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SUMMARY
Artificial intelligence (AI) algorithms are being applied across a large spectrum of everyday life activities. The
implementation of AI algorithms in clinical practice has been met with some skepticism and concern, mainly
because of the uneasiness that stems, in part, from a lack of understanding of how AI operates, together with
the role of physicians and patients in the decision-making process; uncertainties regarding the reliability of
the data and the outcomes; as well as concerns regarding the transparency, accountability, liability, handling
of personal data, and monitoring and system upgrades. In this viewpoint, we take these issues into consid-
eration and offer an integrated regulatory framework to AI developers, clinicians, researchers, and regulators,
aiming to facilitate the adoption of AI that rests within the FDA’s pathway, in research, development, and clin-
ical medicine.
INTRODUCTION

Artificial intelligence (AI) algorithms are being applied across a

large spectrum of everyday life activities.1 Some of the most pop-

ular applications are in navigation, where they can predict traffic

delays; language translation in real-time using cameras; social

media applications, which help people discover new content of

personal value or interest; facial recognition; movie recommenda-

tions; email spam and malware filtering; online customer support;

and many others.

By contrast, augmented intelligence algorithms—that is, intel-

ligence that augments human cognition but does not replace hu-

man labor—is also being applied to different aspects of medi-

cine.2,3 Notable examples of these applications include early

disease detection,4,5 improvement of diagnosis accuracy,6–9

identification of new physiological observations or patterns,10

development of personalized diagnostics and/or therapeutic ap-

proaches,11,12 and the detection of bias in clinical trials12, among

others.

Despite the inclusion and benefits of augmented intelligence in

healthcare, early adoption has been met with some skeptisicm

and concern. The uneasiness stems in part from the lack of un-

derstanding of how augmented intelligence operates, together

with the role of physicians and patients in the decision-making

process;13 uncertainties regarding the reliability of the data and

the outcomes;13 as well as concerns regarding the transpar-
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ency,14 accountability,14 liability,15 handling of personal data,

and monitoring and system upgrades16–18.

Here, we take these issues into consideration and offer an in-

tegrated regulatory framework to augmented intelligence devel-

opers, clinicians, researchers, and regulators, aiming to facilitate

the adoption of augmented intelligence in research, develop-

ment, and clinical medicine.19

Critical issues pertaining to the use of augmented
intelligence algorithms in medicine
AI-based technologies have the potential to transform health-

care by deriving new and important insights from the vast

amount of data that can now be analyzed, managed, and orga-

nized. The ability of augmented intelligence to learn (train) contin-

uously and improve performance (refinement/adaptation)

uniquely positions this technology as software that constitutes

a rapidly expanding area of research and development.

The International Medical Device Regulators’ Forum

(IMDRF) defines8 ‘‘software as a medical device (SaMD)’’ as

software intended to be used for one or more medical

purposes without being part of medical device hardware.20

The Food and Drug Administration (FDA) has made signifi-

cant strides in developing policies that are appropriately

tailored for SaMD to ensure that safe and effective technol-

ogy reaches users, including patients and healthcare

professionals.18
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Table 1. Clinical challenges associated with the implementation

of the augmented intelligence algorithms in clinical practice

Clinical challenges

Problem identification

Oversight and regulation

Interpretability

Clinical staff education

Performance assessment

Patient engagement and access

Accountability
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Manufacturers need to submit a marketing application to the

