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Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder
characterized by life-long recurring episodes of fever and inflammation, often without
clear cause. MKD is caused by bi-allelic pathogenic variants in theMVK gene, resulting in a
decreased activity of the encoded enzyme mevalonate kinase (MK). MK is an essential
enzyme in the isoprenoid biosynthesis pathway, which generates both non-sterol and
sterol isoprenoids. The inflammatory symptoms of patients with MKD point to a major role
for isoprenoids in the regulation of the innate immune system. In particular a temporary
shortage of the non-sterol isoprenoid geranylgeranyl pyrophosphate (GGPP) is
increasingly linked with inflammation in MKD. The shortage of GGPP compromises
protein prenylation, which is thought to be one of the main causes leading to the
inflammatory episodes in MKD. In this review, we discuss current views and the state
of knowledge of the pathogenetic mechanisms in MKD, with particular focus on the role of
compromised protein prenylation.

Keywords: mevalonate kinase deficiency (MKD), protein prenylation, hyper IgD syndrome, mevalonic aciduria,
isoprenoid biosynthesis
INTRODUCTION

Mevalonate kinase deficiency (MKD) is a rare autosomal recessive metabolic disorder, which is
characterized by life-long recurring febrile and inflammatory episodes (1). The disorder is caused by
bi-allelic pathogenic variants in the MVK gene, encoding mevalonate kinase (MK) and resulting in
decreased activity of this enzyme (2–4). MK is a key enzyme in the biosynthesis of sterol and non-
sterol isoprenoids and is the first enzyme to follow the well-known 3-hydroxy-3-methylglutaryl-
CoA reductase (HMGR). The different isoprenoids play essential roles in a large variety of cellular
processes, including membrane structure, steroid hormone and bile acid synthesis, cell growth, cell
differentiation and protein prenylation (5–7).

Because of the characteristic recurrent inflammatory episodes accompanied with interleukin-1b
(IL-1b) secretion, MKD also has been classified as an autoinflammatory disease. Autoinflammatory
diseases comprise an increasing number of diseases that are characterized by recurrent and systemic
org September 2021 | Volume 12 | Article 7249911
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inflammation caused by dysregulation of the innate immune
system. These diseases are associated with increased production
of pro-inflammatory cytokines. Well known autoinflammatory
diseases are Familial Mediterranean Fever (FMF), TNF Receptor
Associated Periodic Syndrome (TRAPS), systemic Juvenile
Idiopathic Arthritis, Crohn’s disease and Behcet’s disease (8).
In contrast to most autoinflammatory diseases, which are caused
by pathogenic variants in genes encoding components directly
involved in the innate immune system, the deficiency of MK in
MKD implies a role for isoprenoids in the regulation of the
innate immune response. Although the precise molecular
mechanisms contributing to the inflammatory symptoms in
MKD are not fully understood yet, increasing evidence
suggests that altered protein prenylation is one of the main
underlying causes. In this review we discuss the current state of
knowledge on the pathogenesis of MKD with particular focus
on the role of protein prenylation in the regulation of
innate immunity.
CLINICAL ASPECTS OF MKD

The clinical presentation of patients with MKD may vary from
recurrent inflammatory episodes associated with high fever, skin
rash, abdominal pain, lymphadenopathy, splenomegaly and joint
pain, previously diagnosed as Hyperimmunoglobulinemia D and
Periodic Fever Syndrome (HIDS, MIM# 260920), to a severe
multisystemic presentation with prenatal onset, also known as
mevalonic aciduria (MA, MIM# 610377). In addition to similar
recurrent inflammatory episodes as in the HIDS presentation,
MA is associated with hepatosplenomegaly, dysmorphic features,
ocular involvement, failure to thrive, psychomotor retardation
and cerebellar ataxia. The severe MA phenotype can be fatal in
childhood, whereas the HIDS phenotype generally does not have
an effect on life expectancy (9). The recognition that HIDS and
MA are not separate entities but represent the mild and severe
end of the MKD spectrum only became clear when the genetic
cause underlying HIDS was discovered in 1999 (2, 3). The
genetic cause underlying MA had already been resolved in
1992 (10). Although the terms HIDS and MA are still used, it
is now common to refer to these as the mild and the severe
phenotypes of the MKD spectrum (11).

The first inflammatory episode in patients affected by the
milder form of MKD (HIDS) typically occurs in the first year of
life and is often triggered by childhood vaccinations. In addition
to vaccinations, physical and emotional stress, and infections
may evoke inflammatory episodes. However, in most cases, these
inflammatory episodes seem to occur without a clear cause, a
phenomenon also termed “sterile inflammation” (12–14). The
inflammatory episodes usually last 3 to 7 days and almost half of
the patients up till 10 years of age experience more than 12
episodes per year. Although this number decreases with age, still
more than half of the patients aged 20 years and older experience
6 or more attacks per year. Between episodes, the majority of
patients with the HIDS presentation are symptom free. However,
the unpredictable course of MKD severely affects the lives of
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patients and family, such as causing educational delay, increasing
unemployment and negatively affecting multiple aspects of
quality of life (13). Patients with the severe MA presentation
also experience episodes of recurrent inflammation, which in
several cases has been fatal (9).
GENOTYPE-PHENOTYPE CORRELATION
IN MKD

The clinical presentation of patients correlates well with the
residual MK enzyme activity measured in cultured fibroblasts or
blood cells of the patients (15, 16). Using an enzyme assay in
which the conversion of radiolabeled mevalonate into its
phosphorylated form is measured in cell lysates (17), the
residual MK activity in fibroblasts from HIDS patients usually
ranges from 4-10% when compared to the activity in controls (2,
3, 18, 19). The residual MK activity in fibroblasts from MA
patients are below the detection level (<0.1%) (9, 15).
Importantly, pathway flux analysis revealed that even in
fibroblasts from MA patients, the flux through the pathway is
not completely deficient, which implies that although the activity
of MK is very low, it is not completely absent (20). The differences
in residual MK activity are also reflected in the mevalonic acid
levels in plasma and urine. In HIDS patients, the plasma and
urinary levels of mevalonic acid are only slightly increased
during an inflammatory episode, whereas in MA patients,
these mevalonic acid levels are constitutively markedly elevated
(2, 3, 9).

Currently, almost 200 different pathogenic variants in the
MVK gene have been reported for MKD. The majority of these
are missense and nonsense variants, but also deletions, insertions
and splicing variants have been found (for current listing, see
Human Gene Mutation Database at http://www.hgmd.cf.ac.uk).
No patients with bi-allelic complete-loss-of-function variants
have been reported, which is in line with the assumed essential
role of MK in isoprenoid biosynthesis. The large majority of
HIDS patients (>80%) is compound heterozygous or
homozygous for the same c.1129G>A (p.V377I) variant in
MVK (14, 15, 19), although the variant has also been reported
in a few patients with severe MKD (19, 21). The second variant
found in HIDS patients carrying the p.V377I variant, often
causes the MA presentation when homozygous or in trans with
another variant (e.g. p.H20P, p.I268T, or p.A334T) (14, 15). The
p.V377I variant does not affect the catalytic activity of the mutant
MK protein, but was shown to affect the correct folding, assembly
and/or stability of the enzyme (16).

