
sensors

Article

Task Offloading Based on Lyapunov Optimization for
MEC-Assisted Vehicular Platooning Networks

Taiping Cui 1,2,* , Yuyu Hu 1,2,* , Bin Shen 1,2 and Qianbin Chen 2

1 School of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Nan-An District, Chongqing 400065, China; shenbin@cqupt.edu.cn

2 Chongqing Key Labs of Mobile Communications, Chongqing 400065, China; chenqb@cqupt.edu.cn
* Correspondence: cuitp@cqupt.edu.cn (T.C.); huyuyu0610@foxmail.com (Y.H.); Tel.: +86-187-1628-5097 (T.C.)

Received: 24 August 2019; Accepted: 12 November 2019; Published: 15 November 2019
����������
�������

Abstract: Due to limited computation resources of a vehicle terminal, it is impossible to meet the
demands of some applications and services, especially for computation-intensive types, which not
only results in computation burden and delay, but also consumes more energy. Mobile edge
computing (MEC) is an emerging architecture in which computation and storage services are extended
to the edge of a network, which is an advanced technology to support multiple applications and
services that requires ultra-low latency. In this paper, a task offloading approach for an MEC-assisted
vehicle platooning is proposed, where the Lyapunov optimization algorithm is employed to solve
the optimization problem under the condition of stability of task queues. The proposed approach
dynamically adjusts the offloading decisions for all tasks according to data parameters of current
task, and judge whether it is executed locally, in other platooning member or at an MEC server.
The simulation results show that the proposed algorithm can effectively reduce energy consumption
of task execution and greatly improve the offloading efficiency compared with the shortest queue
waiting time algorithm and the full offloading to an MEC algorithm.

Keywords: mobile edge computing; vehicular platooning; task offloading; Lyapunov optimization

1. Introduction

In several typical application scenarios under the fifth-generation (5G) cellular networks, the huge
number of intelligent vehicles (2.8 billion) will be a question worth pondering by 2020 [1]. In the
3rd Generation Partnership Project Technical (3GPP) Report [2], 27 use cases of vehicle-to-everything
(V2X)were proposed to intend to help drivers in avoiding or mitigating rear-end vehicle collisions
in the forward path of travel. Different V2X scenarios require the transport of V2X messages with
different performance requirements for the 3GPP system. The Technical Specification [3] specifies
service requirements to enhance 3GPP support for V2X scenarios in five areas and vehicle platooning is
one of the areas. Platooning, as a vehicular traffic management strategy, is a key step for autonomous
driving in intelligent transportation systems (ITS). In general, the platooning consists of two types of
members: one is the leader (commander) and the other is the member of platooning (including the
relay vehicle and tail vehicle) [4]. Vehicles in platooning run on the same driveway, and the distances
between vehicles are approximately the same. In platooning, vehicles use virtual strings to connect
adjacent vehicles and control them by updating real-time motion data (such as the driving distance
between vehicles and speed). Most vehicle-related tasks, such as automatic drive, 3D navigation,
voice processing, traffic information system, etc, are typically computation-intensive tasks that require
more computing resources and energy to process [5].

Generally, vehicles have limited computing resources and battery lifetime, bringing great
challenges at effectively addressing these computation-intensive mobile applications. A solution

Sensors 2019, 19, 4974; doi:10.3390/s19224974 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5762-1516
https://orcid.org/0000-0003-0282-5228
http://dx.doi.org/10.3390/s19224974
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/22/4974?type=check_update&version=2

Sensors 2019, 19, 4974 2 of 15

based on cloud computing is proposed by the academic community, where the computation data are
transmitted to a remote cloud center for execution [6]. However, if such typical computation-intensive
tasks are transferred to a remote cloud center, the transmission delay may not be able to
meet the requirement of ultra-low delay for vehicular applications and services. The European
Telecommunications Standards Institute (ETSI) has proposed a promising paradigm-mobile edge
computing (MEC) [7,8], which is an advanced technology to support multiple applications and
services that requires ultra-low latency. In an MEC-assisted vehicular network, a mobile application
can be executed on the vehicle itself (local execution) or offloaded to an MEC server (edge execution)
for processing. Because of the short distance between an MEC server and a vehicle, the MEC paradigm
provides high bandwidth, low latency, and computational agility in computation offloading [9].

In this paper, we consider a platooning with an MEC-assisted server to execute computing tasks of
vehicle terminals. An optimal offloading decision is investigated among the members of the platooning
and MEC server to minimize the average total energy consumption at each time within the tasks’
execution deadlines. Mathematically, the classical Lyapunov algorithm is adopted to simplify the
research objective. Then, a sub-optimal solution of the simplified problem is obtained by a greedy
algorithm. The simulation results show that the proposed algorithm can effectively reduce the energy
consumption of task execution and greatly improve the offloading efficiency of vehicles compared
with the shortest queue waiting time algorithm and the full offloading to an MEC algorithm.

The rest of this paper is organized as follows. We review related work in Section 2. In Section 3,
we present the system model. In Section 4, we describe the formulation of our optimization problem.
A solution is provided in Section 5. Section 6 shows the simulation results, and Section 7 concludes
the paper.