FDA prior to initial distribution of a medical device. Medical de-

vices are classified into three distinct classes according to the

device’s risk to the patient. Low-risk devices are classified as

class I, while high-risk devices are classified as class III. The pro-

cess that is followed before a medical device gets to the market

is dependent on the risk category that the product belongs. For

example, Class II products require FDA clearance but not FDA

approval before going to the market. FDA clearance means

that the device has undergone a 510(k) submission, which FDA

has reviewed and provided clearance. In other words, the manu-

facturer can demonstrate that the product is ‘‘substantially

equivalent’’ to another similar device that has already been

approved, and the FDA has not taken any other activity toward

the device. On the other hand, high-risk products require FDA

approval, which means that manufacturers need to submit a

premarket approval application and clinical testing results in

order to get an approval. It should be noted that ML software

is FDA cleared but not approved. For changes in design that

are specific to software that has been reviewed and cleared un-

der a 510(k) notification, the FDA’s Center for Devices and

Radiological Health (CDRH) has published guidance21 that de-

scribes a risk-based approach to assist in determining when a

premarket submission is required.22

In China, the ‘New Generation Artificial Intelligence Develop-

ment Plan’’ was released byChina’s State Council in 2017, giving

emphasis on transparency, privacy, accountability, and respect

for humanwelfare.23 The European commission published a reg-

ulatory framework proposal for high-risk AI systems only, while

non-high-risk AI systems should follow a code of conduct. In

the European’s commission proposal, prohibited AI practices

are described mainly to prevent physical or psychological

harm. Interestingly, in the European’s commission proposal, AI

tools must be effectively overseen by natural persons.24 On the

other hand, the UK has released a seven-point framework perti-

nent to the use of AI, which includes: (1) avoidance of any unin-

tended outcomes or consequences, (2) delivery of fair services

to the users, (3) accountability issues, (4) data safety and protec-

tion of the citizens’ interests, (5) information for the users and cit-

izens about the potential impact of AI in their life, (6) compliance

with the law, and (7) continuously monitoring the algorithm or

system.25

Accordingly, common data structures such as the Informatics

for Integrating Biology and the Bedside (i2b2), Patient-Centered

Clinical Research Network (PCORNet), Observational Medical

Outcomes Partnership (OMOP), and Sentinel, aim to format,

clean, harmonize, and standardize data for subsequent use of

AI algorithm training.26 Some of these common data structures

have an international presence and focus, which may contribute

to increased diversity and reduced bias, and it may also promote

AI algorithm transparency, reproducibility, and compatibility

assessment across countries.27

Finally, in order that semantic meaning to be accurately added

to data structure representations across countries, common

data models such as the Logical Observation Identifiers Names

and Codes, the International Classification of Diseases, Tenth

Revision, Clinical Modification (ICD-10-CM), should be em-

ployed to increase data and algorithm interoperability.
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Physician involvement in the decision-making process
The transition frompaper to electronicmedical records allowed us

to leverage the electronicmedical record data safely and securely

in a timely manner, and to to enable better communication be-

tween patient and physician. Furthermore, it is possible, that

augmented intelligence based on sound data, and with the inclu-

sion of checks and balances, may aid clinicians in the decision-

making process, especially when conventional approaches

cannot be applied safely with the greatest confidence. In that

context, the implementation of augmented intelligence algorithms

may be accepted with less skepticism in areas where clinical de-

cisions are controversial or where decisions based only on clinical

judgment are precarious. Subsequently, as with any other tech-

nology or product, the more augmented intelligence models

demonstrate their ability to perform their intended tasks accu-

rately, the less the interpretability of the negatively biased ‘‘black

box’’ concept will be an issue, and the more prevailing their adop-

tion will be, irrespective of whether or not a physician will eventu-

ally choose to adhere to their findings and/or recommendations.

On the other hand, if society (i.e., regulators, clinicians, and

patients) expects clinical augmented intelligence algorithms to

be fully interpretable, it is possible that it would restrict the ability

of augmented intelligence developers to use state-of-the-art

augmented intelligence technologies that are not fully interpret-

able, yet perform better than older augmented intelligence tech-

nologies that are more interpretable. Thus, regulatory oversight

should take into consideration the balance of interpretability

and performance (Table 1).
Reliability, accountability, and liability
Reliability

Reliability constitutes the cornerstone of successful implemen-

tation of augmented intelligence algorithms in clinical practice.