In general, there is a good correlation between the residual
MK activity and MK protein levels in patient cells, as assessed by
immunoblot analysis (15). Interestingly, the MK protein levels
and the corresponding MK activity in cultured cells appear to be
sensitive to temperature: culturing at 30°C results in increased
MK levels and activity, while culturing at 39/40°C results in a
clear decrease thereof. This phenomenon in particular has a
major impact in cells with low residual MK levels and activity,
such as the MVK-p.V377I cells; in these, elevated temperatures
September 2021 | Volume 12 | Article 724991
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resulted in non-detectable MK protein levels and activities (16).
As discussed below, this latter observation may explain in part
the pathogenesis underlying MKD (16, 20).
THE ISOPRENOID BIOSYNTHESIS
PATHWAY

MK is an important enzyme in the isoprenoid biosynthesis
pathway (Figure 1), which produces numerous sterol and
non-sterol isoprenoids with essential cellular functions (7, 22).
In the first step of isoprenoid biosynthesis, 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA) is reduced to mevalonate by
the rate-limiting and highly regulated enzyme HMGR. Next, MK
phosphorylates mevalonate, yielding 5-phosphomevalonate.
Subsequently, another phosphorylation step, catalyzed by
phosphomevalonate kinase, yields 5-pyrophosphomevalonate.
Frontiers in Immunology | www.frontiersin.org 3
Decarboxylation of 5-pyrophosphomevalonate produces the 5-
carbon isopentenyl pyrophosphate (IPP), which is the building
block of all isoprenoids. In the following steps IPP is used to form
the 15-carbon non-sterol isoprenoid farnesyl pyrophosphate
(FPP). FPP is the branch point of the isoprenoid biosynthesis
pathway from which the sterol and non-sterol branches of
isoprenoid biosynthesis divert. The conversion of two
molecules of FPP into squalene is the first committed step in
the sterol biosynthesis branch of the pathway, which ultimately
leads to the production of cholesterol. Cholesterol is an essential
component of cellular membranes as well as a precursor for
multiple molecules, including steroid hormones and bile acids. In
the non-sterol branch of the isoprenoid biosynthesis pathway,
FPP is used for the synthesis of heme A from protoheme as well
as for the synthesis of dehydrodolichol pyrophosphate.
Moreover, addition of another IPP to FPP generates the 20-
carbon geranylgeranyl pyrophosphate (GGPP). Both FPP and
GGPP are involved in protein prenylation, which is the
FIGURE 1 | Isoprenoid biosynthesis pathway. The enzymes of the pathway are 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGR), mevalonate kinase (MK), phosphomevalonate kinase (PMK), mevalonate pyrophosphate decarboxylase (MPD), isopentenyl pyrophosphate
isomerase (IPPI), farnesyl pyrophosphate synthase (FPPS), farnesyltransferase (FTase), dehydrodolichyl diphosphate synthase (DHDDS), geranylgeranyl
pyrophosphate synthase (GGPS), geranylgeranyltransferase (GGTase), squalene synthase (SQS) and cholesterol 25-hydroxylase (CH25H).
September 2021 | Volume 12 | Article 724991
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posttranslational attachment of either an FPP or a GGPP moiety
to target proteins, such as nuclear lamins, heterotrimeric G
protein subunits and the Ras super family of small GTPases
(23, 24). Prenylation is essential for correct localization and
activation of target proteins. GGPP is also a precursor for the
synthesis of ubiquinone-10.
REGULATION OF THE ISOPRENOID
BIOSYNTHESIS PATHWAY

The isoprenoid biosynthesis pathway is regulated at multiple levels
to ensure the timely synthesis of isoprenoids when required and to
prevent accumulation of possible toxic intermediates and end
products, such as cholesterol (6, 22). The flux-controlling step of
the pathway is at the level of HMGR, the activity of which can be
controlled by gene transcription, efficiency of mRNA translation,
rate of protein degradation and modulation of enzymatic activity.
Transcriptional regulation of HMGR and other genes encoding
enzymes in the pathway occurs via feedback regulation in
response to sterol levels. This is mediated by the sterol
regulatory element-binding protein 2 (SREBP-2). SREBP-2 and
its relatives SREBP-1a and SREBP-1c are membrane-bound
transcription factors involved in the regulation of cholesterol
and fatty acid biosynthesis, lipogenesis and glucose metabolism.
SREBP-2 regulates the transcription of the genes encoding the
enzymes of the isoprenoid biosynthesis pathway as well as the
LDL-receptor, which mediates the uptake of cholesterol as plasma
lipoproteins (25, 26). SREBP-2 is synthesized as a large inactive
precursor located in the ER membrane where it tightly associates
with the SREBP-cleavage-activating protein (SCAP) escort
protein. At high sterol concentrations, SCAP interacts strongly
with one of the INSIG proteins, which causes the retention of the
SREBP-2-SCAP complex in the ER. However, this interaction is
weakened at low sterol concentrations, allowing the SREBP-2-
SCAP complex to transfer to the Golgi apparatus. There, the
N-terminal DNA binding/transcription activation domain is
cleaved off from the C-terminal transmembrane/regulatory
domain by the subsequent action of the two Golgi-bound
proteases S1P and S2P. The N-terminal domain is then
translocated to the nucleus where it activates transcription of the
SREBP-2 target genes after binding to the sterol regulatory
element (SRE) in the promotor regions of the genes (27).

Apart from transcriptional regulation by SREBP-2, HMGR is
regulated at the translational and post-translational level. High
sterol concentrations promote the binding of HMGR with
cholesterol and one of the INSIG proteins, which leads to
ubiquitination and subsequent proteasomal degradation of
HMGR. This ubiquitination can be stimulated by lanosterol,
the first sterol intermediate in cholesterol biosynthesis, as well as
by oxygenated derivatives thereof and cholesterol-derived
oxysterols such as 25-hydroxysterols (28–32). This process is
accelerated in the presence of non-sterol isoprenoids (30, 33–38).
HMGR levels are also regulated at the translational level by
increased levels of non-sterol isoprenoids, which cause a
reduction in the translation rate of HMGR mRNA (39).
Frontiers in Immunology | www.frontiersin.org 4
TRANSIENT COMPROMISED
ISOPRENOID BIOSYNTHESIS IN MKD

Because MK is an early enzyme in the isoprenoid biosynthesis
pathway, its deficiency in MKD in principle would be expected to
compromise the biosynthesis of all isoprenoids. In patients with
the severe MA presentation, who have very low MK activities,
this is indeed reflected in lowered plasma ubiquinone-10 levels
and, in some patients, in slightly reduced plasma cholesterol
levels (9, 40, 41). However, the absence of lactic acidosis suggests
that ubiquinone-10 levels are sufficient to maintain
mitochondrial electron transport activity (9), while the in vitro
levels of ubiquinone-10 in fibroblasts from MA patients are
comparable to controls (42). In patients with the HIDS
presentation, who have low residual MK activities, serum
cholesterol levels are normal (43). Moreover, in cultured skin
fibroblasts from HIDS patients, the flux through the isoprenoid
biosynthesis pathway is similar to the flux in control fibroblasts
under normal culture conditions. Earlier work by Houten et al.
has revealed that this is due to an increased HMGR activity in
these cells, which leads to increased levels of intracellular
mevalonate assuring sufficient flux through the isoprenoid
biosynthesis pathway and, consequently, the synthesis of
isoprenoids (20). A similar increase in HMGR activity was also
found in peripheral blood mononuclear cells (PBMCs) from
MKD patients. Interestingly, the MK and HMGR activities
showed a clear inversed correlation when measured in PBMCs
drawn from patients with the HIDS presentation during or
between fever episodes: during fever, the MK activity is
decreased and the HGMR activity increased when compared to
the activities between a fever episode (16).

