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ABSTRACT

Pluripotent and tissue-specific stem cells, such as blood-forming stem cells, are maintained through
a balance of quiescence, self-renewal, and differentiation. Self-renewal is a specialized cell division
that generates daughter cells with the same features as the parental stem cell. Although many fac-
tors are involved in the regulation of self-renewal, perhaps the most well-known factors are mem-
bers of the Krüppel-like factor (KLF) family, especially KLF4, because of the landmark discovery
that this protein is required to reprogram somatic cells into induced pluripotent stem cells.
Because KLF4 regulates gene expression through transcriptional activation or repression via either
DNA binding or protein-to-protein interactions, the outcome of KLF4-mediated regulation largely
depends on the cellular context, cell cycle regulation, chromatin structure, and the presence of
oncogenic drivers. This study first summarizes the current understanding of the regulation of self-
renewal by KLF proteins in embryonic stem cells through a KLF circuitry and then delves into
the potential function of KLF4 in normal hematopoietic stem cells and its emerging role in
leukemia-initiating cells from pediatric patients with T-cell acute lymphoblastic leukemia via
repression of the mitogen-activated protein kinase 7 pathway. STEM CELLS TRANSLATIONAL
MEDICINE 2019;8:568–574

SIGNIFICANCE STATEMENT

Understanding the molecular regulation of self-renewal in hematopoietic stem cells is essential
not only for stem cell biology and regenerative medicine but also, most importantly, to address
the resistance of hematological malignancies to drug therapy and develop novel therapies spe-
cific to leukemia stem cells, which represent an unmet medical need, because this population is
believed to drive chemoresistance and relapse. The role of the reprogramming factor KLF4 in
the regulation of self-renewal is discussed in embryonic stem cells and normal and leukemic
hematopoietic stem cells.

INTRODUCTION

Stem cells exist at the apex of tissue development
and can orchestrate embryonic differentiation of
various tissues in an adult organism and regulate
tissue homeostasis and regeneration after injury.
Embryonic stem cells (ESCs) are the most undif-
ferentiated stem cells and are capable of generat-
ing all cell types within the organism, whereas
somatic tissue-specific stem cells (e.g., hemato-
poietic stem cells, HSCs) can only regenerate cells
within the same tissue. In bone marrow, HSCs can
produce blood cells on demand during homeo-
static and regenerative hematopoiesis, and this
capacity to produce the blood while maintaining
the pool of HSCs is controlled by a delicate bal-
ance between self-renewing and differentiating
cell divisions. Self-renewal is a specialized and

highly regulated cell division producing one or
two daughter cells with the same stem cell fea-
tures as the parental stem cell. This multifaceted
mechanism has been the subject of extensive
research because of clear implications in tissue
homeostasis, regenerative medicine, and cancer
therapy. Leukemia is a cancer of the blood cells
affecting either lymphoid or myeloid lineages that
is caused by genetic and epigenetic alterations
occurring in HSC or hematopoietic progenitor cell
(HPC); the generated population of leukemic
cells bear stem cell properties ensuring self-
preservation through their self-renewal capac-
ity while continuously feeding the neoplasm by
differentiating into the bulk of leukemia cells. As
a critical process regulating stem cell fate in nor-
mal and malignant hematopoiesis, self-renewal is
controlled by the specialized microenvironment,

Department Pathology &
Immunology, Baylor College
of Medicine, Texas
Children’s Hospital,
Houston, Texas, USA

Correspondence: Daniel
Lacorazza, Ph.D., Department
of Pathology & Immunology,
Baylor College of Medicine,
Texas Children’s Hospital,
Houston, Texas, USA.
Telephone: 832-824-5103;
e-mail: hdl@bcm.edu

Received November 2, 2018;
accepted for publication
January 7, 2019; first published
February 21, 2019.

http://dx.doi.org/
10.1002/sctm.18-0249

This is an open access article
under the terms of the Creative
Commons Attribution-
NonCommercial-NoDerivs
License, which permits use and
distribution in any medium,
provided the original work is
properly cited, the use is non-
commercial and no modifica-
tions or adaptations are made.

