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The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic
field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been
proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid
(CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL
can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles.
Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic
Heisenberg model or related materials. By developing a density-matrix renormalization group based
method for adiabatically inserting flux, we discover a FQHE in a spin- 1

2 isotropic kagome Heisenberg model.
We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking
time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern
number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously
identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped
topological spin liquids.

T
he experimentally discovered fractional quantum Hall effect (FQHE)1–3 is the first demonstration of topo-
logical order and fractional (anyonic) statistics4–8 realized in two-dimensional electronic systems under a
magnetic field breaking time-reversal symmetry (TRS). A related new state of matter with fractionalized

quasiparticle excitations is the topological quantum spin liquid (QSL) emerging in frustrated magnetic sys-
tems9–18. Such spin systems, related to strongly correlated Mott materials and holding the clue to the unconven-
tional superconductivity in doped systems, are of fundamental importance to the condensed matter field9,10,18–20.
To understand the emergent physics of frustrated magnetic systems, where spins escape from the conventional
fate of developing symmetry broken ordering, the concept of QSL with the fractionalized quasiparticles was
established8,10,14. Experimental candidates for such a new state of matter are identified including kagome anti-
ferromagnets21–23 and triangular organic compounds24–26. The simplest QSL with TRS is the gapped Z2 spin liquid,
which possesses the Z2 topological order and fractionalized spinon and vison quasiparticle excitations8,14. The Z2

QSL is identified as an example of the resonating valence-bond liquid state, which was first proposed by
Anderson10. Although explicitly demonstrated in contrived theoretical systems11,13,16,17, the searching of the
gapped QSL in realistic Heisenberg models has always attracted much attention over the last twenty years.
The primary example is the recent discovered gapped Z2 QSL for kagome Heisenberg model (KHM) with the
dominant nearest neighbor (NN) interactions based on the density-matrix renormalization group (DMRG)
simulations27–30.

Another class of QSL with fractionalized quasiparticles obeying fractional (anyonic) statistics is chiral spin
liquid (CSL)31–35, which breaks TRS and parity symmetry while preserves other lattice and spin rotational
symmetries. Kalmeyer and Laughlin31 first proposed that, in a time-reversal invariant spin system with geometry
frustration, one can realize a n 5 1/2 FQHE as a CSL state32 through mapping the frustrated in-plane exchange
interactions to the uniform magnetic field. A CSL is also considered to be a simple way in which frustrated spin
systems develop topological order through statistics transformation to cancel out the frustration32,33. The CSL
may also lead to the exotic anyon superconductivity with doping holes into such systems32,33. The existence of CSL
through spontaneously TRS breaking has been demonstrated in a Kitaev model on a decorated honeycomb lattice
with contrived anisotropic spin interactions36 and most recently in a spin anisotropic kagome model37.
Interestingly, based on the classical and Schwinger boson mean-field analyses, QSLs with different chiral spin
orders have been suggested for extended KHM38,39. Other theoretical studies show that one can also induce a CSL
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state through adding multi-spin TRS breaking chiral interac-
tions40–43. Although CSL has been explored for more than twenty
years31–35,38,43,44, the accurate DMRG27–30 and variational Monte
Carlo45 studies on various frustrated Heisenberg models often lead
to the conventional ordered phases or TRS preserving Z2 and U(1)
QSLs. The simple concept of realizing CSLs through spontaneously
breaking TRS and statistics transformation32,33 remains illusive in
realistic frustrated magnetic systems.

In this article, we report a new theoretical discovery of the CSL in

an extended spin-
1
2

KHM based on the state of art DMRG simula-

tions46,47. As illustrated in the inset of Fig. 1(a), the system has the NN
coupling J 5 1 as energy scale, as well as the second and third NN
couplings J9 inside each hexagon of the kagome lattice, described by
the following Hamiltonian16,38:

H~J
X

i,jh i
Si
:SjzJ ’

X
i,jh ih i

Si
:SjzJ ’

X
i,jh ih ih i

Si
:Sj: ð1Þ

We perform the numerical flux insertion simulations on cylinder
systems based on the newly developed adiabatical DMRG to detect
the topological Chern number, which uniquely characterizes the
chiral spin liquid. We have fully established a robust n 5 1/2
FQHE state for 0:1 *

v J ’ *v 0:7 by observing the half-integer quantized
topological Chern number protected by a robust excitation gap, the

degenerate ground states, and the uniform chiral order sponta-
neously breaking TRS.