These observations combined with what is known about the
regulation of the isoprenoid biosynthesis pathway, have led to the
following hypothesis for the pathogenesis underlying the episodic
inflammatory symptoms in MKD (16, 20): under normal
conditions, the increased HMGR activity in cells from MKD
patients results in an elevated mevalonate level, which
compensates for the decreased MK activity in the cells and
assures a normal flux through the pathway. However, due to the
temperature-sensitive nature of MK, an increase in temperature,
e.g. during fever or due to exercise, stress or infections, will cause a
rapid further decrease of the MK activity in these cells, which leads
to a temporary decrease or block in the pathway flux and,
accordingly, in the synthesis of isoprenoids. This in particular
affects isoprenoids with a high-turnover rate among which
isoprenoids that are involved in or required for the regulation of
the onset and/or dampening of an inflammatory response, which
thus causes the inflammatory phenotype of MKD. Several studies,
discussed in more detail below, have shown that in particular the
temporary shortage of the non-sterol isoprenoid GGPP is the main
factor causing the increased HMGR activity and the inflammatory
phenotype in MKD. An important first indication for this
phenomenon came from patient fibroblast studies in which
the effect of supplementation of GGPP or 25-OH cholesterol
on the increased HMGR activities in MKD and familial
hypercholesterolemia (FHC) cells were analyzed. While the
September 2021 | Volume 12 | Article 724991
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HMGR activity in FHC cells was more responsive to 25-OH
cholesterol, the activity in MKD cells was more responsive to
GGPP (20).
IMMUNOLOGICAL CHARACTERISTICS
OF MKD

MKD is a member of the group of autoinflammatory diseases,
which are all caused by defects in genes encoding components
involved in the innate immune response. In contrast to
autoimmune diseases, in which the adaptive immune system is
affected and autoantibodies are produced, the autoinflammatory
diseases have a defect in the innate immune system, resulting in a
dysregulated pro-inflammatory cytokine response. The
inflammatory phenotype of MKD highlights a role for
isoprenoids in the regulation of innate immunity. Within the
group of autoinflammatory diseases, MKD belongs to the
periodic fever syndromes, which are caused by a dysregulation
of the inflammasome-mediated release of the pro-inflammatory
cytokine IL-1b (44). Inflammasomes are key players in the innate
immune response and crucial for the release of active IL-1b.
These multi-protein complexes are assembled following the
recognition of pathogen- or damage-associated molecular
patterns. Upon assembly they promote activation of caspase-1,
resulting in the proteolytic cleavage of the non-active pro-IL-1b
into its active form IL-1b (45). IL-1b is an early component of the
pro-inflammatory cytokine pathway and a key player in
the inflammatory presentation of MKD. Therefore blocking the
receptor of IL-1b with biological agents is an important
treatment option in patients with MKD (46).

In addition to increased IL-1b release, the inflammatory
episodes of MKD patients are characterized by an acute phase
response, reflected by elevated erythrocyte sedimentation rates
(ESR), leukocytosis and elevated serum levels of C-reactive
protein (CRP) and serum amyloid A (SAA). Levels of the pro-
inflammatory cytokines tumor necrosis factor-a (TNF-a) and
interleukin-6 (IL-6) were also found to be elevated (12, 47–49).
Initially, constantly raised IgD levels were also thought to be a
hallmark of HIDS. However, after the finding that HIDS, as MA,
is caused by pathogenic variants inMVK, it has become apparent
that not all patients with genetically confirmed MKD have
elevated IgD levels (13, 50). Furthermore, elevated IgD levels
have also been reported in other diseases. Finally, there is no
correlation between IgD levels and disease severity (12),
rendering it unlikely that IgD plays a major role in the
inflammatory presentation.

Innate immune cells of MKD patients have an increased pro-
inflammatory phenotype. PBMCs of the patients release higher
amounts of pro-inflammatory cytokines, mainly IL-1b, TNF-a
and IL-6, in stimulated conditions as well as spontaneously (48,
51–53). As will be discussed below, in particular the temporary
lack of newly synthesized GGPP was found to be linked to the
enhanced inflammatory responses seen in MKD.

More recently, mevalonate was shown to induce ex vivo
trained immunity in blood monocytes (54). Trained immunity
Frontiers in Immunology | www.frontiersin.org 5
is the long-term non-specific memory of the innate immune
system and is mediated by epigenetic and metabolic
reprogramming leading to an enhanced non-specific immune
response of innate immune cells upon their next stimulation
(55). Although the mevalonate accumulation in patients with the
HIDS phenotype is minimal, monocytes of these patients indeed
showed a trained immunity phenotype characterized by
epigenetic changes, increased expression of glycolytic genes
and increased cytokine production (54). Thus, in addition to a
temporary shortage of GGPP, also the accumulation of
mevalonate appears to contribute to the hyper-inflammatory
phenotype seen in MKD patients.
CONSEQUENCES OF DISTURBED
ISOPRENOID BIOSYNTHESIS ON
PRENYLATION OF SMALL RHO GTPASES

Multiple studies have shown that the temporary shortage of in
particular GGPP affects protein prenylation in MKD and that this
is one of the important causes of inflammation. The majority of
prenylated proteins are so-called CAAX proteins. The C-terminal
CAAX motif is recognized by protein farnesyltransferase (FTase)
and protein geranylgeranyltransferase I (GGTase I), which
catalyze the covalent attachment of the 15-carbon FPP or the
20-carbon GGPP to the cysteine residue of the CAAX motif.
Besides the cysteine, the CAAX motif contains two aliphatic
amino acids (A) while the X can be one of a variety of amino
acids. The X amino acid determines whether FTase or GGTase I
will bind to the target CAAX protein and thus whether a protein
will be farnesylated or geranylgeranylated (23).

The largest group of prenylated proteins are the small
GTPases (24). Small GTPases are highly dependent on
prenylation for their correct functioning (Figure 2). The
hydrophobic prenyl group enables protein-protein interactions,
but also allows GTPases to attach to cellular membranes.
Attached to the membrane they can interact with other
proteins, including kinases and adaptor proteins, to induce
downstream signaling pathways (23). Most GTPases act as
molecular switches in a wide variety of cellular processes,
including cytoskeletal function, cellular adhesion, vesicle
trafficking and cell cycle. By cycling between an active GTP-
bound and an inactive GDP-bound state, signaling pathways will
be switched on or off. This GDP-GTP cycling is regulated by
guanine nucleotide exchange factors (GEFs), GTPase-activating
proteins (GAPs) and GDP dissociation inhibitors (GDIs). GEFs
catalyze the exchange of a GDP for a GTP, which activates the
GTPases, while GAPs stimulate the GTPases to hydrolyze GTP
to GDP, which inactivates the GTPases. The GDIs bind to the C-
terminal prenyl group of GDP-bound GTPases in the cytosol,
thereby maintaining their inactive state (5, 24).