2. Related Work

Since the concept of MEC was proposed, experts and scholars have conducted in-depth research on
it [10]. The key technologies of MEC mainly include task offloading technology, wireless data caching
technology, and local offloading technology based on a software-defined network (SDN), among
which MEC offloading technology is an important approach for the MEC system to realize real-time
processing of terminal services [11]. Currently, task offloading assisted by MEC has been attracted
by a lot of researchers. Among this research, energy consumption is one of the most concerned
issues. Researchers consider maximum delay, computing resources, channel resources, power
allocation, interference, etc. as optimization constraints, to minimize energy consumption [12–15],
to minimize cost [16–18], or to maximize server revenue [19–21], etc. References [12,14–16] aimed at
reducing the energy consumption of MEC system. The authors in [12,14] jointly optimized offloading
decisions, wireless resource allocation, and computation resource allocation, for which [12] designed a
heuristic scheme to minimize energy consumption of mobile devices. In [13], Zhao et al. proposed a
branched-bound (RLTBB) method based on linearization technology to obtain the minimum energy
consumption, which can obtain the optimal or sub-optimal results by solving the precision. The authors
considered the trade-off between energy consumption and delay, and proposed a power minimization
problem based on the stability constraint of the task buffer [14]. In [15], an efficient and energy-saving
offloading decision algorithm based on Lyapunov optimization was proposed, which could minimize
the average energy consumption of mobile devices under the premise of satisfying the delay constraint.
In addition, a Lyapunov algorithm can significantly reduce energy consumption at the expense of only
a small portion of response time compared to local and remote execution, and it can not only optimize
the energy more effectively, but also reduce the computational complexity compared with Lagrangian
relaxation algorithm.

The vehicle platooning were investigated in [5,22,23]. In [5], Wang et al. proposed a platoon
communication mode based on D2D technology to improve the stability and efficiency of vehicle
platooning with limited spectrum resources. In addition, then, a two-stage platoon formation algorithm
based on platoon leader evaluation mechanism was proposed to form stable platoons. Several key

Sensors 2019, 19, 4974 3 of 15

issues need to be solved in the coordinated adaptive cruise control of human and autonomous
driving, such as the difficulty to adaptively control the vehicle speed and distance adjacent vehicles.
In the solving of these problems, the author [22] proposed a collaborative adaptive driving vehicle
cloud computing method based on mobile edge computing, which effectively avoids the shock wave
generated when driving in a platoon. The authors investigated a task offloading approach for an
MEC-assisted vehicle platooning, where the Lyapunov optimization algorithm is employed for solving
the optimization problem under the condition of stability of task queues [24]. In [23], Fan et al. studied
the offloading decision of cooperative processing tasks between platooning and the MEC server.
The authors transformed the task decision-making problem with minimum cost into the shortest path
problem, and uses the Lagrange relaxation algorithm to solve the problem approximately.

Thus far, there is still a lack of research on how to offload tasks on vehicle platooning.
An MEC-assisted vehicle platooning is investigated, and each vehicle member has the ability to
handle other offloading tasks. The optimal offloading strategy is achieved through the Lyapunov
optimization algorithm to minimize the average total energy consumption each time. The contributions
of this paper are summarized as follows:

• The problem of task offloading optimization is modeled as a minimum average total energy
consumption each time by combining each member in platooning with the MEC server.

• To meet the requirements of the execution deadline and energy consumption, an optimization
algorithm based on Lyapunov function is proposed, and a greedy algorithm is adopted to
approximate the sub-optimal decision.

• The proposed algorithm can significantly reduce the energy consumption of platooning members
(PMs) compared with the shortest queue waiting time algorithm and the full offloading to an
MEC algorithm.

3. System Model

In this section, we first present a system model, including the task offloading scenario,
task offloading system model and task offloading queue model. Then, the communication model and
computation model are provided. The key notations used in this paper are summarized in Table 1.

Table 1. Summary of key notations.

Notation Definition
m PM ID
k Node ID, including MEC server
t Time t

M The number of PM
Qk(t) Queue k of vehicle or MEC in time t
Am(t) Workload of PM m in time t
bk(t) The size of task that arrives at queue k in time t

fk Computation capability of computing node k
Dm(t) Input data of PM m at time t
Bm,k transmission rate between PM m and node k

Tk
m(t) Execution time of task m on node k

Ek
m(t) Energy consumption of task m on node k
lm,o Positional distance between vehicle m and BS
lm,n Positional distance between vehicles
w1 Transmission bandwidth between vehicles
w2 Transmission bandwidth between vehicle and BS
V A weight control parameter
Ptr Data transmission power of vehicle
Pc Computation power of vehicle
Pi Idle power of vehicles
N0 Noise power

Sensors 2019, 19, 4974 4 of 15

3.1. Task Offloading Model

Figure 1 depicts the task offloading scenario in this paper, where vehicle-to-vehicle (V2V)
communication is adopted between vehicles, and vehicle-to-infrastructure (V2I) communication
is adopted between vehicle and base station (BS) [25,26]. A cellular network can provide sufficiently
stable/reliable wireless communication for V2V and V2I communication. In three application scenarios
under the 5G cellular network, URLLC (Ultra-Reliable and Low Latency Communications) not only
guarantees ultra-low transmission delay, but also guarantees ultra-reliability transmission [27]. Without
loss of generality, it is assumed that the entire platooning is covered by a cellular network, and all PMs
and MEC can directly communicate in pairs. There are M PMs in the platooning. Starting from the
driving direction of the platooning, the first member is defined as 1, and then the serial numbers of
other PMs increase consecutively. An MEC server is deployed with a BS via wired connection [28–31].
If a vehicle sends information to an MEC server, it first should send information to BS through V2I,
and then forward to the MEC server through wired transmission.