Results
Phase diagram. Our main findings are summarized in the phase
diagram Fig. 1(a). With the turn on of a positive J9, we find a
robust CSL phase in the region of 0:1 *

v J ’ *v 0:7. We design and
perform the Laughlin flux insertion numerical experiment through
developing an adiabatic DMRG, which inserts flux and obtains the
ground state for each flux. The adiabatic DMRG allows us to obtain
the topological Chern number3,34, which characterizes the topologi-
cal nature of the quantum phase. Our simulation experiment shows
that the CSL is characterized by a fractionally quantized Chern
number C 5 1/2, which is a ‘‘smoking gun’’ evidence of the
emergent n 5 1/2 Laughlin FQHE state31 in the frustrated KHM.
The CSL phase is also characterized by a four-fold degeneracy in two
topological sectors. In each sector, there is a double degeneracy
representing the two sets of CSL states with opposite chiralities.
The near uniform chiral order measured for a state spontaneously
breaking TRS is illustrated in Fig. 1(b). We also establish that the CSL
is neighboring with the Z2 QSL previously found27–30 at J9 5 0, while
the transition region appears to be under strong influence of the
nonuniform Berry curvature resulting from gauge field, which may
provide new insights to many puzzles regarding theoretical27–30 and
experimental findings18,21–23 for kagome antiferromagnets.

Fractional quantization of topological number. To uncover the full
topological nature of the phase at large system scale, we perform the
flux inserting simulation based on the adiabatic DMRG. For
conventional FQHE systems, a quantized net charge transfer
would appear as DN 5 C from one edge of the sample to the other
edge after inserting one period of flux h 5 0 R 2p, corresponding to a
nonzero fractionally quantized topological invariant Chern number
C34, which is C 5 1/2 for the n 5 1/2 bosonic Laughlin state.

By adiabatically inserting the flux h in our DMRG experiment, we

study the evolution of the local magnetization Sz
x,y

D E
, which is the

spin-z average of the ground state at a local lattice site Ri 5 (x, y).
With the increase of h, we measure the corresponding spin accumu-
lations of each ground state at h 5 jp/2 (j is an integer). One example
with h 5 2p is shown in Fig. 2(a). We find nonzero magnetization
starting to build up at the left and right edges of cylinder, which grows
monotonically with the growing of h as shown in Fig. 2(b). Since our
system has total spin conservation, the net spin-z transfer DSzjedge

(which is the total magnetization around the right edge of the system)
is equivalent to the pumping of the hardcore bosons from the left
edge to the right edge without going through the bulk. In Fig. 2(c), we
show the net spin transfer DSzjedge as a function of h. A near linear
spin pump is being realized in this chiral spin state, which is exactly
quantized as DSzjedge 5 0.5 at h 5 2p. From the fundamental cor-
respondence between edge spin transfer and bulk Chern number48,
we identify the bulk Chern number of the system as C 5 1/2, fully
characterizing the state as the Kalmeyer-Laughlin CSL31 of n 5 1/2
FQHE. Physically, the pumping in FQHE system is achieved through
the adiabatical rotation of the basis states of the many-body wave-
function, which can be viewed as a non-local operation by developing
a ‘‘spinon’’ line in the cylinder. We find the entanglement spectrum
of the spinon sector obtained here by inserting 2p flux is identical to
the one of the S-sector shown below in Fig. 3(b) obtained through
pinning. With further increasing the flux to h 5 4p, the net spin
transfer DSzjedge 5 1.0, where the system evolves back to the vacuum
sector. These observations fully establish the bosonic n 5 1/2 FQHE
emerging in the J 2 J9 KHM. While the Chern number simulations
characterize the ground state as the long-sought CSL, we will further
measure the topological degeneracy, chiral correlations, topological
entanglement entropy, and modular matrix to demonstrate the full
nature of the topological state in our time-reversal invariant system.