The instant lack of non-sterol isoprenoids in MKD, in
particular GGPP, caused by the (temporary) block of their
synthesis was shown to result in the ectopic activation of small
Rho GTPases in cells and a strong IL-1b release by monocytic
cells (20, 51, 52, 56). Different studies have focused on the
September 2021 | Volume 12 | Article 724991

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Politiek and Waterham Compromised Protein Prenylation in MKD
consequences of the reduced isoprenoid biosynthesis on the
small Rho GTPases RhoA and Rac1, which require
geranylgeranylation for their location in membranes and
subsequent activation. In skin fibroblasts from MKD patients,
decreased membrane-bound and increased soluble levels of
act ivated RhoA and Rac1 were observed at lower
concentrations of simvastatin, an inhibitor of HMGR, than in
control fibroblasts (20, 56). This shows that the flux in the
isoprenoid biosynthesis pathway in MKD cells is more
sensitive to disturbances, e.g. by low concentrations of
simvastatin. This results in the depletion of GGPP, as a
consequence of which the GTPases will not become
geranylgeranylated and thus neither can interact with the GDIs
nor can be targeted to the membrane. The result of this is that the
GTPases become active in the cytosol. A similar effect on the
location and activation of RhoA and Rac1 is seen when MKD
cells are switched to 40°C, which, as mentioned above, causes a
rapid decrease in MK protein levels and residual activity, causing
a shortage of newly synthesized GGPP (Figure 2).

Because fibroblasts do not have an innate immunological
phenotype, they are not suitable to study whether the ectopic
activation of RhoA and Rac1 leads to the induction and/or loss of
Frontiers in Immunology | www.frontiersin.org 6
suppression of inflammatory signaling pathways. As an
alternative, the human monocytic cell line THP-1 has been
treated with simvastatin to mimic the shortage of non-sterol
isoprenoids seen in MKD. In contrast to the findings in
fibroblasts from MKD patients, where both the activated RhoA
and Rac1 levels increased upon simvastatin treatment, the
treatment of THP-1 cells caused a decrease in the levels of
activated RhoA, whereas the levels of activated Rac1 increased
(57, 58). Moreover, inhibition of RhoA in THP-1 cells resulted in
increased Rac1 activation and IL-1b mRNA levels (58). The
increased Rac1 activity was shown to enhance IL-1b release via
activation of caspase-1 through the Rac1-PI3K-PKB pathway
(57). The effect of ectopic activation of RhoA and Rac1 was also
studied in THP-1 cells transiently expressing RhoA or Rac1
lacking the C-terminal CAAX motif, which prevents their
prenylation and thus mimics the situation in MKD cells.
Although to a lesser extent when compared to simvastatin
treatment, expression of CAAX-deficient RhoA and Rac1
resulted in increased levels of phosphorylated PKB (58).
Decreased LPS-induced IL-1b release by PBMCs of MKD
patients treated with an Rac1 inhibitor suggested a role of Rac1
in increasing IL-1b secretion (57).
FIGURE 2 | Effect of temperature on the activation and localization of the small GTPase RhoA in MKD. Switching cells of MKD patients from 37°C to 40°C leads to
GGPP depletion affecting protein geranylgeranylation and causing ectopic activation of the small GTPase RhoA. Guanine nucleotide dissociation inhibitor (GDI),
guanine nucleotide exchange factor (GEF), GTPase activating protein (GAP).
September 2021 | Volume 12 | Article 724991
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Earlier studies with PBMCs from MKD patients showed a
marked increase in LPS-stimulated secretion of IL-1b when
compared to control PBMCs. This increased IL-1b secretion
could be suppressed in part by supplementing FPP and fully by
supplementing GGPP prior to the LPS stimulation (51, 52).
Moreover, inhibition of the geranylgeranyl transferase GGTase I
in control PBMCs resulted in increased IL-1b release upon LPS
stimulation, in contrast to no response upon inhibition of the
farnesyl transferase FTase. This confirms that deficient protein
geranylgeranylation and not farnesylation contributes to the
inflammatory phenotype (52).

In line with the above findings, Rac1 is responsible for the
activation of the innate immune response in mice with GGTase
I-deficient macrophages (59). In these mice, the GGTase I
deficiency in macrophages leads to an inflammatory
phenotype, characterized by enhanced release of pro-
inflammatory cytokines, activation of inflammatory signaling
pathways and severe joint inflammation, thereby resembling
rheumatoid arthritis. In the GGTase I-deficient macrophages
the GTP-bound levels of Rac1, RhoA and Cdc42 were increased.
Although the morphology of the GGTase I-deficient
macrophages was found to be altered, migration and
phagocytosis were similar as in control macrophages.
Inhibition of TNF-a was found to reduce synovitis in vivo,
while inhibition of Rac1 in the GGTase I-deficient
macrophages reduced LPS-stimulated IL-1b and TNF-a release
(60). Furthermore, a heterozygous deletion of Rac1 in the
GGTase I-deficient macrophages reversed the inflammation in
this mouse model, whereas a heterozygous deletion of RhoA and
Cdc42 did not. Non-prenylated Rac1 was found to have an
increased interaction with the adaptor protein Ras GTPase-
activating-like protein 1 (Iqgap1), which was shown to lead to
pro-inflammatory signaling in GGTase I-deficient macrophages,
strongly suggesting that under normal circumstances prenylation
of Rac1 prevents the activation of inflammatory signaling
pathways (59). So far, the role of Rac1-Iqgap1 or other Rac1-
effector interactions in MKD have not been studied.

Recently, also the altered subcellular localizationof the small Rho
GTPase CDC42 has been linked to autoinflammation in patients.
Lam et al. described a novel haematological and autoinflammatory
syndrome caused by altered localization and functioning of CDC42.
CDC42 is involved in multiple cellular processes, including
adhesion, polarization, cell cycle, migration and regulation of the
cytoskeleton. In four unrelated patients, the same de novomissense
variant in the CDC42 gene (p.R186C) resulted in a dominant
multisystem syndrome characterized by neonatal onset cytopenia
with dyshematopoiesis, autoinflammation, rash, and episodes of
hemaphagocytic lymphohistiocytosis (NOCARH syndrome) (61).
Variants in CDC42 already had been reported to cause a range of
neurodevelopmental phenotypes and were found to alter CDC42
functioning by affecting the GDP-GTP cycling and/or by affecting
the interaction of CDC42with regulatory and effector proteins (62).
In contrast to these patients, however, the patients with the p.R186C
variant had no neurodevelopmental symptoms. Functional analysis
revealed that the p.R186C variant does not affect GDP-GTP cycling,
but results in retention of CDC42 in the Golgi apparatus (61) due to
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the palmitoylation of the mutated p.R186C (63). More recently,
additional C-terminal variants in CDC42 were found in patients
presenting with CDC42-related autoinflammation, including a
p.C188Y variant. This variant affects the cysteine that is normally
prenylated and thus is predicted to lead to non-prenylated CDC42
proteins, although this had not been studied. Taken together, these
findings link an altered subcellular localizationofCDC42, either due
to aberrant palmitoylation (p.R186C) or to impaired prenylation
(p.C188Y), to the development of autoinflammatory symptoms (63,
64). This is in line with the postulated link between inflammation
and an altered localization of GTPases in MKD.