STEM CELLS TRANSLATIONAL MEDICINE 2019;8:568–574 www.StemCellsTM.com © 2019 The Authors.
STEM CELLS TRANSLATIONAL MEDICINE published by Wiley Periodicals, Inc. on behalf of AlphaMed Press

CANCER STEM CELLS

https://orcid.org/0000-0003-0660-617X
mailto:hdl@bcm.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


or niche, and intrinsic factors that guide the decision of a stem
cell to either self-renew or undergo differentiation, depending on
the demand of the specific tissue. The Krüppel-like factor (KLF)
family of proteins encompasses 17 zinc-finger transcription fac-
tors, of which at least 5 have been implicated in key stem cell
functions, such as self-renewal [1–5], pluripotency [1–3, 5],
embryogenesis [6], and erythropoiesis [7]. Like other members of
the family, KLF4 contains activation and repression domains that
mediate recruitment of coactivators or corepressors and three
zinc fingers that bind to guanine-cytosine-rich sequences such as
CACCC found in gene regulatory promoters and enhancers [8, 9].
KLF4 has been increasingly studied since the landmark work
describing its role in the reprogramming of somatic cells into
induced pluripotent stem cells (iPSCs), and the contribution of
KLF4 to this process suggests a potential function in the preserva-
tion of stemness in other tissue stem cells [10]. KLF4 is expressed
in a wide range of mammalian tissues and regulates diverse
cellular processes during normal tissue homeostasis, including
proliferation, survival, and differentiation. In fact, KLF4 regulates
self-renewal in stem cells from different tissues (e.g., embryonal,
intestine, and skin) in both homeostasis and cancer [1, 11–23].
Although KLF4 has been studied more extensively in ESCs and
solid tumors, there is emerging evidence of KLF4 involvement in
the process of blood formation by regulating normal hematopoi-
esis and leukemia stem cells (LSCs).

REGULATION OF SELF-RENEWAL BY KLFS IN

PLURIPOTENT STEM CELLS

Because most of what is known on the regulation of self-renewal
by KLFs has been described in ESCs, we will briefly review the
main contributions before discussing the role of KLF4 in normal
and malignant HSCs. ESCs are derived from the inner cell mass of

the blastocyst—an early stage of the preimplantation embryo—
and characterized for their capacity for self-renewal and pluripo-
tent differentiation of ESCs into any tissue and cell type [24, 25].
ESCs regulate self-renewal and pluripotency properties through
cell-intrinsic (NANOG, OCT4, SOX2, and KLFs) and -extrinsic fac-
tors (leukemia inhibitory factor, LIF) [1, 26–34]. OCT4, SOX2, and
NANOG were originally identified as members of a core regula-
tory pathway involved in the preservation of stemness by pro-
moting self-renewal and preserving pluripotency. Several KLFs
(KLF1, KLF2, KLF4, KLF5, and KLF17) regulate self-renewal in the
embryos, ESCs, hematopoietic cells, and bone marrow stromal
cells in mice, humans, and zebrafish (Table 1). Among these
KLFs, the most extensively studied and characterized are KLF2,
KLF4, and KLF5, as they form part of a transcriptional circuitry
that promotes self-renewal in ESCs by activating pluripotency-
associated genes such as NANOG that inhibit their differentiation
into primitive endoderm [1, 2]. Abrogation of self-renewal and
terminal differentiation of ESCs by simultaneous knockdown of
KLF2, KLF4, and KLF5 suggested a KLF regulatory circuitry, which
was rescued by the introduction of RNAi-resistant cDNA encod-
ing these three factors [1]. The KLF2/KLF4/KLF5 triad controls
self-renewal by regulating the expression of genes involved in
self-renewal (Oct4, Sox2, Myc, and Tcl1) and pluripotency
(Nanog, Esrrb, and Oct4), facilitating the formation of autore-
gulatory loops among Oct4, Sox2, Nanog, and Sall4 in ESCs
(Fig. 3) [1, 2]. Although most KLF proteins (KLF1–KLF10) can
bind to the regulatory regions of Nanog, only KLF2, KLF4, and
KLF5 are able to maintain murine ESCs in an undifferentiated
state in the absence of LIF [2]. Based on chromatin immuno-
precipitation and sequencing analysis, KLF4 and KLF5 inhibit
differentiation of mesoderm and endoderm in ESCs by activat-
ing targets other than NANOG [18]. These findings suggest that
KLF2, KLF4, and KLF5 have overlapping functions but also exert
distinct roles in self-renewal of ESCs. Although KLF4 restores loss

Table 1. Roles of KLF in stem cell self-renewal

KLF proteins Host organism Tissue/cell analyzed Key functionality Genes regulated by KLFs

KLF1 Mouse Embryo [7] Required for erythropoiesis [7] Myc [7]

KLF2 Mouse Embryo and embryonic
stem cells [1, 2, 7]