Figure 1 | Phase diagram of the spin-
1
2

J 2 J9 antiferromagnetic kagome

Heisenberg model (KHM). We set the NN coupling J 5 1, and the second

and third NN couplings as J9. In DMRG simulations, we study cylinders

with lengths Lx and Ly (in unit cells) along the x and y (the tilt lattice vector)

directions, respectively. We also label our system by the total number of

sites N 5 3 3 Lx 3 Ly. (a) The energy differences between the two lowest

states E0
2{E0

1 ES
2{ES

1

� �
in two different topological (vacuum and S-)

sectors are shown for a N 5 3 3 24 3 4 cylinder at different J9, which reveal

the four degenerating ground states in two sectors for a range of parameter

0:2 *
v J ’ *v 0:7. (b) We illustrate the uniform positive chiral order

xih i~ Si1
: Si2 |Si3ð Þh i (i1, i2, i3 gDi(=i)) on a N 5 3 3 24 3 4 cylinder with

J9 5 0.5 measured from the MES ~y0
L

�� E
in the vacuum sector (identified in

Fig. 3), which breaks the TRS and parity symmetry. The CSL phase is

characterized by the long-range chiral correlations and a fractionally

quantized C 5 1/2 Chern number, which identifies the state as the

Laughlin n 5 1/2 FQHE emerging in the J 2 J9 KHM.
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Low-energy spectrum and topological degeneracy. The Kalmeyer-
Laughlin CSL has two-fold topological ground-state degeneracy, and
the spontaneously TRS breaking for such a time-reversal invariant
system must have an additional double degeneracy in each
topological sector. On cylinder geometry, one can control the
boundary condition near the cylinder edges to target into different
topological sectors27,49, which we denote as the vacuum and S-sectors,
respectively. By using this technique in DMRG, we find the two
lowest-energy states in each sector whose energy differences
E0

2{E0
1 and ES

2{ES
1 drop to small values for 0:2 *

v J ’ *v 0:7. One
example is shown in Fig. 1(a) for a cylinder with Lx 5 24 and Ly 5

4. Importantly, the degenerating states y0
1,2

�� E
( yS

1,2

�� E
) in each

topological sector also have near identical entanglement spectra.

The double degeneracy of entanglement spectrum for the ground

states y
0 Sð Þ
1

���
E

is explicitly shown using two different symbols (line

and circle) in Figs. 3(a) and 3(b). These observations are consistent
with the spontaneously TRS breaking double degeneracy. We also
find the ground-state energies between the two sectors are degenerate
(ES

1

�
N{E0

1

�
N~0:00001 for J9 5 0.5 at Ly 5 4), which, combined

with the distinct entanglement spectra50 as shown in Figs. 3(a) and
3(b) of the two sectors, establish the topological degeneracy for these
two sectors in the intermediate phase. By searching for other low
energy excited states from both DMRG and exact diagonalization
(ED), we exclude that there are other distinct topological
degenerating sectors for the intermediate region, while a lot more
lower energy states appear near J9 5 0.

Figure 2 | Laughlin flux insertion Gedanken experiment and fractionalized Chern number C 5 1/2 for CSL. (a) Real-space configuration of the spin

magnetization Sz
x,y

D E
at position Ri 5 (x, y) after adiabatically inserting a quantized flux h 5 2p. The area of the circle is proportional to the amplitude of

Sz
x,y

D E
. The red (blue) color represents the positive (negative) Sz

x,y

D E
. (b) Real-space configuration of the accumulated spin magnetization

Sz
x

� �
~
X

y
Sz

x,y

D E
(the summation is over all the 3Ly sites in each column x) with increasing flux h. Clearly, we see a net spin-z accumulating in the right

edge of the sample, which is equivalent to the transfer of hardcore bosons (the hardcore boson number ni is related to the on-site Sz
i as ni~Sz

i z1=2) being

pumped from the left edge to the right edge without going through the bulk. So this simulation experiment reveals a quantum Hall system with a nonzero

Hall conductance, while the bulk is gapped. (c) Net spin transfer DSz | edge to the right edge of the cylinder as a function of h. From the net spin transfer in

one period of flux h 5 0 R 2p, we obtain the exact fractionally quantized Chern number C 5DSz | edge 5 1/2. The results are demonstrated for a 3 3 24 3 4

cylinder at J9 5 0.5 using the U(1) DMRG with keeping up to 5000 states. Similar results are obtained for all the states within the CSL phase.