V2V Communication

V2I Communication

mM

MEC server

BS
Wired connection

Core

Network

Figure 1. Task offloading scenario.

Figure 2 illustrates the task offloading system model. The task requester in platooning is denoted
as m ∈ {1, 2, ..., M}, and the computation node of the task is denoted as k ∈ {0, 1, ..., M}, in which 0
represents the MEC server. Bm,k is the transmission rate between PM m and computation node k. When
m = k, the task is executed at the local m. Due to the fast transmission rate of wired transmission and
the co-existing deployment between the BS and MEC server, the wired transmission time is ignored in
this paper [28].

PM 1

Requestor

(PM m)

Wired transmission

MEC serverBS

PM M

Figure 2. Task offloading system model.

All vehicles in platooning will generate a computation task in each time interval, that is, all PMs
are task requesters. Notice that there are a total of M PMs in platooning. Thus, each PM has a total of

Sensors 2019, 19, 4974 5 of 15

M+ 1 computation nodes, namely M PMs and an MEC server. In addition, the time of offloading task is
discretized, and time t is to represent the execution slot of the task. Then, the offloading member should
transfer the offloading tasks to other PMs or the MEC server for execution through V2V or V2I. The task
offloading queue model is shown in Figure 3, where Qk(t) ∈ {Q0(t), Q1(t), ..., QM(t)} represents the
length of task queue k at time t. The task load arrived at PM m in time t is Am(t), which is expressed
by the number of CPU cycles required to execute the task. Am(t) ∈ {A1(t), A2(t), ..., AM(t)} follows
Poisson distribution with mean f{Am(t)} = λm, and satisfies independent identical distribution.
bk(t) ∈ {b0(t), b1(t), ..., bM(t)} represents the task computation workload that arrives at queue k after
offloading decision at time t. For instance, when PM 1 and PM 2 decide to offload the task to MEC
server at time t, b0(t) = A1(t) + A2(t) can be obtained. Each vehicle can provide a certain amount of
computation resources [28,32,33], and fk ∈ { f0, f1, ..., fM} represents the computation capacity (i.e.,
CPU cycles per second) provided by the computation node k in each time interval.

Application tasks

Offloading

decision

PM 1

MEC

Server
Completed

PM 1

PM 2

PM M

PM M

AM(t)

A2(t)

A1(t)

Bm,0

Bm,1

Bm,M QM(t)

Q1(t)

Q0(t)

fM

f1

f0

b1(t)

Figure 3. Task offloading queue model.

3.2. Communication Model

In this vehicular network, the path loss models between vehicles [34] and between vehicle and
BS [35] are computed by

PL(lm,k) =

{
63.3 + 17.7lg(lm,k) k 6= 0,

128.1 + 37.5lg(lm,k) k = 0,
(1)

where lm,k represents the distance between vehicle m and computation node k. Then, the corresponding
data transmission rate can be calculated by

Bm,k(t) =

w1log2(1 +
ζvPL(lm,k)

N0
) k 6= 0,

w2log2(1 +
ζgPL(lm,k)

N0
) k = 0,

(2)

where w1 and w2 are the transmission bandwidths between vehicles and between vehicle and BS,
respectively. N0 is the noise power, ζv and ζg are the transmission power of PM and BS, respectively.

3.3. Computation Model

The task completion time when the task is offloaded from PM m to node k at time t can be
expressed as

Tk
m(t) ∈ {T0

m(t), T1
m(t), ..., TM

m (t)}, (3)

Sensors 2019, 19, 4974 6 of 15

where Tk
m(t) includes task transmission time and execution time, which can be computed by

Tk
m(t) =

Dm(t)
Bm,k

+ Am(t)
fk

m 6= k,
Am(t)

fk
m = k,

(4)

where m = k represents that the task is executed locally, that is, there is no transmission delay, while
m 6= k indicates that the task is offloaded to other node. Dm(t) ∈ {D1(t), D2(t), ..., DM(t)} denotes the
size of data transmitted by PM m at time t, which is uniformly distributed and independent.

Similarly, the energy consumption is denoted by

Ek
m(t) ∈ {E0

m(t), E1
m(t), ..., EM

m (t)}, (5)

where Ek
m(t) represents the energy consumption of PM m when offloading the task to queue k at time t.

Then, we obtain

Ek
m(t) =

ptr · Dm(t)
Bm,k

+ pi · Am(t)
fk

m 6= k,

pc · Am(t)
fk

m = k,
(6)

where m = k indicates that the task is executed locally, and m 6= k means that the task is offloaded.
Ptr represents the transmission power of a vehicle, pi represents the idle power of a vehicle, and pc

represents the computation power when the task is executed locally.

4. Problem Formulation

In this paper, energy consumption is considered from the perspective of a task requester [13,36,37].
The objective of the optimization is to obtain an efficient offloading strategy that enables all PMs to
complete tasks with minimal average total energy consumption. Therefore, the optimization problem
can be formulated as

min E ∆
= lim

t→+∞
sup 1

t

t
∑

τ=1

M
∑

m=1
f{Em(τ)},

s.t. C1 : Q ∆
= lim

t→+∞
sup 1

t

t
∑

τ=1

M
∑

k=0
f{Qk(τ)} < ∞

(7)

where f is the sign for averaging, and E represents the average energy consumption of the task.
The constraint condition means that all queues are completed under convergence, where Q represents
the average queue length of tasks.