Promotes self-renewal and
pluripotency [1, 2]

Required for erythropoiesis [7]

Nanog and Esrrb [1, 2]
Myc [1, 7]
Oct4, Tcl1, Nr5a2, Tbx3, Rif1, Sox2, Tcf3,
Mycn, and Foxd3 [1]

Stella [2]

Human Bone marrow
stromal cells [3]

Promotes self-renewal and
pluripotency [3]

Oct4, Nanog, and Rex1 [3]

Zebrafish Embryo [6] Required for embryogenesis [6] Oct4 [6]

KLF4 Mouse Embryonic
stem cells [1, 2]

Promotes self-renewal and
pluripotency [1, 2]

Nanog and Esrrb [1, 2]
Tcl1, Myc, Nr5a2, Tbx3, Nanog, Esrrb, Rif1,
Oct4, Sox2, Tcf3, Mycn, and Foxd3 [1]

Stella [2]

Hematopoietic cells [4] Promotes self-renewal [4]

KLF5 Mouse Embryonic
stem cells [1, 2, 5]

Promotes self-renewal and
pluripotency [1, 2, 5]

Nanog [1, 2, 5]
Esrrb [1, 2]
Oct4 and Sox2 [1, 5]
Tcl1, Myc, Nr5a2, Tbx3, Esrrb, Rif1, Oct4,
Tcf3, Mycn, and Foxd3 [1]

Stella [2]

KLF17 Zebrafish Embryo [6] Required for embryogenesis [6] Oct4 [6]

Abbreviation: KLF, Krüppel-like factor.
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of stemness caused by deletion of Klf5 in murine ESCs [30], the
fact that Klf4-null embryos can develop to term suggests either
that KLF4 is dispensable for embryogenesis or there is a func-
tional compensation by other KLF proteins [1, 35]. KLF4 and
NANOG are among the first transcription factors to shut down
their transcription when ESCs exit pluripotency, and nuclear
export of KLF4 upon ERK activation is a critical first step to exit the
naive pluripotent state and initiate ESC differentiation [16, 36].
In addition, KLF4 is required for expression of the telomerase
reverse transcriptase (TERT) in human ESCs and binds β-catenin
through protein-to-protein interaction, allowing the recruitment
of this dimer to the Tert promoter in murine ESCs [17, 37].
Finally, KLF4 acts as a fast mediator of LIF signaling through the
activation of STAT3 to cooperate with OCT4 and SOX2 in acti-
vating the expression of NANOG while repressing the GATA6
and SOX17 genes, which are involved in endoderm differentia-
tion [31]. In summary, several KLF transcription factors regulate
key processes of stem cell function in ESCs, among which KLF2,
KLF4, and KLF5 play prominent roles. The formation of a KLF
circuitry may be exclusive to ESCs, as this mechanism has not
been described in other stem cells.

ROLE OF KLF4 IN NORMAL HSCS

Regulation of HSC Self-Renewal

The identification of mechanisms that promote ex vivo self-
renewing expansion is the Holy Grail in HSC research and is
pursued by many groups aiming at bone marrow transplant
and cell and gene therapy applications. The bone marrow
milieu modulates stemness at different levels through secreted
factors (stem cell factor, thrombopoietin, interleukin-3 [IL3], IL-
6, IL-11, and fms-like tyrosine kinase 3 [FLT3]), inflammatory
cytokines (e.g., tumor necrosis factor alpha and interferon
gamma), hypoxia, the extracellular matrix, and topographic
direction of the mitotic spindle with respect to cellular compo-
nents of the niche during cell division, which could lead to losses
of key cellular interactions and an asymmetric distribution of
intracellular components. This specialized milieu delivers signals
to HSCs through factors recognized by the corresponding recep-
tors that translate information to nuclei, where transcription fac-
tors regulate the expression of genes involved in the control of
self-renewal. Some of the extrinsic mechanisms regulating HSCs
are NOTCH1, hedgehog, WNT, EP receptor for prostaglandin E2,
angiopoietin-like protein 5, and pleiotrophin (review and refer-
ences therein [38–41]) (Fig. 1). It is not clear whether KLF4 plays
a role in the regulation of these extrinsic mechanisms (Fig. 1),
although KLF4 can inhibit the WNT pathway in intestinal epithe-
lium through interaction with β-catenin and repress the expres-
sion of NOTCH1 in keratinocytes, whereas NOTCH1 inhibits the
expression of KLF4 in intestinal epithelium [42–44].