Three steps need to be considered for achieving a reliable

augmented intelligence algorithm: (1) construction of efficient al-

gorithms that are constantly refined and modified with new data;

(2) construction of a framework for achieving real-time reliability

monitoring, and identification of potential failures and their

cause; and (3) capability for rapid and efficient correction of po-

tential failure (Table 2). The performance of an augmented intel-

ligence algorithm should first be tested and compared with the

existing systems (clinical scores, etc.) by conducting a random-

ized clinical trial.28



Table 2. Developer challenges involving the implementation of

augmented intelligence algorithms in clinical practice

Developer challenges

Use state-of-the-art algorithms

Capacity to intervene

Risk failures/adverse events

Data reliability

Acceptable accuracy

Interpretability

Accountability

Liability

User education

Table 3. Main components of the augmented intelligence

regulatory framework in clinical practice

Regulatory challenges

Oversight and regulation

Safety and efficacy surveillance

Accountability

Liability

Equity and inclusion

Transparency

Data

Algorithm

Architecture

Explainability

Education

Patient engagement

Cybersecurity and privacy

Ethics and fairness

Financial incentives
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To develop trust in the utilization of augmented intelligence al-

gorithms in healthcare, stakeholders must aim on reproducibility

of outcomes.29 However, since AI algorithm outcome reproduc-

ibility should not impingeonprogress in that area, it is unlikely that

a requirement may be applied whereby a third party should be

able to obtain the same results by using the same data, models,

and code (software packages, libraries and software products),

as data may not be available without proper institutional pa-

tient-privacy safeguards, and code sharing may not be feasible

as commercial entities view their code asproprietary information.

The efficacy of augmented intelligence algorithms should be

‘‘labeled’’ by the FDA with respect to the subject populations

that have been evaluated. As new patient groups are studied—

thereby reducing sample bias—such descriptions should be

entered into the augmented intelligence algorithm label. It should

be recognized, however, that deterioration of algorithm perfor-

mancemayoccur as a consequence of natural evolution of clinical

environments resulting from changes in the demographics of the

treated patients or updated clinical practice evidence and

outcomes.30

Accountability

As with other technologies and/or products, the implementation

of augmented intelligence algorithms in clinical practice is ex-

pected to consist of distinct components with distinct responsi-

bilities (Tables 1–3). The source organization has the responsibil-

ity (1) for the quality and efficacy of the produced augmented

intelligence algorithm, considering the indications and adverse

effects of its use; and (2) to provide adequate training to both

physicians and personnel who will handle a specific augmented

intelligence algorithm. Physicians should be responsible for the

adequacy of their training in using augmented intelligence algo-

rithms, as well for the proper use of these algorithms according

to the FDA-approved indications and the current evidence-

based practice. Complete understanding of the complex nature

of augmented intelligence algorithms’ function is not necessary

for accountability. For example, the complex mechanisms of a

specific action of a drug may not be fully understood; yet physi-

cians may use this drug according to its labeling owing to its

observed beneficial actions.

Overall, the clinical effectiveness and safety of high-risk

augmented intelligence algorithms, from either a non-inferiority

or superiority viewpoint, are of particular significance even
when other parameters, such as the user experience, are taken

into consideration. It is likely that high-risk augmented intelli-

gence algorithms will necessitate both a higher level of evidence

from more rigorous studies, as well as an increased level of

monitoring after implementation. By contrast, for low-risk

augmented intelligence algorithms, evaluation may simply

need to focus on metrics involving the algorithms’ use in order

to measure their positive/negative effects and experience.

Liability

Monitoring liability among augmented intelligence algorithm

users (i.e., physicians) is crucial when assessing risks and bene-

fits. Regulators must engage all stakeholders (AI developers, cli-

nicians, and researchers) in order to evaluate augmented intelli-

gence algorithms continuously for their safety and effectiveness.

An organization that proves that the designed augmented in-

telligence algorithm is effective and safe for the specific purpose

for which it was developed should file an application with the

FDA to allow marketing of the algorithm. After approval, there

will be postmarket safety monitoring similar to phase-IV drug

development evaluation. In this ongoing phase, if the use of

the algorithm results in potential adverse events/system failure,

it would be the responsibility of the augmented intelligence de-

velopers to report and investigate such outcomes. Therefore,

the critical issue of a physician’s professional liability in case of

an incorrect decision and a potentially harmful outcome15, as

with any other medical product, narrows down to a responsibility

to use such algorithm as ‘‘labeled,’’ whichminimizes liability con-

cerns (Table 3).
Equity and bias
The World Health Organization defines equity as the absence of

avoidable, unfair, or remediable differences among groups of

people, whether the groups are defined socially, economically,

demographically, or geographically.31 Health equity is met
Cell Reports Medicine 3, 100485, January 18, 2022 3
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when every citizen has a reasonable opportunity to achieve ac-

cess to fully available healthcare.