5. Problem Solution

The optimal offloading decisions are obtained by employing a Lyapunov algorithm and greedy
algorithm under the condition of ensuring the stability of task computation queue and meeting the
deadline of task execution.

5.1. Offloading Decision

The offloading decision vector at time t is expressed as

a(t) = [am(t)|m ∈ {1, 2, ...M}, am(t) ∈ {0, 1, ...M}], (8)

Sensors 2019, 19, 4974 7 of 15

where am(t) = k means that PM m offloads the task to computation node k for execution, and we can
also express it as am,k(t) = 1. In particular, when m = k, it means that the task is executed locally.
Therefore, the offloading decision of PM m can be expressed as{

am,k(t) = 1,

∑M
k=0 am,k(t) = 1,

(9)

where the below equation is to ensure that a task can only be processed at one computing node.
bk(t) represents the computation size of the task that reaches the k-th queue at time t, which is

related to the offloading decision. Then,

bk(t) =
M

∑
m=1

am,k(t) · Am(t). (10)

T(a(t)) = {T1(t), T2(t), ..., TM(t)} is the set of execution length for all PMs at time t, and it can be
expressed by

T(a(t)) = {
M

∑
k=0

a1,k(t) · Tk
1 (t),

M

∑
k=0

a2,k(t) · Tk
2 (t), ...,

M

∑
k=0

aM,k(t) · Tk
M(t)}, (11)

where Tk
m(t) is obtained by Equation (4).

Therefore, the total energy consumption also can be expressed as

E(a(t)) =
M

∑
m=1

M

∑
k=0

am,k(t) · Ek
m(t), (12)

where Ek
m(t) is obtained by Equation (6).

5.2. Optimization Based on Lyapunov

An offloading decision algorithm based on Lyapunov optimization theory is proposed in the paper
to jointly optimize energy consumption and queue waiting time on the premise of ensuring the stability
of the task computation queue, and finally minimizes the task average total energy consumption.

The dynamic queue length at time t + 1 is expressed as

Qk(t + 1) = max[Qk(t)− fk, 0] + bk(t). (13)

Before further discussion on the offloading strategy, Lemma 1 related to the derivation of the
decision function is provided.

Lemma 1. Assuming that X, Y, Z, and W are non-negative positive real number and X = max[Y− Z, 0] +W,
X2 ≤ Y2 + W2 + Z2 − 2Y(Z−W) can be obtained.

Based on Lyapunov optimization theory, the Lyapunov function is expressed as

L(t) =
1
2

M

∑
k=0

Q2
k(t) (14)

Sensors 2019, 19, 4974 8 of 15

According to Lemma 1, the following equation

L(t + 1)− L(t) =
1
2

M

∑
k=0

[Q2
k(t + 1)−Q2

k(t)]

=
1
2

M

∑
k=0

[max[Qk(t)− fk, 0] + bk(t)]2 −Q2
k(t) (15)

≤ 1
2

M

∑
k=0

(f 2
k + b2

k(t)) +
M

∑
k=0

Q(t) · [bk(t)− fk(t)]

can be obtained from Equation (14).
Then, the Lyapunov transfer function is expressed as

∆(t) = E{L(t + 1)− L(t)|Q(t)}. (16)

Inequality (15) is substituted for Equation (16) to obtain

∆(t) ≤ 1
2

M

∑
k=0

E{(f 2
k + b2

k(t)|Q(t)} −
M

∑
k=0

E{Qk(t) fk(t)|Q(t)}+
M

∑
k=0

E{Qk(t)bk(t)|Q(t)}. (17)

According to the above Lyapunov optimization method, it is necessary to ensure the stability of
the queue while minimizing the penalty term. The Lyapunov penalty term in this paper refers to the
energy consumption of the task performed, namely f{E(a(t))|Q(t)}. The Lyapunov transfer penalty
term is

∆(t) + Vf{E(a(t))|Q(t)}, (18)

where V is a weight control parameter, which indicates the weight of minimizing energy consumption.
In other words, V can be considered as a threshold of the system state. According to Equations (17)
and (18), we can deduce

∆(t) + Vf{E(a(t))|Q(t)} ≤ 1
2

M

∑
k=0

f{(f 2
k + b2

k(t)|Q(t)}

+Vf{E(a(t))|Q(t)} −
M

∑
k=0

f{Qk(t)bk(t)|Q(t)}

+
M

∑
k=0

f{Qk(t)bk(t)|Q(t)} = 1
2

M

∑
k=0

f 2
k −

M

∑
k=0

Qk(t) fk (19)

+f{[1
2

M

∑
k=0

(
M

∑
m=1

am,k(t) · Am(t))2 + VE(a(t))

+
M

∑
k=0

M

∑
m=1

Qm,k(t)·am,k(t) · Am(t)]|Q(t)}.