In addition to the small Rho GTPases, which are
geranylgeranylated by GGTase I, the prenylation of the Rab
GTPases is also affected in MKD. Rab GTPases are exclusively
geranylgeranylated by a third protein prenyltransferase named
GGTase II or Rab GGTase. They lack a conserved motif like the
CAAX motif, but are able to interact with Rab escort protein
(REP) to form a complex. The Rab-REP complex is recognized
by Rab GGTase, which geranylgeranylates most Rab GTPases at
two C-terminal cysteine residues (65). As with the Rho GTPases,
the deficiency of MK leads to increased levels of non-prenylated
Rab GTPases in patient-derived PBMCs and in lymphoid cells
from MKD patients cultured at elevated temperature (40°C) (66,
67). Moreover, in three patients, the residual MK activity
negatively correlated with accumulation of non-prenylated Rab
GTPases (66). However, in THP-1 cells the inhibition of GGTase
II by NE10790 had no effect on LPS-stimulated IL-1b release,
whereas the inhibition of GGTase I by GGTI-298 did enhance
IL-1b release. Incubation of control PBMCs with NE10790 also
did not affect IL-1b release, whereas incubation with GGTI-298
resulted in the release of IL-1b. This indicates that the loss of
prenylation of Rab GTPases in MKD does not lead to IL-1b
release, whereas, in agreement with previous data (52), loss of
prenylation of the GTPases that are prenylated by GGTase I,
including Rho, Rac and Rap GTPases, does contribute to IL-1b
release in MKD (67). Despite this finding, Rab GTPases are
known to be key players in membrane trafficking and immune
cell functions as endocytosis, phagocytosis and cytokine release
(68). Future research should elucidate whether and, if so, how
altered prenylation of Rab GTPases contributes to the pathology
of MKD.
IMPAIRED GERANYLGERANYLATION OF
GTPASES AND INFLAMMASOME
ACTIVATION

So far, two studies have linked the impaired geranylgeranylation
of small GTPases in MKD to activation of the pyrin
inflammasome. Activation of the pyrin inflammasome leads to
the activation of caspase-1 and subsequent release of active IL-1b
and IL-18 (69). The signal for pyrin inflammasome activation
had remained unknown for a long time. In 2014, however, it was
discovered that pyrin can sense pathogens in an indirect manner,
namely via the downstream effects of pathogen-induced loss of
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Rho GTPase activity (70). Following this discovery, impaired
geranylgeranylation of GTPases was also reported to lead to the
activation of the pyrin inflammasome (71, 72). Akula et al.
showed that geranylgeranylation is required for the interaction
between the small Ras GTPase Kras and the p110d subunit of
PI3K. The Kras-p110d interaction is essential for the Toll-like
receptor (TLR)-induced activation of PI3K and downstream
signaling pathways. Lack of protein geranylgeranylation led to
impaired PI3K signaling, which resulted in a hyper-
inflammatory response, including pyrin inflammasome
activation (71). Park et al. showed that the activity of the small
GTPase RhoA suppresses activation of the pyrin inflammasome.
In short, they found that RhoA signaling activates protein kinase
N1 and N2 (PKN), leading to the phosphorylation of pyrin.
When phosphorylated, pyrin binds to so-called 14-3-3 proteins,
which suppresses the activation of the pyrin inflammasome.
Decreased GGPP synthesis resulted in reduced RhoA signaling
and subsequent activation of the pyrin inflammasome. The role
of the pyrin inflammasome in the pathogenesis of MKD was
confirmed in PBMCs from HIDS patients, in which
pharmacological activation of PKN, leading to the downstream
inhibition of the pyrin inflammasome, reduced IL-1b release
(72). Of note, the authors also studied the anti-inflammatory
effects of colchicine in PBMCs of MKD patients. One of the
mechanisms underlying the anti-inflammatory effects of
colchicine is the inhibition of microtubule polymerization,
which leads to the release of GEF-H1 and subsequent
activation of RhoA. Activated RhoA can then activate protein
kinase N1 and N2, thereby inhibiting pyrin inflammasome
activation (72, 73). However, in PBMCs of MKD patients,
colchicine did not inhibit pyrin inflammasome activation. The
authors stated that this is most likely due to the presence of non-
geranylgeranylated RhoA, that cannot attach to the membrane
and therefore cannot be activated by colchicine (72). This may
explain why clinically, colchicine treatment was found not to be
effective in MKD (14).

In addition to the pyrin inflammasome, activation of the
NLRP3 inflammasome has also been linked to IL-1b release in
MKD (74). Of all inflammasomes, the NLRP3 inflammasome is
the best studied and the most sensitive to metabolic changes (45).
Loss of prenylation in simvastatin-treated THP-1 cells enhanced
LPS-induced inflammation in an NLRP3-dependent manner. In
contrast to the above finding that altered prenylation can lead to
activation of the pyrin inflammasome, Skinner et al. found that
IL-1b release is independent of the pyrin inflammasome.
Furthermore, stimulation with LPS and nigericin of PBMCs
from an MKD patient, which triggers NLRP3 activation,
resulted in increased IL-1b release compared to the patients’
parents. Subsequent inhibition of the NLRP3 inflammasome
with MCC950 completely inhibited IL-1b release (74). Another
study reported that knock-down of MVK in a murine microglial
cell line (BV-2) did not affect protein expression of NLRP3 (75).
However, it should be noted that the knock-down ofMVK led to
a 40% decrease of MK protein levels, whereas MKD patients have
significantly lower levels of MK, which makes it plausible that
these findings do not reflect the pathologic processes of MKD.
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In an additional experiment BV-2 cells were incubated with
lovastatin and LPS. Treatment with lovastatin alone increased
MK protein levels, but did not affect NLRP3 protein levels,
whereas the combined treatment with lovastatin and LPS
increased both MK and NLPR3 protein levels (75). Also,
incubation of PBMCs from healthy controls with both the
farnesyl pyrophosphate synthase inhibitor alendronate and LPS
caused a marked increase in IL-1b release and mRNA expression
levels of NLRP3. In addition, the expression of NLRP3 was found
to be increased in PBMCs of 2 patients with MKD (76).