Yet, disparities inmorbidity andmortality between rural and ur-

ban community residents in the United States are well docu-

mented.32,33 Furthermore, a report by the Centers for Disease

Control and Prevention has pointed to disparities across racial/

ethnic populations within rural communities.34 Importantly, all

racial/ethnicminority populations are less likely thannon-Hispan-

ic whites to report having a personal healthcare provider in rural

areas.While all rural populations experience health issues, the is-

sues may differ by race/ethnicity.35–38 With such an inhomoge-

neous patient population receiving health care, it is apparent

that AI-based algorithms are liable to bias driven by data (i.e., in

this case, the nature of participating patient population).

In order that the aspiration for health equity be fulfilled, popu-

lation-representative datasets must be included in augmented

intelligence algorithm development; if not, the possible scaling

resulting from augmented intelligence may further exacerbate

potential existing inequities in health outcomes. Therefore, prior-

itizing in equity should be a noticeably articulated goal in health-

care-augmented intelligence algorithm development. Conse-

quently, augmented intelligence can aid the recognition of

geographical locations and/or population demographics where

high incidences of disease or high risk of behaviors exist. Na-

tional efforts should also focus on deployment of augmented in-

telligence algorithms in lower-resource and lower-income areas

with less-developed information technology capabilities.

Precision medicine employs augmented intelligence to provide

clinicians with tools that may help improve the understanding of

complex biological, behavioral, and environmental mechanisms

underlying a patient’s health, condition, or disease, and enable

the prediction of treatments that may be most appropriate for

that patient.39 Therefore, as scientific advances in augmented in-

telligence and precision medicine are expected to impact posi-

tively all population groups, research must include such diverse

populations as racial/ethnic minorities, societally structurally

disadvantaged population subgroups, sex and sexual-identitymi-

norities, people with different levels of functional ability, rural resi-

dents,aswell asothermarginalizedgroups;40–42 anddosowithout

conflating social identity constructs with biology and biological

determinism.Furthermore,asgeneticbackgroundanddifferences

in environmental factors (i.e., in the Americas, versus Europe,

Africa, or Asia, etc.) are expected to affect the performance of

augmented intelligence algorithms, population-representative

data have to be used during the research and development, as

well as the validation phase of the augmented intelligence algo-

rithms. One of the key components to ensuring the long-term suc-

cess of a precision medicine strategy is implementation science.

Implementation science is defined as the study and use of

methods aiming to promote the systematic uptake of research

findings and other evidence-based practices into routine practice,

thereby improving the quality and effectiveness of health services

among all people.43 In this regard, with appropriate consent,

augmented intelligence may link personal and public data toward

precision medicine implementation in health care.

Even at a point in time at which there have been marked gains

in terms of the detection of, and explanations for cardiovascular

health outcomes disparities, efforts to develop, implement, sus-
4 Cell Reports Medicine 3, 100485, January 18, 2022
tain, and evaluate interventions to reduce such disparities have

not produced the desired results.44,45 Conversely, while imple-

mentation science has made significant gains with the develop-

ment of frameworks, theories, strategies, and measures; major

gaps remain in the application of this knowledge towards a

decrease in disparities and the achievement of health equity,46

either because groups that include racial/ethnic minorities, rural

populations, sexual and sex-identity minorities, socioeconomi-

cally disadvantaged persons, and persons with disabilities

have not been adequately represented in clinical trials; or

because such groups were not under consideration when inter-

ventions and implementation strategies were planned and

effected.