5.3. Optimization Based on a Greedy Algorithm

To achieve the objective of minimizing the average total energy consumption, the appropriate
offloading decision should be found first. When minimizing the right side of Inequality (19),

Sensors 2019, 19, 4974 9 of 15

minimizing energy consumption while satisfying queue stability can be obtained. Ignoring the
constant term on the right side of Inequality (19), the optimization problem can be formulated as

arg min
a(t)

1
2

M

∑
k=0

(
M

∑
m=1

am,k(t) · Am(t))2 + VE(a(t))

+
M

∑
k=0

M

∑
m=1

Qm,k(t) · am,k(t) · Am(t)

s.t. C2 :
Dm(t)
Bm,k(t)

+
max{Qk(t)− fk, 0}+ bk(t)

fk
≤ Td, (20)

m ∈ {1, 2, ..., M}, k ∈ {0, 1, ..., M}
C3 : f0 > fm > 0

C4 : am,k(t) ∈ {0, 1}

C5 :
M

∑
k=0

am,k(t) = 1,

where C2 is to ensure that the task can be completed within the deadline. C3 refers to the computation
resources provided by an MEC server being always greater than those provided by other PMs.
C4 indicates that the status of the offloading decision is 0 or 1, and C5 means that a task can only be
offloaded to one PM or MEC server. Definitely, the amount of computation may not be within the very
specific range. In this case, the amounts of demanded computing resources are beyond the capability
of the platooning and MEC. In other words, the delay/deadline constraint C2 cannot be met due to
the limited computing resources that the platoon and MEC can provide, and the execution cannot be
completed before the task deadline.

Notice that each PM in this paper has M + 1 possible options. In order to obtain the optimal
solution, it is necessary to repeat iterations (M + 1)M times. This is a knapsack problem, and the
problem scale is quite large with the increase of M. The greedy algorithm is adopted to approximately
solve the optimization problem as shown in Algorithm 1 [38].

Algorithm 1 Greedy Algorithm

1: Initialization: set Formulation (20) as Y(amk(t)), let Z be a variable
2: for m = 1 : M do

3: Z = Y(am0(t))
4: for k = 0 : M do

5: if Y(amk(t)) < Z then

6: Z = Y(amk(t))
7: else

8: CONTINUE
9: end if

10: k∗ = argZ|k
11: return am(t) = k∗

12: end for
13: end for

In Algorithm 1, we set the value of Formulation (20) as Y(amk(t)) first, and each vehicle finds its
own offloading node with the smallest Y(amk(t)) value as the optimal decision through iteration of all
offloading nodes. In this way, a better offloading decision can be obtained while greatly reducing the
complexity of the algorithm.

Sensors 2019, 19, 4974 10 of 15

6. Simulation Results

In this section, we first set the main parameters, and then present the simulation results to estimate
the performance of the optimization scheme.

6.1. Parameter Settings

The platooning consists of five members, namely M = 5. The computation resources of MEC
server and PMs are f0 = 1500 Hz, f1 = 200 Hz, f2 = 650 Hz, f3 = 250 Hz, f4 = 500 Hz, f5 = 850 Hz,
respectively. The average number of CPU cycles consumed by each vehicle to calculate its own task
is λ1 = 45 cycles, λ2 = 60 cycles, λ3 = 100 cycles, λ4 = 20 cycles, λ5 = 80 cycles, respectively.
The data transmission power of all PMs is ptr = 0.1 W [39,40], computation power is pc = 0.5 W [41],
and idle power is pi = 0.001 W. The distance is the same between adjacent vehicles. Each time interval
of simulation is set as 0.1 s, and the total simulation time is 30 s. All simulation parameters are
summarized in Table 2.

Table 2. Simulation parameters.

Parameter Name Value
Number of PMs M = 5

Data transmission power ptr = 0.1 W
Computation power pc = 0.5 W

Idle power pi = 0.001 W
The distance between adjacent vehicles 8 m

V2V communication bandwidth w1 = 100 MHz
V2I communication bandwidth w2 = 20 MHz

Noise power density −174 dBm/Hz

6.2. Performance Analysis

Figure 4 shows the relationship between average queue length and time. From the simulation
results, it can be seen that the average length of each queue increases rapidly with time, then slowly
tends to be flat until it reaches a stable state. The queue length is related to the size of computation
resources corresponding to queue, and the larger the computation resources provided, the smaller the
queue length.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Time (s)

A
ve

ra
g
e
 q

u
e
u
e
 le

n
g
th

MEC server

PM 1

PM 2

PM 3

PM 4

PM 5

Figure 4. Average queue length vs. time.

Figure 5 shows the variation of average energy consumption with time. V is an important
parameter to control the energy consumption of the whole system. As the value of V increases,
the energy consumption decreases because V indicates the importance attached to energy consumption.
According to the optimization function Formulation (20), the larger the value of V, the greater the
proportion of energy consumption in the entire optimization function. In addition, we set the value of

Sensors 2019, 19, 4974 11 of 15

V to 1000 in this system, which is an optimal value. Further increasing the value of V will not affect
the energy consumption because the proportion of energy consumption in the whole optimization
function is much larger than other items.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Time (s)

A
v
e
ra

g
e
 t
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

V=10

V=30

V=100

V=200

V=500

V=1000

Figure 5. Average total energy consumption vs. time.

