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Cell migration is indispensable for various biological processes including angiogenesis,

wound healing, and immunity. In general, there are two different migration modes

described, the mesenchymal migration mode and the amoeboid migration mode.

Neutrophils rapidly migrate toward the sites of injury, infection, and inflammation using

the amoeboid migration mode which is characterized by cell polarization and a high

migration velocity. During site-directed trafficking of neutrophils from the blood stream

into the inflamed tissue, neutrophils must first withstand shear stress while migrating

on the 2-dimensional endothelial surface. Subsequently, they have to cross different

physical barriers during the extravasation process including the squeezing through

the compact endothelial monolayer that comprises the blood vessel, the underlining

basement membrane and then the 3-dimensional meshwork of extracellular matrix

(ECM) proteins in the tissue. Therefore, neutrophils have to rapidly switch between

distinct migration modes such as intraluminal crawling, transmigration, and interstitial

migration to pass these different confinements and mechanical barriers. The nucleus is

the largest and stiffest organelle in every cell and is therefore the key cellular element

involved in cellular migration through variable confinements. This review highlights the

importance of nuclear deformation during neutrophil crossing of such confinements,

with a focus on transendothelial migration and interstitial migration. We discuss the

key molecular components involved in the nuclear shape changes that underlie

neutrophil motility and squeezing through cellular and ECM barriers. Understanding

the precise molecular mechanisms that orchestrate these distinct neutrophil migration

modes introduces an opportunity to develop new therapeutic concepts for controlling

pathological neutrophil-driven inflammation.
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INTRODUCTION

Neutrophils are important players in innate immunity as they represent the first immune cells
arriving at site of tissue injury or infection. Besides their ability to control local infections,
neutrophils are critically involved in tissue remodeling including wound healing, angiogenesis,
and tumor metastasis (1–6). During acute inflammation, neutrophils are recruited from the
blood stream into the inflamed tissue following a well-defined multi-step recruitment cascade.
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This cascade is initiated by neutrophil capturing via specific
adhesion receptors on inflamed blood vessels, followed
by fast and slow rolling, arrest, adhesion strengthening,
intraluminal crawling, and protrusion through endothelial
junctions in search for exit cues (7). These intravascular
events are then followed by neutrophil squeezing through
junctions ending in successful transendothelial migration
(TEM), followed by abluminal crawling of the neutrophil in
between the endothelial layer and its associated pericyte sheet,
and interstitial migration to the final destination at the site of
inflammation (8). An indispensable prerequisite for efficient
neutrophil recruitment is their ability to migrate in different
microenvironments. Following 2-dimensional (2D) crawling
on the inflamed endothelium in search of potential exit sites,
neutrophils protrude and transmigrate through the endothelial
monolayer establishing sub-endothelial crawling which involves
simultaneous engagement of the endothelial layer and the
subjacent basement membrane (BM). Soon thereafter the
neutrophil begins to crawl on and navigate in between individual
pericytes on its way to the interstitial space where they migrate in
a 3D collagen-rich environment toward the site of inflammation
(Figure 1) (9–11). During these processes, neutrophil migration
is characterized by rapid shape changes underlying polarization
into a lamellipodium and a uropod (12, 13). In this review, we
describe the diverse environmental conditions which dictate
the different migration modes neutrophils employ with a stress
on the molecular mechanisms of nuclear deformation events
critical for neutrophil squeezing through different cellular (i.e.,
endothelial and pericytic), and extracellular barriers at sites of
inflammation.