Development of algorithm auditing processes that can recog-

nize a group (or even an individual) for which a decision may not

be reliable, can reduce the implications of such decision due to

bias.47 Consequently, health care–related augmented intelli-

gence algorithms have the capacity to influence confidence in

a health care system, particularly if these tools result for some

groups in worse outcomes, or increased inequities. Therefore,

ensuring at a national level that these tools address present ineq-

uities will require thoughtful planning that is not only driven by

profit, but also by indicators of health care costs, quality, and

access.

The ever-increasing use of augmented intelligence in devel-

oping new study designs and diagnostic and treatment frame-

works as well asmultistakeholder approaches in implementation

science are expected not only to reduce bias incrementally, de-

pending on data derived from the augmented intelligence algo-

rithms, but also to facilitate, if affordable, the improvement of ev-

idence-based interventions in disparity populations and thereby

promote health equity.48

Adverse event/system failure reporting
Some AI algorithms approved and deployed for clinical use may

be designed to continue to learn and refine their internal model.

This ongoing development of these systems increases the diffi-

culty of applying a regulatory framework. The clinical evaluation

of the SaMD by FDA includes three steps: (1) the presence of a

valid clinical association between the SaMD output and the tar-

geted clinical condition; (2) analytical validation that the input

data generate accurate, reliable, and precise output data; and,

finally, (3) clinical validation of whether the output data achieve

the intended use of SaMD in the targeted population.18

As with phase IV trials in drug development, postmarket sur-

veillance is required for SaMD. This is an important step that en-

sures the effectiveness and safety of an SaMD after its approval

for clinical use. Moreover, the postmarket surveillance not only

reduces the potential risk for the patients, but benefits themanu-

facturer by identifying areas in which to improve product quality.

Postmarket surveillance can be achieved by implementing the

following mechanisms: (1) customer surveys/complaints that

should be reported by the end users (physicians, clinical care

teams), (2) launch of user-friendly online platforms for reporting

any device-related deaths or serious adverse effects/malfunc-

tions, and (3) automatic diagnostic tools for identifying algorithm

malfunctions and transmission of the code error to the

manufacturing company.



Box 1. Software Pre-Certification Program goal

‘‘The goal of the program is to have tailored, pragmatic, and least

burdensome regulatory oversight that assesses organizations (large

and small) to establish trust that they have a culture of quality and orga-

nizational excellence such that they can develop high quality SaMD

products, leverages transparency of organizational excellence and

product performance across the entire lifecycle of SaMD, uses a

tailored streamlined premarket review, and leverages unique postmar-

ket opportunities available in software to verify the continued safety,

effectiveness, and performance of SaMD in the real world.

The Software Pre-Cert Program is intended to build stakeholder con-

fidence that participating organizations have demonstrated capabil-

ities to build, test, monitor, and proactively maintain and improve the

safety, efficacy, performance, and security of their medical device

software products, so that they meet or exceed existing FDA stan-

dards of safety and effectiveness.’’49
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Today, surveillance of the manufacturing companies by the

FDA is achieved by implementing the Case for Quality and Pre-

Cert programs (Box 1).49 The FDA has upgraded its role from a

regulatory agency to a collaborative industry partner by imple-

menting the Case for Quality program. Through this program,

the FDA is working with industry, health-care providers, patients,

payers, and investors to improve the quality of medical products

by transforming the emphasis from ‘‘regulatory compliance’’ to

‘‘focus on quality.’’50 It consists of three core components: (1)

focus on quality (promote manufacturers’ implementation of crit-

ical-to-quality practices during device design and production),

(2) enhancement of data transparency (device data can be

retrieved from https://open.fda.gov/), and (3) stakeholder

engagement (continued collaboration with stakeholders). The

Pre-Cert program aims to evaluate and monitor a software prod-

uct from its premarket development to postmarket performance

and, additionally, to demonstrate and verify the organization’s

excellence.51 Algorithm transparency may not be necessary in

all cases, and will, instead, depend upon regulatory agencies,

developers, and users to delineate collaboratively guidelines

aiming to determine the degree of transparency required across

a wide spectrum of risk of augmented intelligence algorithms in a

framework within which data, algorithms, and algorithm-perfor-

mance are reported separately.