Figure 6 shows the effect of deadline Td on average queue length of task computation.
The minimum deadline that the system can meet is 0.12 s. If the deadline is less than 0.12 s, some
tasks cannot be completed. When 0.12 s < Td < 0.9 s, some tasks will be offloaded to another queue to
ensure the completion of the tasks because the resources of the PM cannot meet its task requirements.
When Td > 0.9 s, the queue length will not change with Td because all tasks can be completed
within 0.9 s. In addition, the queues of MEC server and PM 5 show a downward trend because
the computation resources they provide are large enough, and these two queues can meet more task
offloading requirements. However, due to the smaller computational resources provided by other
queues, fewer and fewer tasks are offloaded to PM 1, 2, 3, and 4 in order to meet the offloading demand
as the deadline Td falls continuously. Therefore, the average queue length of their task computation
size will be shorter and shorter as Td decreases.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

Deadline (s)

T
a
sk

 c
o
m

p
u
ta

tio
n
s

a
ve

ra
g
e
 q

u
e
u
e
 le

n
g
th

MEC server

PM 1

PM 2

PM 3

PM 4

PM 5

Figure 6. Task computation average queue length vs. deadline.

In Figure 7, the energy consumption fluctuates greatly with Td when the value V is small, while,
when the value of V is large, the fluctuation of energy consumption is relatively stable. Because in the
optimization function Formulation (20), when V = 10, the value of the whole penalty item is about
0.01 times of the value of other items, so the proportion of the whole penalty item is relatively small,
and the fluctuation is also relatively large. However, when V = 1000, the penalty term accounts for
the vast majority of the entire optimization function, and the energy consumption changes dominate,
so the energy consumption fluctuation tends to be stable when the V value is large enough.

Sensors 2019, 19, 4974 12 of 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

Deadline(s)

T
h
e
 a

v
e
ra

g
e
 t
o
ta

l
e
n
e
rg

y
 c

o
m

p
s
u
m

p
ti
o
n

V=10

V=30

V=100

V=200

V=500

V=1000

Figure 7. Average total energy consumption vs. deadline.

To verify the effectiveness of the proposed algorithm, it is compared with the following two
schemes: (1) the shortest queue waiting time algorithm, where tk

d = Qk/ fk indicates the waiting time
of the queue k, and the shortest queue waiting time algorithm indicates that the minimum value of all
queue waiting times is treated as the deadline of all tasks; (2) all tasks are offloaded to the MEC server
for execution.

Figure 8 shows the trend of the task queue length of the shortest queue waiting time algorithm
with time. The figure shows that the MEC server has the longest queue because the MEC server
provides the maximum computation resources, so the wait time is shorter than other PMs, and more
tasks will be offloaded to the MEC server. PM 1, on the other hand, provides the minimal computation
resources, so the queue has the longest wait times, and fewer tasks are offloaded to PM 1.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Time(s)

T
a

s
k
 c

o
m

p
u

ta
ti
o

n
 a

v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th

MEC Server

Member 1

Member 2

Member 3

Member 4

Member 5

Figure 8. Task computation average queue length vs. time.

Figure 9 shows a performance comparison of the three methods, where the small graph shows the
change of energy consumption by using the optimization algorithm when the frequency is from 100 to
200 Hz. As can be seen from the graph, the proposed algorithm is superior to the other two schemes.
Firstly, for the shortest queue waiting time algorithm, there will be some tasks with a large computation
load offloaded to PMs with less computational resources, resulting in excessive computation energy
consumption. Secondly, for the tasks with less computation and larger data transmission, offloading
to PMs can save energy better than offloading to a MEC server. In addition, the two comparison
algorithms overlap after f0 = 500 Hz because, when f0 increases, the waiting time of MEC server
decreases gradually, and more tasks are offloaded to the MEC server. When f0 is large enough, all tasks
can be computed directly without waiting. The algorithm in this paper will automatically adjust the
offloading location according to the task parameters to optimize the energy consumption, which is the
reason why the algorithm is superior to the other two schemes.

Sensors 2019, 19, 4974 13 of 15

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

f
0
(Hz)

A
ve

ra
g
e
 t
o
ta

l e
n
e
rg

y
co

n
su

m
p
tio

n

All MEC

The shortest queue waiting time algorithm

Lyapunov optimization algorithm

100 150 200
6

8

10

12

Figure 9. Performance comparison diagram.

7. Conclusions

The task offloading for a vehicular platooning assisted by an MEC server was investigated in
this paper. An optimized task offloading algorithm was proposed to reduce the average total energy
consumption while meeting the deadline of tasks. In this paper, the targeted problem is simplified
by the Lyapunov optimization method, and the simplified problem is approximately solved by a
greedy algorithm. Thus, the sub-optimal task offloading decision is obtained. By setting a reasonable
control parameter V for the Lyapunov optimization function, energy consumption takes a decisive
proportion in the whole optimization function. In addition, the proposed algorithms can not only
ensure the stability of the task computation queue, but also dynamically adjust the task offloading
strategy according to the amount of the task data. It is one of the effective and feasible ways to realize
the task dynamic offloading.

Author Contributions: Conceptualization, Y.H.; Funding acquisition, T.C. and B.S.; Project administration, T.C.;
Supervision, T.C.; Validation, Y.H.; Writing—original draft, Y.H.; Writing—review and editing, Q.C. and T.C.

Funding: This work was supported in part by the National Natural Science Foundation of China
(61831002,61401053), and the Innovation Project of the Common Key Technology of Chongqing Science and
Technology Industry (cstc2018jcyjAX0383), the special fund of Chongqing key laboratory (CSTC), and the Funding
of CQUPT (A2016-83, A2019-12).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Makinen, O. Streaming at the Edge: Local Service Concepts Utilizing Mobile Edge Computing.
In Proceedings of the 2015 9th International Conference on Next, Generation Mobile Applications,
Services and Technologies, Cambridge, UK, 9–11 September 2015; pp. 1–6.