Taken together, the precise role and the mechanisms leading
to the activation of the NLRP3 inflammasome in MKD are still
unclear. The complexity of the regulation and signaling of the
different GTPases makes it challenging to precisely identify
which GTPases are affected by reduced prenylation in MKD,
and how this affects different signaling pathways leading to
inflammation in different cell types and in vivo. That being
said, the finding of a direct link between altered prenylation of
the GTPases RhoA and Kras (71, 72) and activation of the pyrin
inflammasome in MKD is in full agreement with the early
postulation that loss of prenylation is one of the important
causes leading to inflammation in MKD (16, 20).
MITOCHONDRIAL DYSFUNCTION AND
IMPAIRED AUTOPHAGY IN MKD

Other processes that have been linked to compromised protein
prenylation in MKD are mitochondrial function and autophagy.
Ubiquinone-10 and heme A, both products of the isoprenoid
biosynthesis pathway, function in the mitochondrial respiratory
chain. In addition, GTPases are involved in mitochondrial fission
and fusion, as well as in the regulation of autophagy.
Accordingly, blockage of the isoprenoid biosynthesis pathway
is not only associated with altered prenylation, but also with
defective autophagy, mitochondrial dysfunction and apoptosis,
all of which could potentially set off a chain of events leading to
activation of the inflammasome and subsequently inflammation
[for reviews see (77, 78)].

Multiple studies have focused on mitochondria and
autophagy in in vitro MKD models. In brief, inhibition of
isoprenoid synthesis by simvastatin resulted in impaired
autophagy in THP-1 cells, subsequently causing an
accumulation of damaged mitochondria and increased IL-1b
release. Incubation with GGPP rescued the phenotype induced
by simvastatin, underlining the involvement of protein
geranylgeranylation in autophagy. Importantly, autophagy was
also found to be defective in PBMCs of MKD patients. Moreover,
induction of autophagy decreased the LPS-induced IL-1b release
in PBMCs from healthy controls, whereas induction of
autophagy had no significant effect on LPS-induced IL-1b
release in PBMCs from MKD patients (79). In line with this,
transient overexpression of MVK variants I268T and N301T in
neuronal SH-SY5Y cells was found to increase cytosolic RhoA
levels, impair autophagy and increase apoptosis (80). In another
study, however, the transient expression of CAAX-deficient
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RhoA in THP-1 cells did not affect mitochondrial membrane
potential and autophagy, although it resulted in mitochondrial
elongation (58). A study looking at apoptosis of lymphocytes
revealed decreased apoptosis of cells from HIDS patients, but
normal apoptosis of lymphocytes of patients with FMF or
TRAPS, two other autoinflammatory diseases (81). However,
in other studies and cell-types, a reduced apoptosis has been
reported in TRAPS (82, 83). Although the reduced apoptosis of
lymphocytes from HIDS patients had been suggested to (also)
play a role in the pathogenesis of HIDS (81), it remains unclear to
which extent this affects the inflammatory symptoms in MKD.

Finally, 25-hydroxycholesterol (25-HC), a metabolite formed
from cholesterol, was studied with regard to its potential to
reverse/prevent inflammation and restore autophagy and
apoptosis. Cholesterol-derived oxysterols, including 25-HC,
function as bioactive lipids in the immune system and are
increasingly studied for their role in inflammatory signaling
pathways (84). Mice deficient for the gene encoding cholesterol
25-hydroxylase (Ch25h), the enzyme producing 25-HC, showed
enhanced LPS-stimulated release of IL-1b, IL-18 and IL-1a.
Combined results of the Ch25h-deficient mice and
macrophages showed that 25-HC plays an essential role in the
suppression of IL-1 cytokine release downstream of type I IFN
signaling (85). In glioblastoma cells (U87-MG), 25-HC indeed
inhibited the lovastatin-induced IL-1b release. However,
incubation with 25-HC did not restore protein prenylation,
autophagy and apoptosis in this model (86). Although this has
not been studied in MKD patients, a deficiency of MK is expected
to lead to reduced levels of 25-HC. Further study remains to
determine whether 25-HC levels are relevant in MKD.
ISOPRENOIDS AND THE ADAPTIVE
IMMUNE RESPONSE

As discussed so far, most studies on MKD have focused on the
consequences of a defective isoprenoid biosynthesis for the
regulation of the innate immune system, the dysregulation of
which is assumed to be responsible for the inflammation. Recently,
however, the isoprenoid biosynthesis pathway, including GGPP,
was also found to be required for IL-10 release by B cells, which are
cells of the adaptive immune system. IL-10 is an important anti-
inflammatory cytokine, which can be released by immune cells of
both the innate and the adaptive immune system. The main
function of IL-10 is to suppress a pro-inflammatory immune
response, thereby preventing uncontrolled inflammation and
damage to the host (87). In a recent study it was found that IL-
10 release by B cells is controlled in a GGPP-dependent manner
via the activation of PI3Kd-AKT signaling and subsequent
downstream inhibition of GSK3 (88). Moreover, in addition to
GGPP, GGTase I activity was found to be required for IL-10
release, strongly suggesting that geranylgeranylated proteins are
not only involved in secretion of the pro-inflammatory IL-1b, but
also in the release of the anti-inflammatory IL-10. In line with this,
B cells from MKD patients showed a defect in IL-10 production,
which could be restored by supplementation with GGPP and
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inhibition of GSK3. Moreover, B cells of MKD patients had a
reduced capacity to inhibit IFN-g release by T cells. In contrast to
the B cells, the cytokine levels in T cells, including IL-10, were
similar between MKD patients and controls. In another study,
inhibition of isoprenoid biosynthesis in IFN-g producing T cells
with atorvastatin or 25-HC prevented the cells to switch to an IL-
10 expressing phenotype, but this was found to be independent of
prenylation (89). In this study, the inhibition of the isoprenoid
biosynthesis pathway was linked to a decreased expression of c-
Maf, a transcription factor for IL-10.

It is unclear whether these findings can be translated also to
cells of the innate immune system, which also can produce IL-10.
However, these findings indicate that a disturbed isoprenoid
biosynthesis and in particular a shortage of GGPP may disturb
the balance between pro- and anti-inflammatory cytokines and
thus contributes to the pro-inflammatory phenotype of MKD.
TREATMENT OPTIONS FOR MKD

Current treatment of MKD patients is mainly focused on
suppression of inflammation [for recent reviews see (46, 90)].
Mildly affected patients might benefit from suppression of
inflammation by paracetamol, non-steroidal anti-inflammatory
drugs and/or corticosteroids. Although these therapies are often
used, evidence for the efficacy of these therapies in the treatment
of MKD is limited (90, 91).

So far, anti-IL-1 therapies have been the most effective in the
treatment of MKD, underlining the central role of IL-1b in
MKD. In fact, administration of canakinumab, a human
monoclonal antibody against IL-1b, is currently the only FDA-
and EMA-approved treatment for MKD. This approval was
based on the outcome of the CLUSTER study, which showed
that canakinumab controlled and prevented the inflammatory
episodes in the majority of the 72 included MKD patients (92).
However, compared to patients with FMF and TRAPS, two other
autoinflammatory diseases associated with increased IL-1b
release, patients with MKD required a higher dose of
canakinumab to efficiently control the inflammatory episodes.
Canakinumab administration was found to be an effective and
safe therapy for MKD in multiple studies with smaller study
populations (14, 93–95). A major advantage of canakinumab is
that, due to its long half-life, it only needs to be injected
approximately every 4 to 8 weeks (46).