Accordingly, the augmented intelligence manufacturing com-

pany is expected to implement a systematic process to collect

the information from any source of postmarket surveillance, to

assess the collected data in a proper way (continuous reassess-

ment of the benefit-risk analysis and assessment of the signifi-

cance of an increase in an adverse event), to communicate

directly with the end users, and to design service packs in cases

of malfunction that can be provided directly to the end users.

The adverse events/system failures should be managed by

augmented intelligence experts from the manufacturing com-

pany (Figure 1). Service packs will be provided as automatic up-

dates to resolve the existing issues. However, the FDA should be

informed about the system failure and the provided service

packs that can be categorized as low-, intermediate-, and

high-risk. The low-risk updates can be incorporated in the algo-

rithm without premarket review; the intermediate- and high-risk

updates are further tested before their approval for clinical use.

Enhanced postmarket surveillance may allow a more stream-

lined premarket review process of augmented intelligence algo-

rithms and more frequent product modification over time.52

Patient rights and protection of personal data
TheWhite House Precision Medicine Initiative, announced at the

2015 State of the Union address by President Obama, identified

patient engagement as a fundamental component for achieving

the promise of precision medicine. For effective patient engage-

ment, there are some common themes that emerge across

various resources that include the recognition of the importance

of integrity, trust, relationship building, and reciprocity.

As patients are encouraged to participate actively in the deci-

sion-making process and give informed consent before the im-

plementation of augmented intelligence algorithms (for diag-

nosis, risk stratification, appropriate treatment, etc.), different

instruments have been developed for assessing the implementa-
tion and quality of the informed consent process in clinical prac-

tice.53 Although theGeneral Data Protection Regulation provides

guidance regarding the processing of personal data in

augmented intelligence algorithms,14 a key determinant for

data integration is the lack of adequate regulatory processes

of the secondary use of otherwise routinely collected patient

data, as well as the complex interactions of augmented intelli-

gence algorithms with privacy concerns and privacy law,54

with many of the laws around data ownership and profitability

being country-specific and based on evolving cultural norms.

For example, today in the US, fully de-identified health care

data (although there is disagreement over what constitutes suf-

ficiently de-identified data) may also be used for other tasks

without the need of obtaining additional consent, a policy that

is not uniformly accepted internationally.

System upgrading
Another important aspect concerns the approach followed for

system manufacturer-initiated upgrading, especially in the

case of an urgent update. Regarding the locked algorithms

(same inputs lead to same outcomes), we propose that any

modification of an already approved algorithm should be exam-

ined by a regulatory committee regarding potential harmful out-

comes to the patients. If a modification is characterized as low-

risk for potential harmful outcomes, then it can be approved by

the FDA for immediate implementation in clinical practice. In

cases of intermediate- or high-risk updates for potential harmful

outcomes, the update should be further evaluated before its

approval for clinical use. Regarding adaptive algorithms (same

inputs lead to different outcomes before and after system up-

date), changes should be typically implemented and validated

through a well-defined and possibly fully automated process.

This process should consist of two stages—learning and updat-

ing.18 Specifically, the algorithm should learn how to change

from the addition of new cases (inputs) and then an update

should occur, which results in different outputs with the same in-

puts (compared to outputs before the update). In this case,

frequent real-world performance monitoring, as mentioned

above, should be implemented.

The system upgrades can: (1) modify the performance without

change to the intended use or new input type, (2) modify the
Cell Reports Medicine 3, 100485, January 18, 2022 5
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inputs without change to the intended use, or (3) modify the in-

tended use. In the first case, the modifications aim to improve

the performance of the algorithm by its retraining with a larger

dataset or by modifications in the algorithm; however, these

modifications do not change the intended use and can be

approved for immediate implementation in clinical practice.

The second type of modifications do not change the intended

use but the type and the number of input data. These modifica-

tions, after appropriate testing for their performance, should be

implemented in clinical practice followed by adequate training

of their users to achieve proper use. Finally, the third type of

modification that changes the intended use should pass all of

the premarket phases before the new-labeling approval.