2. 3GPP TR 22.885 V14.0.0. Study on LTE Support for Vehicle to Everything (V2X) Services.
Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=2898 (accessed on 13 November 2019).

3. 3GPP TS 22.186 V15.0.0. Enhancement of 3GPP Support for V2X Scenarios. Available online: https://
portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3180 (accessed
on 13 November 2019).

4. Axelsson, J. Safety in Vehicle Platooning: A Systematic Literature Review. IEEE Trans. Intell. Transp. Syst.
2017, 18, 1033–1045. [CrossRef]

5. Wang, R.; Wu, J.; Yan, J. Resource Allocation for D2D-Enabled Communications in Vehicle Platooning.
IEEE Access 2018, 6, 50526–50537. [CrossRef]

6. Mao, Y.; You, C.; Zhang, J.; Huang, K. A Survey on Mobile Edge Computing: The Communication Perspective.
IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

7. Cicirelli, F. Edge Computing and Social Internet of Things for Large-Scale Smart Environments Development.
IEEE Internet Things J. 2018, 5, 2557–2571. [CrossRef]

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2898
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2898
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3180
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3180
http://dx.doi.org/10.1109/TITS.2016.2598873
http://dx.doi.org/10.1109/ACCESS.2018.2868839
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/JIOT.2017.2775739

Sensors 2019, 19, 4974 14 of 15

8. Li, H.; Shou, G.; Hu, Y.; Guo, Z. Mobile Edge Computing: Progress and Challenges. In Proceedings
of the 2016 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud), Oxford, UK, 29 March–1 April 2016; pp. 83–84.

9. Tran, T.; Pompili, D. Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing
Networks. IEEE Trans. Veh. Technol. 2019, 68, 856–868. [CrossRef]

10. Wang, Y.; Sheng, M.; Wang, X.; Wang, L.; Li, J. Mobile-Edge Computing: Partial Computation Offloading
Using Dynamic Voltage Scaling. IEEE Trans. Commun. 2016, 64, 4268–4282. [CrossRef]

11. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H. Dutta, S. Sabella, D. On Multi-Access Edge Computing: A Survey
of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017,
19, 1657–1681. [CrossRef]

12. Yu, Y.; Zhang, J.; Letaief, K. Joint Subcarrier and CPU Time Allocation for Mobile Edge Computing.
In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC,
USA, 4–8 December 2016; pp. 1–6.

13. Zhao, P.; Tian, H.; Qin, C.; Nie, G. Energy-Saving Offloading by Jointly Allocating Radio and Computational
Resources for Mobile Edge Computing. IEEE Access 2017, 5, 11255–11268. [CrossRef]

14. Mao, Y.; Zhang, J.; Song, S.; Letaief, K. Power-Delay Tradeoff in Multi-User Mobile-Edge Computing Systems.
In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA,
4–8 December 2016; pp. 1–6.

15. Wu, H.; Sun, Y.; Wolter, K. Energy-Efficient Decision Making for Mobile Cloud Offloading. IEEE Trans. Cloud
Comput. 2018, 1. [CrossRef]

16. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud
Computing. IEEE/ACM Trans. Netw. 2016, 24, 2795–2808. [CrossRef]

17. Li, J.; Gao, H.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource
allocation for MEC. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference
(WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6.

18. Zhang, J. Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks.
IEEE Internet Things J. 2018, 5, 2633–2645. [CrossRef]

19. Liu, M.; Liu, Y. Price-Based Distributed Offloading for Mobile-Edge Computing With Computation Capacity
Constraints. IEEE Wirel. Commun. Lett. 2018, 7, 420–423. [CrossRef]

20. Zhang, K.; Mao, Y.; Leng, S.; Vinel, A.; Zhang, Y. Delay constrained offloading for Mobile Edge Computing
in cloud-enabled vehicular networks. In Proceedings of the 2016 8th International Workshop on Resilient
Networks Design and Modeling (RNDM), Halmstad, Sweden, 12–15 September 2016; pp. 288–294.

21. Zhang, K.; Mao, Y.; Leng, S.; Maharjan, S.; Zhang, Y. Optimal delay constrained offloading for vehicular
edge computing networks. In Proceedings of the 2017 IEEE International Conference on Communications
(ICC), Paris, France, 21–25 May 2017; pp. 1–6.

22. Huang, R.; Chang, B.; Tsai, Y.; Liang, Y. Mobile Edge Computing-Based Vehicular Cloud of Cooperative
Adaptive Driving for Platooning Autonomous Self Driving. In Proceedings of the 2017 IEEE 7th International
Symposium on Cloud and Service Computing (SC2), Kanazawa, Japan, 22–25 November 2017; pp. 32–39.

23. Fan, X.; Cui, T.; Cao, C.; Chen, Q.; Kwak, K. Minimum-Cost Offloading for Collaborative Task Execution of
MEC-Assisted Platooning. Sensors 2019, 19, 847. [CrossRef] [PubMed]

24. Hu, Y.; Cui, T.; Huang, X.; Chen, Q. Task Offloading Based on Lyapunov Optimization for MEC-assisted
Platooning. In Proceedings of the WCSP 2019, Xi’an, China, 23–25 October 2019; pp. 1–5.