ENVIRONMENTAL CHALLENGES FOR
NEUTROPHIL MIGRATION TO SITES OF
INFLAMMATION

An important characteristic of neutrophils is their high flexibility
to adapt their mode of migration rapidly to the environmental
conditions. Intraluminal crawling occurs either under low
hemodynamic shear stress conditions in postcapillary venules
during acute inflammation or under high shear stress conditions
in inflamed arteries e.g., during the development of a chronic
disease such as atherosclerosis (14). How neutrophils resist shear
stress has been reviewed in detail elsewhere (15). Briefly, the
process of intraluminal crawling involves specific β2 integrin-
mediated shear resistant adhesive interactions of neutrophils
with endothelial cells (ECs) (Figure 1A). The key integrin ligands
on inflamed ECs that enable efficient intravascular neutrophil
crawling are ICAMs (16). During this mode of 2D migration
β2 integrins anchor neutrophils to the adhesive substratum
enabling force transmission from the actin cytoskeleton to
the environment (17–20). Additional molecules that facilitate
intravascular crawling are the cytokine midkine and the
serine protease Cathepsin G (CatG) (21, 22). Weckbach et al.
demonstrated that the genetic absence of midkine abrogates
neutrophil adhesion and extravasation in TNF α-stimulated
mouse cremaster muscle venules arguing for a pro-adhesive

role of midkine probably by binding to the neutrophil LDL-
receptor-related protein-1 (LRP-1) (6, 21, 23). In contrast, CatG
displayed by ECs has been found to be exclusively important
for neutrophil adhesion to arteries under high flow conditions
(22). Integrin-dependent neutrophil adhesion and crawling
require the binding of chemokines presented by inflamed blood
vessels with respective G-protein-coupled receptors (GPCR)
on neutrophils eliciting intracellular signaling that triggers
integrin adhesiveness, as well as shape changes and polarization
(24). Upon GPCR engagement, primarily CXCR2 (25), the
G-protein dissociates into distinct Gαi and Gβγ subunits,
which regulate the activity of different molecules such as ion
channels, adenylyl cyclase and phosphatidylinositol 3-kinase
(PI3K) (26, 27). Activation of the PI3K leads to the recruitment
of small guanosine triphosphatases (GTPases) of the Rho family
including Rac, Cdc42, and RhoA. Neutrophil GPCRs can also
activate these different Rho GTPases via PI3K-independent
pathways (28). The appropriate subcellular and spatiotemporal
regulation of these signaling molecules mediate cell polarization
into an F-actin-rich lamellipodium and a myosin-rich trailing
edge—a prerequisite of the amoeboid migration mode (29–
31). The non-muscle myosin class II (NMII) protein complex
is fundamentally important to maintain cell polarization by
linking and translocating F-actin filaments (32, 33). Recently,
Zehrer et al. demonstrated the important role of Myh9, the
heavy chain of NMIIa in neutrophils for their proper 2D
migration (crawling), TEM, and 3D migration. Myh9 was
found to be critical for the retraction of the uropod and the
consolidation of the leading edge ensuring proper neutrophil
polarization and migration (34). Notably, integrin-mediated
neutrophil crawling can occur with, against and perpendicular to
the direction of blood flow ensuring optimal scanning capacity
of the endothelial surface for appropriate extravasation sites
(35). Neutrophil crawling to and protrusion through endothelial
junctions are regulated by specific cytoskeletal adaptors such
as the Rho-GTPase specific guanine exchange factor (GEF)
Vav1, the mammalian actin binding protein 1 (mAbp1), the
hematopoietic progenitor kinase 1 (HPK1), and GEF-H1 (36–
39). It has been shown that CXCL2-stimulated neutrophils use
Vav1 for their shear stress-induced perpendicular crawling as the
genetic absence of Vav1 results in migration exclusively in the
direction of blood flow. Under artificial shear free conditions,
the migration behavior of neutrophils is intact in the genetic
absence of Vav1 pointing toward the specialized role of Vav1
for Rho activities orchestrating integrin-mediated neutrophil
crawling under shear flow (36). The same is true for mAbp1
and its interacting protein HPK1 indicating that these two
proteins are additionally required for neutrophil crawling under
shear flow (37, 38). Recently, Fine et al. demonstrated that
spreading and mechanotactic migration are impaired in the
genetic absence of GEF-H1, a specific RhoA GEF (29, 39). These
data indicate that neutrophils possess tightly regulated molecular
mechanisms that allow their integrin-mediated migration on
inflamed vessels under shear stress conditions, a critical
checkpoint in their extravasation into inflamed tissues. Once
reaching potential exit sites, primarily paracellular endothelial
junctions, neutrophils traverse the endothelial monolayer via
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FIGURE 1 | Neutrophil migration in different environmental conditions. During the acute inflammatory response, (A) recently arrested neutrophils migrate along the