Augmented intelligence manufacturers must be responsible for

the compatibility of the supporting devices, accessories, or

non-device components after any modification. Users should

be informed of the availability of upgrades with program notifica-

tions and e-mail alerts that will include adequate information

about the provided upgrade.

Cybersecurity
AI systems could be (and have been) a potential target for hack-

ing.55,56 This is amajor issue that should be thoroughly examined

and tested prior to the wide implementation of these systems in

clinical practice. Hacking could lead to wrong decisions, which

may be harmful to patients. As a result, cybersecurity for

augmented intelligence algorithms should be a priority for sour-

ces of anti-malware software that should have the ability to

receive automatic updates.

In particular, cloud computing that allocates assets broadly

across locations and often in multiple countries remains, for

the most part, a challenging matter since it may result in serious

cybersecurity breaches as augmented intelligence developers

attempt to uphold compliance across many diverse local, na-

tional,57 and international laws and regulations.58

Conclusions
At organizations that range from universities to small/large cor-

porations, scientists and physicians use augmented intelligence

algorithms to guide the development of precision treatments for

complex diseases59 by aiming to extract from increasingly
6 Cell Reports Medicine 3, 100485, January 18, 2022
massive datasets knowledge of what makes individual patients

healthy. Augmented intelligence algorithms have the capability

not only to improve current clinical decision support methodolo-

gies, but also to empower a broad range of innovations with the

potential to disrupt health care. Augmented intelligence algo-

rithms are expected to change health care delivery to a lesser

degree by replacing physicians, butmostly by supporting or aug-

menting physicians’ work. Augmented intelligence is expected

to support less-trained physicians in performing tasks that are

presently referred to specialists, or to filter out noncomplex

cases such that specialists will be able to focus on more chal-

lenging cases. Augmented intelligence algorithms are also ex-

pected to facilitate screening and evaluation in areas with

restricted access to medical expertise.

For the successful deployment of augmented intelligence ap-

plications, an effective information technology governance is

required. For objective governance, a neutral agency within ex-

isting governmental or nongovernmental structures that is sup-

ported by all stakeholders could manage the review of health-

care-related augmented intelligence algorithms while guarding

developers’ intellectual property and patient privacy rights.

Also, the clinical benefit of augmented intelligence algorithms,

manifested by improvement of patient outcomes and/or

decrease of medical costs, will be also assessed by relevant

stakeholders (i.e., hospital administrators, insurers, physicians,

patients, etc). Looking forward, in order that a healthy health-

care augmented intelligence application growth gets cultivated,

there will be a need for a comprehensive review, evaluation, and

growth of germane, professional health education focused on

health care, medicine, data sciences, AI, and ethics.

Effective data standardization, harmonization, as well as data

quality assessment methodologies are likely to enhance interop-

erability, and will be critical across all layers of a health care sys-

tem, or even between different health care systems.18,24 While

government initiatives in the US18 and Europe24 attempt to guide

the health care community toward an apparent interoperability,

such efforts have not yet been met with widespread acceptance

and use. Ultimately, for augmented intelligence algorithms to be

trusted, the semantics and the methods used to generate the

data used in deriving these algorithms must be transparent,

and available, for external validation. However, the conflation

of algorithm and data transparency complicates the evolution

of the augmented intelligence ecosystem; therefore, in this view-

point, we propose a clear separation of these topics.

While periods of unbridled enthusiasm can promote general

societal interest in the short term, they may inadvertently hinder

progress when disillusionment mounts from unmet expecta-

tions. Thus, the greatest near-term risk in applying augmented

intelligence algorithms in medicine is that it cannot meet the

improbable expectations created by such publicity. Accurate

augmented intelligence–algorithm performance will allow hu-

mans to begin to trust its performance and will progressively

require less transparency.

In conclusion, beyond fear andmystery pertaining to the use of

augmented intelligence in health care, the prudent and sensible

growth of health-care-related augmented intelligence is ex-

pected to involve all stakeholders, and be guided by a stepwise

approach and the necessity to serve every patient.
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