobe regions 
to the effects of radiation,21 the identification of such vul-
nerabilities could inform cognitive-tailoring interventions 
to prevent further cognitive decline. At the same time, it 
should be noted that treatment toxicities can also be dif-
fuse, as demonstrated by a study highlighting significant 
treatment-associated structural brain changes following 
standard chemoradiation in patients with glioblastoma,67 
as well as studies of systemic treatments in other forms of 
cancer.68,69 In addition to the diffuse influences of primary 
brain tumors themselves, such findings also have implica-
tions for the prevention of exacerbated cognitive decline 
in patients already demonstrating neuropsychological 
vulnerabilities.

The generalized impairment group showed more distrib-
uted changes than the verbal memory impairment group, 

with cortical thinning observed across multiple ROIs in 
both hemispheres, though a greater number of signifi-
cant differences were observed in left hemisphere ROIs 
(8 out of 12). This is consistent with a greater frequency 
of left-sided tumors in this group (60%). This hemispheric 
difference is potentially meaningful in terms of the later-
alization of the neuropsychological functions on which the 
phenotypes were based. For example, significantly lower 
CT in the generalized group in the left but not right caudal 
anterior cingulate may be related to the sensitivity of the 
neuropsychological tests to executive functions with more 
left hemisphere involvement, such as verbal fluency and 
switching or color-word interference. It is important to con-
sider that the characterization of the phenotypes is based 
on a particular neuropsychological battery, which although 
comprehensive, may have led to a unique assignment of 
patients to groups compared to another battery, which in 
turn would influence the findings of specific brain regions 
demonstrating significant changes for each phenotype. 
Overall, however, the diffuse pattern of structural changes 
in the generalized impairment phenotype is in line with the 
nature of their cognitive deficits, which were global and 
would not necessarily be expected to correlate with an-
atomical changes in any one specific region of the brain. 
There have been several mechanisms proposed to underly 
such structural changes related to brain tumors during 
the perioperative period, including tangential stretching 
and compression from mass effect70,71 and spreading of 
the tumor along white matter tracts leading to edema or 
abnormal cellularity.72,73 Other possible mechanisms of 
change in CT include alterations in cell volume, dendritic 
shrinkage, fluctuations in astrocytic metabolic processes, 
or inflammatory changes.74

Limitations and Future Directions

The results of this study demonstrate that distinct cognitive 
phenotypes in patients with brain tumors have unique pat-
terns of cortical and white matter vulnerability, revealing 
the biological relevance of our cognitive phenotyping 
approach. These findings should be interpreted in light 
of some limitations. Given the small sample size, larger 
follow-up studies will be required to expand upon these 
findings, particularly with regard to the regional speci-
ficity of structural changes within each phenotype. A larger 
sample size would also allow for the inclusion of a valida-
tion sample to confirm both the findings of the original 
LPA and the corresponding neuroanatomical profiles of 
the phenotypes. In addition, the heterogeneity in the clin-
ical characteristics across patients may have impacted our 
ability to detect smaller effects. Although we may have de-
tected the most salient regions contributing to cognitive 
impairments within each phenotype, other interesting as-
sociations may emerge with a larger sample size or a more 
homogenous sample. For the generalized impairment phe-
notype in particular, structural differences may be washed 
out at the group level due to the heterogeneity in the po-
tential broad impacts of their tumors, which could result 
in impairments across multiple cognitive domains. Future 
studies with larger samples should further characterize the 
generalized impairment group, which may include sub-
groups of patients with different generalized profiles. It 
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should also be noted that cognition can be influenced by 
other salient factors in the brain tumor population, such 
as depression, anxiety, or fatigue. Although there were 
no significant differences among the groups on screening 
measures of state-dependent mood, the generalized group 
did show more symptoms of anxiety and depression on 
average, which could suggest some influence of mood on 
their cognitive profiles.

Relatedly, it should be noted that the average age of 
patients in the current study is lower than might be ex-
pected for a study of patients with primary brain tumors. 
Our sample included patients with brain tumors other than 
gliomas, with younger astrocytoma patients accounting 
partially for the lower average age. Additionally, patients 
were only enrolled in the trial if their estimated life expect-
ancy was greater than 1 year. As such, many older patients 
with GBM and therefore lower estimated life expectancy 
were not enrolled in the study. Results may differ in an 
older subpopulation of patients with primary brain tu-
mors, as older age is associated with normal declines in 
neurocognitive function and changes in brain anatomy, po-
tentially leading to compounding negative effects on both.

Additionally, the current study did not include a control 
group of individuals without brain tumors. Rather, we lev-
erage our minimal impairment phenotype group as a pa-
tient control group. This analytic approach offers a distinct 
advantage of matching across factors such as neurosur-
gical, seizure, and medication use history, all of which are 
likely to impact both cognitive function and brain struc-
ture. Due to the heterogeneity in these and other factors 
in our sample, we are also unable to determine to what 
extent brain tumors were the cause of the observed differ-
ences in neuroanatomy between phenotypes. Given the 
variability in both neuropsychological function and neu-
roanatomy in the healthy population, the associations be-
tween the structural differences and neuropsychological 
impairments may not be specific to patients with primary 
brain tumors. Future studies may also benefit from the in-
clusion of a healthy control group to help tease apart these 
considerations. This would enable us to also probe struc-
tural changes within the minimal impairment group that 
may serve to maintain intact cognition (eg, compensatory 
networks) in the presence of brain pathology. Furthermore, 
examination of how patterns of brain pathology within 
each phenotype evolve over the course of treatment could 
be helpful for understanding the impact of different inter-
ventions on structure-function relationships, and for 
identifying patients at risk for treatment-related decline.
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Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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