www.nature.com/scientificreports
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The energy and entanglement spectra doubling are signatures of
finding the maximally entangled states in each sector, which is forced
by the TRS of the system Hamiltonian (here we used a real number
initial wavefunction in DMRG calculations which forbids any spon-
taneous TRS breaking). To demonstrate the nature of the new
quantum phase, we first find the minimum entangled states
(MESs) in each topological sector28,51,52, which represent the eigen-
states of the Wilson-loop (string-like) operators encircling the cylin-
der and are the simplest states of the quasiparticles. In Fig. 3(c), we
show two MESs emerging (labeled by two red dots) in the vacuum

sector: ~y0
L Rð Þ

���
E
~

1ffiffiffi
2
p y0

1

�� �
+i y0

2

�� �� �
, which are equal magnitude

superposition of the real states with a phase difference 6p/2. The

MES ~y0
L

�� E
breaks the TRS spontaneously and demonstrates a uni-

form nonzero chirality order for each triangle as illustrated in
Fig. 1(b). The chiral order reaches a value around 0.08 comparable

to its classical value 1/8. The conjugate state ~y0
R

�� E
as another MES has

the opposite sign of chirality. The doubling of the entanglement
spectra for the maximum entropy state simply results from the
superposition of the MESs with the same entanglement spectra.
Consequently, one finds an entanglement entropy difference ln 2
comparing to the MESs as illustrated in Fig. 3(c). Near identical
results and two MESs are also found in the topological degenerating
S-sector. Furthermore, if we initiate the DMRG state with a random
complex number state, we automatically find such a MES, which
spontaneously breaks TRS.

By obtaining the MES, we find the topological entanglement
entropy c consistent with the result ln 2/2 of the n 5 1/2 Laughlin
state53,54. The ED calculations further confirm this state on a N 5 3 3

4 3 3 cluster by extracting modular transformation matrix51,52 from
the MESs of two noncontractable cuts (see Supplementary
Information for more details).

Quantum phase transitions. We use both the chiral-chiral
correlation functions and the topological Chern number obtained
from inserting flux to identify the quantum phase diagram and
transitions in the J 2 J9 model. In Fig. 4(a), we compare the chiral
correlations Æxixjæ for the states from the two topological sectors with
different system widths at J9 5 0.5. We find long-range correlations
for the states from both topological sectors, which are further
enhanced with increasing system width Ly. To reveal the quantum
phase transitions, we show the chiral correlation functions calculated
from the ground state of the vacuum sector for different J9 in
Fig. 4(b). Æxixjæ is positive everywhere and has the long-range order
for 0.1 # J9 # 0.7, while transitions to other phases are detected at
J9 5 0.05 and 0.8 by identifying the exponential decaying chiral
correlations.

In the flux insertion simulations, we find that the Chern number
remains to be quantized at C 5 1/2 for the same parameter range 0.1
# J9 # 0.7, thus we establish the quantum phase diagram as shown in
Fig. 1(a). The quantum phase transition around J9 , 0.7–0.8 is char-
aterized by an excitation gap closing in the bulk of system, where we
detect a strong bulk magnetization (boson density) response to the
inserted flux. Between J9 5 0 and 0.1, we detect a strong nonuniform

Figure 3 | Entanglement spectra characterization and MESs for the TRS broken phase. (a) and (b) are the entanglement spectra of the ground states in

the vacuum y0
1

�� �� �
and S- yS

1

�� �� �
sectors, respectively. ji 5 2ln li with li the eigenvalues of reduced density matrix. The two degenerate states y0

1,2

�� E

yS
1,2

�� E	 

have exactly the same spectra. These states are real wavefunctions consistent with the TRS of the model Hamiltonian. The lines and circles with

the near identical ji denote the double degeneracy indicating that each of these low-energy states is a maximum entropy state. The numbers 2, 2, 4, 6 label

the near degenerating pattern for the low-lying entanglement spectra which are doubled from what one would expect for a Laughlin FQHE state from

conformal field theory. (c) Entanglement entropy profile 2S of the general superposition state in the vacuum sector ~y0
�� E

~c y0
1

�� �
z

ffiffiffiffiffiffiffiffiffiffiffi
1{c2
p

eiw y0
2

�� �
. The

MESs that are pointed by red arrows and dots emerge as ~y0
L,R

�� E
~

1ffiffiffi
2
p y0

1

�� �
+i y0

2

�� �� �
. The MES ~y0

R Lð Þ

���
E

has uniform counterclockwise (clockwise) chiral

order for each triangle as illustrated in Fig. 1(b). Furthermore, if we initiate the DMRG state as a complex state, we automatically find such a MES, which

spontaneously breaks TRS. The results are demonstrated for J9 5 0.5 for a N 5 3 3 24 3 6 cylinder, and near identical results are obtained for different

parameters in the CSL phase.

www.nature.com/scientificreports
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Berry curvature resulting from the gauge field in the inserting flux
simulations, possibly indicating the forming of new quasiparticles
and the emerging of Z2 QSL. We also study the stability of the CSL
when the second and third neighbor couplings are different. We find
the CSL phase in a region around the line with J2 5 J3. For example,
when J2 5 0.1, the CSL is robust for 0:1 *

v J3 *
v 0:3. Physically, the J3

coupling suppresses the magnetic order formed in the J1 2 J2 (J2 ,
0.2) kagome model, thus substantially enlarges the non-magnetic
region. Meanwhile, classically the J3 term will enhance a noncoplanar
spin chiral order38, which may induce a CSL in the quantum J1 2 J2 2

J3 model as demonstrated here.