In addition to the regulation by stem cell niches, many
intrinsic factors have been described as positive regulators of
HSC self-renewal (e.g., HOXB4, RUNX1, BMI1, p53, miR-126,
FLT3, STAT5A, HMGA2, and SALL4; Fig. 1) [45–52]. Collectively,
intrinsic factors regulate cell fate during division at different
levels, such as control of gene expression via transcriptional
regulation (e.g., RUNX1 and STAT5A), metabolic sensing of
nutrients and growth factors (e.g., mTORC1), response to hyp-
oxia and metabolism (e.g., hypoxia-inducible factor 1α), and
development and aging (e.g., BMI1 and p16). Reflecting the

complexity of self-renewal regulation, many of these factors
have interconnected functions; for example, TCF7 regulates
the expression of RUNX1 independently of WNT signaling, and
the histone H2A deubiquitinase MYSM1 drives the recruitment
of RUNX1 into the GFI1 locus, another transcription factor
involved in HSC self-renewal [53–55]. Although KLF4 has not
been directly associated with the intrinsic regulation of HSC
self-renewal, a few reports suggest a potential role in steady-
state hematopoiesis, such as the inhibitory effect on BMI1 in
intestinal cells, inhibition of mTORC1 during somatic cell repro-
gramming, and regulation of KLF4 by p53 in acute myeloid leu-
kemia (AML) [56–58]. In addition to transcriptional regulation,
the expression of genes involved in self-renewal can be medi-
ated through epigenetic mechanisms such as CpG methylation
and histone modifications. For example, mutations in DNMT3A
lead to an increase in self-renewal and upregulation of stem-
ness genes in HSCs, and loss of DNMT3A promotes expansion
of HSCs in the bone marrow [59–61]. Interestingly, DNMT3A
binds to the CpG island in the KLF4 promoter in endothelial
cells, inducing DNA methylation and subsequent gene repres-
sion [62]. In addition to DNMT3A, IDH1/2 and TET2 mutations,
often found in hematologic malignancies, can deregulate the
pattern of genomic DNA methylation and aberrantly increase
self-renewal [63]. It was recently reported that TET2 binds to
KLF4 through protein-to-protein interaction to drive locus-
specific demethylation during reprogramming of B cells into
iPSCs [64]. Lastly, maintenance of telomere length through tel-
omerase activity also plays a critical role in self-renewal, as
loss of telomerase results in reduced self-renewal capacity of
HSCs, as evaluated by serial transplantation, in addition to pro-
moting carcinogenesis via genomic instability [65]. Interest-
ingly, KLF4 activates TERT expression through interaction with
β-catenin in ESCs [37, 66]. Finally, factors involved in the differ-
entiation toward different lineages, not listed here, could be
considered negative regulators of self-renewal because the
alternative fate during cell division is differentiation.

KLF4 Regulates Self-Renewal in Adult HSCs

In the hematopoietic system, KLF4 promotes macrophage and
monocyte differentiation, macrophage polarization, survival of nat-
ural killer cells, secondary antibody responses in memory B cells,
and dendritic cell development, whereas KLF4 inhibits homeo-
static proliferation of naïve T cells [4, 67–74]. The enrichment of

Figure 1. Self-renewal is regulated by extrinsic (stem cell niche
in bone marrow) and intrinsic factors in HSCs. A potential regula-
tory role of KLF4 is indicated based on reports in other cell types.
Abbreviations: ANGPTL-5, angiopoietin-like protein 5; FGF, fibro-
blast growth factor; HH, hedgehog; HSC, hematopoietic stem cells;
KLF, Krüppel-like factor; PGE2, prostaglandin E2.
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KLF4 transcripts in human HSCs (CD34+ CD38lo Linlo) com-
pared with HPCs (CD34+ CD38hi Linhi) led to the study of KLF4
in HSCs from fetal livers, because embryonic homozygous
deletion results in postnatal lethality [35, 70, 75]. Although
clonogenic and competitive transplantation assays of fetal
Klf4-null HSCs showed normal colony formation in methylcellu-
lose cultures and hematologic reconstitution of cytoablated
recipient mice [70], the role of KLF4 in adult bone marrow HSCs
has not been investigated. Further supporting a potential role
of KLF4 in adult HSCs, loss of the cell fate determinant lethal
giant larvae homolog 1 increases self-renewal, resulting in ele-
vated numbers of HSCs and a competitive advantage after
transplantation that is associated with KLF4 repression [41]. This
finding suggests that inactivation of KLF4 might contribute to
the regulation of self-renewal in adult HSC and warrants the
study of KLF4 using somatic gene deletion.