25. Jia, Q. Energy-efficient computation offloading in 5G cellular networks with edge computing and D2D
communications. IET Commun. 2019, 13, 1122–1130. [CrossRef]

26. Lozano, D.; Mateo, S. Review on V2X, I2X, and P2X Communications and Their Applications:
A Comprehensive Analysis over Time. Sensors 2019, 19, 2756. [CrossRef] [PubMed]

27. Popovski, P. Ultra-reliable communication in 5G wireless systems. Comput. Sci. 2014, 26, 39–51.
28. Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation Offloading and Resource Allocation For Cloud Assisted

Mobile Edge Computing in Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956. [CrossRef]
29. Zhang, K.; Zhu, Y.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. Deep Learning Empowered Task Offloading for

Mobile Edge Computing in Urban Informatics. IEEE Internet Things J. 2019, 6, 7635–7647. [CrossRef]
30. Yu, X.; Guan, M.; Liao, M.; Fan, X. Pre-Migration of Vehicle to Network Services Based on Priority in Mobile

Edge Computing. IEEE Access 2019, 7, 722–3730. [CrossRef]

http://dx.doi.org/10.1109/TVT.2018.2881191
http://dx.doi.org/10.1109/TCOMM.2016.2599530
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/ACCESS.2017.2710056
http://dx.doi.org/10.1109/TCC.2018.2789446
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/JIOT.2017.2786343
http://dx.doi.org/10.1109/LWC.2017.2780128
http://dx.doi.org/10.3390/s19040847
http://www.ncbi.nlm.nih.gov/pubmed/30781710
http://dx.doi.org/10.1049/iet-com.2018.5934
http://dx.doi.org/10.3390/s19122756
http://www.ncbi.nlm.nih.gov/pubmed/31248189
http://dx.doi.org/10.1109/TVT.2019.2917890
http://dx.doi.org/10.1109/JIOT.2019.2903191
http://dx.doi.org/10.1109/ACCESS.2018.2888478

Sensors 2019, 19, 4974 15 of 15

31. Lehr, H.; Chapin, M. On the Convergence of Wired and Wireless Access Network Architectures. Inf. Econ.
Policy 2010, 1, 33–41. [CrossRef]

32. Zhou, Z.; Liu, P.; Feng, J.; Zhang, Y.; Mumtaz, S.; Rodriguez, J. Computation Resource Allocation and
Task Assignment Optimization in Vehicular Fog Computing: A Contract-Matching Approach. IEEE Trans.
Veh. Technol. 2019, 68, 3113–3125. [CrossRef]

33. Hou, X.; Li, Y.; Chen, M.; Wu, D.; Jin, D.; Chen, S. Vehicular Fog Computing: A Viewpoint of Vehicles as the
Infrastructures. IEEE Trans. Veh. Technol. 2016, 65, 3860–3873. [CrossRef]

34. Karedal, J.; Czink, N.; Paier, A. Path Loss Modeling for Vehicle-to-Vehicle Communications. IEEE Trans.
Veh. Technol. 2011, 60, 323–328. [CrossRef]

35. Lyu, X.; Tian, H.; Zhang, P. Multi-User Joint Task Offloading and Resources Optimization in Proximate
Clouds. IEEE Trans. Veh. Technol. 2016, 66, 1.

36. Zhang, K. Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks.
IEEE Access 2016, 4, 5896–5907. [CrossRef]

37. Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint Offloading and Computing Optimization in Wireless Powered
Mobile-Edge Computing Systems. IEEE Trans. Wirel. Commun. 2018, 17, 1784–1797. [CrossRef]

38. Wei, F.; Chen, S.; Zou, W. A greedy algorithm for task offloading in mobile edge computing system. China
Commun. 2018, 15, 149–157. [CrossRef]

39. Sun, Y. Adaptive Learning-Based Task Offloading for Vehicular Edge Computing Systems. IEEE Trans.
Veh. Technol. 2019, 68, 3061–3074. [CrossRef]

40. Liu, Y.; Wang, S.; Huang, J.; Yang, F. A Computation Offloading Algorithm Based on Game Theory for
Vehicular Edge Networks. In Proceedings of the IEEE International Conference on Communications (ICC),
Kansas City, KS, USA, 20–24 May 2018; pp. 1–6.

41. Mazza, D.; Tarchi, D.; Corazza, G. A partial offloading technique for wireless mobile cloud computing in
smart cities. In Proceedings of the European Conference on Networks and Communications (EuCNC),
Bologna, Italy, 23–26 June 2014; pp. 1–5.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.infoecopol.2009.12.006
http://dx.doi.org/10.1109/TVT.2019.2894851
http://dx.doi.org/10.1109/TVT.2016.2532863
http://dx.doi.org/10.1109/TVT.2010.2094632
http://dx.doi.org/10.1109/ACCESS.2016.2597169
http://dx.doi.org/10.1109/TWC.2017.2785305
http://dx.doi.org/10.1109/CC.2018.8543056
http://dx.doi.org/10.1109/TVT.2019.2895593
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model
	Task Offloading Model
	Communication Model
	Computation Model

	Problem Formulation
	Problem Solution
	Offloading Decision
	Optimization Based on Lyapunov
	Optimization Based on a Greedy Algorithm

	Simulation Results
	Parameter Settings
	Performance Analysis

	Conclusions
	References