inflamed endothelium (intraluminal crawling) toward potential exit sites. Intraluminal crawling is mainly mediated by the interaction of Mac-1 on neutrophils with ICAM-1

on inflamed ECs. Binding of chemokines and other chemoattractants to their respective GPCRs results in the dissociation of the Gα and Gβγ subunits with

subsequent intracellular signaling inducing cell polarization with an F-actin-rich leading edge and an acto-myosin-rich uropod. (B) Neutrophils protrude and

transmigrate through the endothelial monolayer via the paracellular route. Here, LFA-1- and Mac-1-engagement of endothelial ligands including ICAM-1, ICAM-2, and

JAM-A activates endothelial Rho-GTPases e.g., RhoA, RhoG, and NMII leading to EC contractility and plasma leakage restriction. Neutrophils must use their own Rho

GTPases to squeeze their nuclei through paracellular endothelial junctions triggering gap formation. (C) Following transmigration, neutrophils pass the subjacent

basement membrane (BM) and often also crawl on adjacent pericytes embedded in the BM. The main components of the BM are laminins, collagen type IV and

nidogens. Neutrophils penetrate this meshwork through LER which can be enlarged by the secretion of elastase (NE) and by nuclear squeezing, both potentially

coordinated by the neutrophil integrins VLA-3 and VLA-6 and their interactions with BM collagens and laminins. (D) In the inflamed tissue, neutrophils migrate within a

3D collagen I-rich environment toward the site of inflammation (interstitial migration). Here, along with NE secretion, neutrophils deform and push forward their nuclei

to pass through restrictive barriers in the meshwork of collagen fibers, most probably by dynamic interactions of their actin cytoskeleton with the nuclear lamina.
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sequential steps of protrusion through these junction, formation
of large pseudopodia in the subendothelial compartments and
squeezing of their multi-lobular nuclei through adjacent ECs
(Figure 1B). The ECs lining the blood vessel are connected
by elaborated endothelial junctions composed of variable tight
junctions, adherens junctions and gap junctions (40). In
general, neutrophils take almost exclusively the paracellular
route for their TEM (41). Neutrophil adhesion triggers also
EC signaling events believed to facilitate the disassembly of
the endothelial junctions enabling neutrophils to send their
protrusions through the endothelial monolayer in search for
exit signals, primarily chemokines highly enriched within the
endothelial BM (42). Engagements of neutrophil integrins with
different endothelial ligands like ICAM-1, ICAM-2, and JAM-
A initiates the formation of “docking structures” (43) or
“transmigratory cups” (44) consisting of pseudopod-like, F-actin-
rich endothelial membrane extensions surrounding the leukocyte
(45). Subsequent activation of endothelial Rho-GTPases like
RhoA, and RhoG, and NMII triggers EC contractility temporally
linked to gap formation (46–48). However, recent works have
proposed an alternative mechanism whereby endothelial RhoA
and acto-myosin contractility are not required for gap formation
by transmigrating neutrophils. Instead, gap formation is dictated
by neutrophil protrusion and nucleus squeezing through the
paracellular endothelial junctions and at rare instances also
through transcellular pores, which generate large displacements
of the highly elastic endothelial stress fibers and collapse of
thin actin filaments interlaced in between these actin bundles
(49, 50). One of these works suggested that RhoA activation
in endothelial cells is essential for restricting plasma leakage
through the gaps generated by squeezing neutrophils (49).
Collectively these studies suggested that neutrophils rather
than endothelial cells control their TEM dynamics and that
nuclear squeezing determines both the gap size generated by
transmigrating leukocytes and the speed of TEM (50).