ROLE OF KLF4 IN LEUKEMIC STEM CELLS

KLF4 in Cancer

KLF4 can behave as a tumor suppressor and an oncogene in a
cell context-dependent manner because of its dual properties
as activator and repressor of gene expression. For example,
KLF4 has a tumor suppressor function in the gastrointestinal
tract, whereas in breast cancer KLF4 has oncogenic proper-
ties [76, 77]. The potential mechanisms of KLF4 duality in
solid-tumor carcinogenesis have been reviewed and depend
on multiple factors, such as cell cycle status (expression of p21
and p53), presence of coactivators or corepressors, chromatin
accessibility, the epigenome, regulation of oncogenic pathways
(e.g., WNT, RAS, TGFβ, and NOTCH1), and interplay with onco-
genic drivers [76–79]. In contrast to solid tumors, the role of
KLF4 in hematological malignancies has not been well-studied,
in large part because in the genomic era, no widespread
genetic alterations (mutations, chromosomal translocations)
have been found in patients, although epigenetic regulation of
tumor suppressors and oncogenes also contributes to the leu-
kemogenic process. At least two inactivating mutations of
KLF4 have been identified in childhood acute lymphoblastic
leukemia (ALL), both in the 3 prime untranslated region, abol-
ishing a miR-2909 regulatory domain and a zinc-finger motif;
the latter inactivates its DNA-binding capacity [80]. However,
most of the role of KLF4 in cancer appears to be mediated
through epigenetic or post-transcriptional gene inactivation.
Low levels of KLF4 transcript have been detected in AML, B-
cell non-Hodgkin and Hodgkin lymphomas, multiple myeloma,
and T-cell ALL (T-ALL), suggesting potential tumor-suppressive
properties [81–84]. Our group and others found that KLF4 gene
expression is silenced by promoter hypermethylation in B-cell
lymphomas and T-ALL [81, 82]. In addition to CpG methylation,
downregulation of KLF4 is associated with deregulation of micro-
RNAs such as miR-10a and miR-10b, and the transcriptional
repression of KLF4 by CDX2 in AML is associated with inhibition
of PPARγ signaling [84–86]. Conversely, when human CD34+ cells
are transduced with ZMYM2-FGFR, the fusion protein product of
the t(8;13)(p11;q12) chromosomal translocation found in myelo-
proliferative neoplasm, and transplanted into NSG mice, the
mice display elevated KLF4, suggesting a potential oncogenic
function [87]. In contrast, AML patients with a low level of
HDAC1, which is negatively correlated with KLF4 level, exhibit

better prognosis [88]. More recently, KLF4 expression has been
identified in resistant clones in chronic lymphocytic leukemia
evaluated by performing single-cell RNA sequencing during diag-
nosis, treatment, and relapse [89]. Therefore, KLF4 may be
involved in the emergence of aggressive leukemic clones during
clonal evolution. Collectively, these findings indicate that KLF4
likely regulates the maintenance of LSCs in leukemia.

KLF4 in Leukemia Stem/Initiating Cells

LSCs and leukemia-initiating cells (LICs) are rare populations
considered leukemia reservoirs, because they can survive che-
motherapy and induce relapses and therefore are considered
important targets for the development of curative therapies.
In stem cell leukemias, LSCs are generated by transformation
of a single HSC with a genetic driver mutation that retains the
self-renewal property (e.g., chronic myeloid leukemia), whereas
LICs are originated by transformation of HPCs that are devoid of
self-renewal capacity, and therefore their transformation must
be accompanied by acquisition of self-renewal (Fig. 2). The
study of the molecular regulation that maintains LSCs/LICs has
the main goal of uncovering potential targets for therapy and
involves testing the ability of enriched populations to initiate dis-
ease after transplantation into secondary wild-type mice, which
is the gold-standard assay to evaluate self-renewal capacity.