Another anti-IL-1 therapy used in the treatment of MKD
patients is the administration of anakinra, a recombinant human
IL-1 receptor antagonist (46, 90). The continuous use of anakinra
was found to be partially effective in the majority of patients (14,
94, 95), while the on-demand use of anakinra was shown to
reduce the severity and the duration of the inflammatory
episodes. Because anakinra needs to be injected daily and is
less effective than canakinumab, the latter is preferred,
particularly in pediatric patients. However, treatment outcomes
differ per patient, and the relatively low costs of anakinra
treatment compared to canakinumab may influence the
treatment choice (90, 96).
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An interesting potential strategy to prevent the increased IL-
1b release in MKD could be the use of NLRP3 inhibitors. So far,
NLRP3 inhibitors have only been studied ex vivo in cells of one
MKD patient (74) and were found to prevent LPS-induced IL-1b
release, thus suggesting that NLRP3 inflammasome activation is
involved in the pathogenesis of MKD. Since NLRP3
inflammasome activation has been associated with many
diseases, there is a great interest in developing such inhibitors,
some of which are currently studied in clinical trials (97).

When anti-IL-1 treatment is not effective, biologicals
targeting TNF-a and IL-6 might be beneficial. Anti-TNF
treatment is given in the form of etanercept, a recombinant
human TNF receptor p75-Fc fusion protein. The effectiveness of
etanercept varies among studies, leading to a beneficial response
in approximately of 60% of reported patients (14, 19). Evidence
for the effectiveness of anti-IL-6 therapy in MKD is mainly
derived from a few case studies in which tocilizumab, a
monoclonal antibody against the IL-6 receptor, resulted in the
remission of inflammatory episodes in MKD patients (98–101).
Another study reported four patients, who discontinued
tocilizumab treatment because of lack of efficiency (102).

Eight severely affected MA patients who did not respond to
ant i - inflammatory therap ie s underwent s t em ce l l
transplantation. In four patients, the stem cell transplantation
was effective and patients remained in remission in the follow-up
period ranging from 15 months to 5 years (103–106). One
patient died due to the consequences of sepsis several months
after a bone marrow transplantation (107). Another patient
remained in remission for 18 months, after which symptoms
reoccurred, although they were less severe, suggesting that the
transplantation led to a switch from the MA towards the HIDS
phenotype of MKD (108). Recently, two MA patients were
described who received an a/b T-cell and B-cell depleted stem
cell transplantation that led to remission of inflammation in both
patients. However, urinary mevalonic acid levels remained
increased, probably due to MK deficiency still being present in
other tissues (109).

Treatment options aimed at increasing the residual MK
activity and/or bypassing the enzyme defect in the isoprenoid
biosynthesis pathway to assure the synthesis of GGPP in
principle could be beneficial in controlling or even preventing
the inflammatory episodes. In this respect it is important to
realize that parents or siblings of MKD patients, who are carriers
of only one pathogenic variant in the MVK gene, are completely
free of symptoms while showing MK enzyme activities ranging
from 20-45% (3). Thus, compared to the 2-10% residual MK
activity in HIDS patients, an increase of only 10-15% in MK
activity should be sufficient to make HIDS patients less sensitive
if not free of developing spontaneous inflammation. So far,
however, interference with isoprenoid biosynthesis has not
been studied in MKD patients, with the exception of statins.
The rationale of treating HIDS patients with statins was that it
would reduce the levels of mevalonate, assumed to be toxic in
this study, as well as that it could lead to an increase in residual
MK activity via SREBP-2 activated MVK gene transcription.
Although the treatment resulted in minimal improvement in
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some patients, it was not effective in most patients and in patients
with the severe MA presentation of MKD it even worsened the
symptoms (9, 14, 110).

Several in vitro cell studies have shown that manipulation of
the isoprenoid biosynthesis pathway in MKD cells to stimulate
the synthesis of GGPP may be beneficial. This includes
supplementation of intermediate isoprenoids or enzyme
inhibitors to fibroblasts and PBMCs of patients. As already
mentioned in this review, supplementation of MKD fibroblasts
or PBMCs with the intermediate isoprenoids mevalonate, FPP,
GGPP, and farnesol and geranylgeraniol (which both are
converted intracellularly to FPP and GGPP), resulted in
reduction of the increased HMGR activities and the LPS-
induced IL-1b secretion, and/or restored the compromised
geranylgeranylation of GTPases (20, 51, 52, 56). While
promising, supplementation of intermediate isoprenoids so far
has not been studied in MKD patients. In particular the dietary
supplementation of GGPP or its precursor geranylgeraniol could
be interesting as potential treatment to prevent the inflammatory
episodes in MKD patients. A recent study reported that a diet
with either beef or soybean, which both contain high levels of
GGPP, resulted in increased plasma levels of GGPP in healthy
subjects (111). Moreover, in patients with dyslipidaemia a diet
high in GGPP reversed both the statin-induced decrease of
plasma GGPP levels and the RhoA activity in blood monocytes
(111). It should be noted, however, that little is known about
possible adverse effects of a high intake of GGPP or
geranylgeraniol. A toxicological study with annatto oil, which
contains approximately 80% geranylgeraniol did not reveal
mutagenic or genotoxic effects. However, in a 90-day study in
rats, the intake of annotto oil resulted in irritation of the fore-
stomach with all doses tested, and intermediate and high doses
resulted in adverse liver problems (112).

Perhaps the most promising therapeutic approach would be
the inhibition of squalene synthase, which is the first enzyme in
the isoprenoid biosynthesis pathway committed to the synthesis of
sterol isoprenoids (Figure 1). Inhibitors of squalene synthase have
been developed for lowering cholesterol levels as an alternative to
statins, and have been tested in clinical trials, but are currently not
used in patients for this purpose. Similar to statins, the squalene
synthase inhibitors lower intracellular cholesterol levels, which
activates SREBP-2, leading to increased expression of genes
encoding the enzymes of the isoprenoid biosynthesis pathway.
However, in contrast to statins, which inhibit the synthesis of all
isoprenoids, inhibition of squalene synthase only inhibits the
synthesis of the sterol isoprenoids and thus redirects the flux of
the isoprenoid biosynthesis pathway towards the synthesis of non-
sterol isoprenoids. Accordingly, incubation of MKD fibroblasts
with the fungal metabolite and squalene synthase inhibitor
zaragozic acid A resulted in increased MK enzyme activity as a
consequence of increased MVK gene transcription, and restored
the compromised geranylgeranylation of RhoA and Rac1 (113).
Moreover, zaragozic acid A reversed the LPS-induced IL-1b
release in HIDS patients’ derived PBMCs (52). In a later study,
TAK-475 M-I, the active metabolite of another squalene synthase
inhibitor lapaquistat acetate (TAK-475), was shown to reduce the
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LPS-induced IL-1b release in simvastatin-treated PBMCs and
THP-1 cells (114). So far, TAK-475 is the only squalene
synthase inhibitor that reached phase 2 and 3 clinical trials, in
which it was tested as potential anti-hyperlipidemic drug.
However, in spite of several favorable properties, further
development of TAK-475 was discontinued, as a high dose of
TAK-475 resulted in signs of hepatotoxicity, whereas the effects of
a lower dose were not superior to already approved lipid-lowering
therapies (115).
OTHER DISEASE PHENOTYPES RELATED
TO MKD