Discussion
In the past twenty years, the gapped QSL in realistic magnetic sys-
tems have attracted intensive attention. While the NN or J1 2 J2

KHM27–30 is the primary candidate of a possible Z2 QSL, there are
still many puzzles left unresolved. The frustrated kagome antiferro-
magnets Herbertsmithite Cu3(Zn,Mg)(OH)6Cl2 and Kapellasite
Cu3Zn(OH)6Cl218,21–23 are possible candidates of QSL; however, they
appear to be more consistent with gapless or critical states. At theor-
etical side, redundant low-energy excitations are found for the NN
KHM from ED simulations55, variational studies find that U(1) gap-
less QSL45,56 has relatively low energy, and DMRG studies have not

been able to identify all the four topological sectors for Z2 QSL49. Our
finding of the robust CSL at the neighbor of the NN KHM indicates
that the latter is not a fully developed Z2 QSL yet, and the nature of
states for the experimental relevant kagome systems may be strongly
affected by a new quantum critical point between two gapped QSLs,
the Z2 and the CSL. In a parallel work, a CSL has also been uncovered
in an anisotropic kagome spin system37 with only spin-z interactions
for further neighbors. We believe that our numerical findings will
stimulate new theoretical and experimental researches in this field to
resolve the nature of the quantum phases for different frustrated
magnetic systems. An exciting next step will be identifying theor-
etical models and experimental materials which can host exotic topo-
logical superconductivity by doping different CSLs.

Methods
DMRG is a powerful tool to study the low-lying states of strongly correlated electron
systems46. The accuracy of DMRG is well controlled by the number of kept states M,
which denotes the M eigenstates of the reduced density matrix with the largest
eigenvalues. The highly efficiency of DMRG for one-dimensional systems or two
dimensional cylinder systems have been shown for different systems27,47. An
improvement in DMRG calculations is to implement symmetry to reduce the Hilbert
space. The spin-z or total particle U(1) symmetry is commonly used in DMRG, which
is preserved in many model systems. For some systems with spin rotational SU(2)
symmetry such as the Heisenberg spin model, the more efficient choice is to apply the
SU(2) symmetry57, from which we can obtain more accurate results for wider systems.
This algorithm has been applied to study various frustrated Heisenberg systems
successfully29,58,59.

Details of the SU(2) DMRG calculation. We study the frustrated KHM without flux
using SU(2) DMRG. We study the cylinder system with open boundaries in the x
direction and periodic boundary condition in the y direction. For Ly 5 4 (Ly 5 6)
systems, we keep up to 3000 (4600) SU(2) states with the DMRG truncation error
E^1|10{6 (E^1|10{5) for most calculations. To find the ground states in both
vacuum and S- topological sectors on cylinders in the DMRG calculations, we take
pinning sites in the open boundaries or insert flux to target the two different sectors49.

Adiabatic DMRG and fractionally quantized Chern number. For the first time, we
develop the numerical flux insertion experiment for cylinder systems based on the
adiabatical DMRG simulation to detect the topological Chern number34 of the bulk
system, which uniquely characterizes the CSL as a n 5 1/2 FQHE state emergent from
the J 2 J9 Heisenberg model on kagome lattice. In this simulation, we impose the twist
boundary conditions along the y direction by replacing terms
Sz

i S{
j zh:c:?eihSz

i S{
j zh:c: for all neighboring (i, j) bonds with interactions

crossing the y-boundary in the Hamiltonian. Starting from a small h , 0, a state with
the definite chirality and sign of Chern number will be randomly selected, which
remains the same through out the whole adiabatical process of h 5 0 R 4p. We find
states with the opposite Chern numbers (C 5 61/2) in different runs of the
simulations due to spontaneously TRS breaking. A robust excitation gap D , 0.24 is
obtained for J9 5 0.5 after we create two spinons (at h 5 2p) at the opposite edges of
the cylinder (see Fig. 2(a)), which protects the CSL state. This method can be applied
to study different interacting systems and characterize different topological states.
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