Research on the role of KLF4 in the maintenance of malignant
HSCs has not been actively pursued despite mounting evidence
supporting a potential function in the regulation of self-renewal
in LSCs or LICs. We recently reported that loss of KLF4 promotes
activation of a kinase pathway that drives expansion of LICs in
pediatric patients suffering from T-ALL, a lethal blood cancer.
Despite significant improvements in the management of children
with T-ALL through risk-adaptive therapy, central nervous

Figure 2. Transformation of HSC/HPC and generation of LSC/LIC.
Genetic alterations (e.G., gene mutation, deletion, and translocation)
transform normal HSCs into LSCs, preserving the capacity of SR that
drives expansion of M in stem cell leukemia. In contrast, LICs feed-
ing L leukemias are generated by transformation of HPCs with acqui-
sition of SR. the roles of KLF4 in HSCs, LICs, and blood cells (Mo, NK,
DC, and T) are indicated. Abbreviations: ALL, acute lymphoblastic
leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leu-
kemia; DC, dendritic cell; HPC, hematopoietic progenitor cell; HSC,
hematopoietic stem cell; KLF, Krüppel-like factor; L, lymphoid; LIC,
leukemia-initiating cell; LSC, leukemia stem cell; M, myeloid cell;
Mo, monocytes; NK, natural killer; SR, self-renewal; T, T cell.
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system-directed chemotherapy, and supportive care, relapse
patients have a poor prognosis, and the rate of complete remis-
sion drops significantly in each marrow relapse [90]. The chemo-
resistance capacity of LICs in addition to their ability to self-renew
and induce relapses has made this rare population a target of
multiple studies aimed at the development of targeted therapy
that is not available yet for T-ALL or any other leukemia [91–95].
Inactivation of KLF4 by somatic gene deletion in mouse models
accelerates the development of NOTCH1-induced leukemia by
enhancing the G1-to-S transition in leukemic cells and promot-
ing the expansion of LICs (Fig. 3) [96]. An analysis of global gene
expression and genome-wide binding of KLF4 in murine T-ALL cells
revealed that KLF4 represses the gene encoding the dual-specificity
mitogen-activated protein kinase kinase 7 (MAP2K7) (Fig. 3). In
contrast to ESCs, a network of KLF proteins was not identified in
T-ALL LICs. MAP2K7 is part of a three-tiered signaling unit consist-
ing of upstream MAP3K and downstream MAPK, held together by
a scaffolding protein known as c-Jun N-terminal kinases (JNK)-
interacting protein, and although the kinase upstream of MAP2K7
has not been identified, particularly in leukemic T cells, the only
known downstream substrate of MAP2K7 is JNK [97]. JNK activa-
tion in turn phosphorylates the final effectors of this pathway,
ATF2 and c-Jun, which are involved in the control of cellular prolif-
eration and believed to fuel expansion of LICs. Strikingly, patients
exhibit low levels of KLF4 that was associated with hypermethyla-
tion of the KLF4 promoter and aberrant activation of the MAP2K7
pathway, similar to T-ALL mice deficient in KLF4, because normally
KLF4 represses the MAP2K7 gene [96]. The inactivation of KLF4
across pediatric T-ALL patients and the frequency of NOTCH1
mutations (approximately 50%) suggest that MAP2K7 activation is
likely independent of the driver mutation used to induce T-ALL in
mice. The fact that deletion of KLF4 results in upregulation of both
total and phosphorylated MAP2K7 led to the hypothesis that
either leukemic cells exhibit basal activation of this pathway or
KLF4 somehow additionally represses MAP2K7 activation. Because
KLF4-deficient T-ALL mice show an increased frequency of LICs,
defined as CD4− CD8− CD25+ IL7Rα+ and CD25+ c-Myc+ leukemic
cells, which was confirmed by limiting-dose transplantation of leuke-
mic bone marrow cells, it is possible that inhibition of the MAP2K7
pathway can target the LIC population in high-risk T-ALL patients. As
a proof of concept, pharmacological inhibition of JNK in T-ALL cells

with the CC401 and AS602801 compounds showed significant
reduction in the leukemia burden in cell line-based xenograft and
patient-derived xenograft models [96]. However, JNK inhibitors
show low potency, with antileukemic properties in the micromo-
lar range, and thus one current focus is on the identification of
more potent and specific MAP2K7 inhibitors.

CONCLUDING REMARKS

Despite a vast literature describing the role of KLF4 in the self-
renewal of ESCs, the function of KLF4 in normal and malignant
HSCs is less well-known. This review provides evidence that
KLF4 regulates hematopoiesis and self-renewal of T-ALL LICs
through repression of the MAP2K7 pathway and does not
involve a KLF circuitry as in ESCs or direct regulation of the cell
cycle by KLF4 as seen in solid tumors. A broader knowledge of
KLF4 function in blood stem/progenitor cells is necessary to
understand the leukemogenic process and how leukemia is
driven during treatment and relapses.
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