Over the last years, variants in MVK have been linked to disease
phenotypes other than the HIDS or MA phenotype of MKD.
One of these is porokeratosis (MIM #175900), a heterogeneous
group of rare keratinization disorders characterized by skin
lesions. Initially, heterozygous variants in MVK had been
reported to cause disseminated superficial actinic porokeratosis
(DSAP), the most common subtype of porokeratosis (116). This
was followed by heterozygous variants in additional genes
encoding the three enzymes following MK in the isoprenoid
biosynthesis pathway, phosphomevalonate kinase, mevalonate
diphosphate decarboxylase and farnesyl diphosphate synthase
(117–120). This was remarkable, because porokeratosis had
never been observed in heterozygous parents and siblings of
known MKD patients. Moreover, although MKD patients can
present with skin rash during febrile episodes, this is not
comparable to the skin lesions in porokeratosis, which also
start to develop later in life, usually during adulthood. More
recently, however, second hit variants in MVD or MVK, the
genes respectively encoding mevalonate diphosphate
decarboxylase and MK, were identified in affected skin lesions.
This indicated that, in the presence of a mono-allelic germline
variant a second hit variant can trigger the development of
porokeratosis (121). These findings suggest that a shortage of
(some) isoprenoids may cause the development of porokeratosis.
MK was found to protect against type A ultraviolet induced
apoptosis and affected the regulation of calcium-induced
differentiation of keratinocytes (116). MVK shRNA
experiments in a keratinocyte cell line decreased expression of
differentiation markers, protein prenylation and increased
apoptosis. These effects were reversed upon addition of FPP or
GGPP to the cells (122).

Variants in MVK have also been linked to retinitis
pigmentosa (RP) and early onset inflammatory bowel disease
(IBD). RP is an inherited form of retinal dystrophy, characterized
by night blindness and peripheral vision loss. There is large
variation in the genetic background and the clinical
manifestation of RP (123). Multiple case series found biallelic
variants in the MVK gene in patients with RP, which is less
surprising given the fact that ocular involvement, including RP,
already had been associated with MKD. Upon clinical re-
evaluation, these patients not only showed symptoms of RP
but also a variety of symptoms reported for MKD, ranging from
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HIDS symptoms during childhood to more severe symptoms
related to the MA phenotype (11, 124–127).

Finally, MKD is one of the monogenetic diseases that can
present with severe and early-onset IBD-related symptoms (128).
Genetic overlap between MKD and IBD was found in six
genetically confirmed MKD patients, who all experienced
abdominal pain and frequent episodes of diarrhea in their first
year of life, and who also carried genetic variants associated with
the development of IBD (129).
DISCUSSION

The episodic inflammatory symptoms associated with the
decreased enzyme activity of the isoprenoid biosynthetic
enzyme MK in MKD underline an important role for
isoprenoids in the regulation of the innate immune response.
The inflammation in MKD does not appear as a direct
consequence of the decreased MK activity itself, but due to the
inability to respond rapidly to an instant further decrease in
the temperature-sensitive activity of MK. Indeed, despite the
decreased MK activities, MKD patients can still generate
sufficient isoprenoid end products under normal circumstances,
due to an increased activity of HMGR in patients’ cells which
compensates for the decreased flux of the isoprenoid biosynthesis
pathway. The rapid decrease in MK activity, e.g. due to an
increased body temperature, causes a block in the isoprenoid
biosynthesis with as predominant effect a (temporary) shortage
of GGPP affecting one ormore GGPP-dependent factors/processes
required to repress a massive inflammatory response (Figure 3).

One of the GGPP-dependent processes that is disturbed in
MKD is the prenylation of small GTPases. It is remarkable that
although the temporary GGPP deficiency in MKD appears to
affect different classes of prenylated proteins, including many
GTPases involved in different signaling pathways, it primarily
results in a pro-inflammatory phenotype characterized by
transient inflammatory episodes. This may be due to the
transient nature of the block in GGPP synthesis combined
with a rapid response of the innate immune defense system,
while other possible consequences may require longer lasting
defective signaling. In the more severe MA phenotype, however,
additional clinical consequences are observed, many of them
already occurring prenatally.

A disturbed isoprenoid biosynthesis and in particular the
shortage of GGPP has opposite consequences for the expression
of pro- and anti-inflammatory cytokines. The finding that
depletion of GGPP causes an increase in the pro-inflammatory
IL-1b and a decrease in the anti-inflammatory IL-10 may form
an explanation of the hyper-inflammatory nature of the
inflammatory episodes in MKD. This also highlights that a
shortage of GGPP has cell-specific consequences. Moreover,
the fact that GTPases are part of a complex regulatory
network, with overlapping functions and regulation, makes it
challenging to identify which (combination of) prenylated
proteins contribute to a pro-inflammatory phenotype in the
case of GGPP shortage. Nevertheless, a direct link was found
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between loss of geranylgeranylation of two small GTPases and
activation of the pyrin inflammasome (71, 72), confirming the
early postulation that loss of prenylation is one of the important
causes leading to inflammation in MKD (16, 20).

The identification of additional disease manifestations caused
by MK deficiency not only enlarges the disease spectrum, but
also underlines the idea that a shortage of one or more
isoprenoids leads to inflammation. Moreover, the finding that
mevalonate induces trained immunity ex vivo and that
monocytes of HIDS patients have a trained immunity
phenotype, shows that also other isoprenoids and mechanisms
might contribute to the pro-inflammatory phenotype of MKD.
Despite increased understanding of the pathophysiology of
MKD, it is still unclear what exactly triggers an inflammatory
episode and which mechanisms subsequently lead to
inflammation in vivo.

Current treatment of MKD patients is mainly focused on the
suppression of inflammatory symptoms. However, an interesting
alternative may be to target the isoprenoid biosynthesis pathway
itself, e.g. by supplementation of geranylgeraniol as precursor of
GGPP, or by using squalene synthase inhibitors. These inhibitors
only inhibit the synthesis of the sterol isoprenoids, thus
preventing the sterol-regulated transcriptional down-regulation
of isoprenoid biosynthetic genes and redirecting the flux of the
pathway towards the synthesis of non-sterol isoprenoids,
including GGPP. This results in increased MK activity, which
potentially makes cells less sensitive to i) a sudden drop in MK
activity, ii) a subsequent decrease of the flux through the
Frontiers in Immunology | www.frontiersin.org 12
pathway, and iii) the reduced synthesis of GGPP. Results from
pre-clinical studies underline the potential of squalene synthase
inhibitors in the treatment of MKD, which recently was also
highlighted by Marcuzzi et al. for TAK-475 (130).

In summary, studying the underlying mechanisms of the
inflammatory episodes that are characteristic for MKD
provides increasing insight in the role of isoprenoids, and
specifically of compromised protein prenylation, in the
regulation of inflammation.
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