After successful TEM, neutrophils have to pass the
perivascular BM predominantly consisting of laminins (isoform
411 and 511), collagen type IV, heparan sulfate proteoglycans,
and nidogens (51–56) as well as embedded pericytes adjacent to
the blood vessels (Figure 1C) (57, 58). The venular BM exhibits
low-expression regions (LER) of laminins and collagen IV which
are enriched between pericytes and are favored exit sites for
neutrophils to overcome the BM (59, 60). However, the exact
mechanism how neutrophils penetrate the BM is still highly
debated. Neutrophils contain specific proteases including matrix
metalloproteases and the serine protease neutrophil elastase
(NE) and use these proteases to degrade the BM and squeeze
through LERs (61, 62). Indeed, elastase-deficient neutrophils can
normally cross inflamed endothelium but fail to penetrate the
BM (62). In addition, the binding of the neutrophil integrins
VLA-3 (α3β1) and VLA-6 (α6β1) to the BM is thought to
facilitate neutrophil remodeling of the BM enlargement of LER
and interstitial migration at sites of inflammation (59, 63, 64).
Interestingly, VLA-3, VLA-6, and NE are located in intracellular
vesicles which need to be translocated to the cell surface for
efficient neutrophil transmigration through the BM, implicating
these integrins as potential scavengers of elastase that restricts

its proteolytic activity to BM regions enriched with VLA-3 and
VLA-6 binding collagens and laminins (65, 66). Recently, Kurz
et al. showed that the mammalian sterile 20-like kinase 1 (Mst1)
is critically involved in this unique mobilization of VLA-3,
VLA-6, and NE to the neutrophil surface (67). Accordingly,
Mst1-deficient neutrophils that successfully extravasate through
the venular wall get stuck between the endothelial monolayer
and the BM and fail to pass the BM. Neutrophil crossing of the
endothelial BM is also tightly associated with neutrophil crawling
along venular pericytes (59, 68). This type of 2D migration is
also ICAM-1-dependent, and during the onset of inflammation
pericytes upregulate this ligand for neutrophil LFA-1 and Mac-1
(68). Whether these neutrophil integrins also rely on stimulatory
chemokines co-elevated on inflamed pericytes for crawling, a
migration mode that takes place in the absence of shear forces
is unknown. It is likely, however, that the GTPase machineries
discussed above as critical for β2 integrin-mediated neutrophil
crawling on inflamed endothelial cells under shear flow- are not
identical to those involved in neutrophil crawling on inflamed
pericytes.

In the inflamed tissue, neutrophils migrate in 3D collagen-
rich environments toward their final destinations at the site
of inflammation (Figure 1D). Of note, the microenvironment
in which the neutrophils migrate differs both mechanically
and biochemically between different organs (69). However, the
extracellular matrix as the non-cellular component of all tissues
consists predominantly of type I collagen, elastin, proteoglycans,
and non-collageneous glycoproteins (70). Here, type I collagen
assembles into mechanically stable fibrils providing physical
stability of the connective tissue (71). In vivo this fibrillary
collagenmeshwork exhibits interfibrillar spaces ranging from 2 to
30µm as shown for mouse cremaster tissue (71, 72). Neutrophils
migrate within this confined tissue in a low-adhesive and
largely β2 integrin-independent manner. Furthermore, integrin-
deficient as well as talin-deficient neutrophils show intact
migration in 3D environments compared to control cells, ruling
out contributions from either β1 and β3 integrins to this mode of
neutrophil motility (17, 73). These data indicate that the traction
forces needed for successful 3D migration are transmitted to the
environment without integrin-dependent anchoring of the cell to
the surface, the prevalent mechanism for neutrophil migration in
2D environments (17, 74). However, the exact mechanism how
neutrophils translate their intracellular actomyosin-driven forces
to the traction forces critical for their locomotion inside various
collagenous 3D environments is still not entirely understood.

In order to study the underlying mechanism experimentally,
3D collagen gels are widely employed. These gels mimic different
meshwork architectures with different pore sizes, dependent
on the collagen concentration. A collagen concentration of
1.5 mg/mL yields a low-density meshwork with pore cross
sections of 10–12 µm2 and a high-density collagen matrix
with a collagen concentration of 3.0 mg/mL exhibits pore cross
sections ranging between 2 and 3 µm2 (17, 72). As the exact
structure of collagen gels cannot be experimentally controlled,
various microchannels were recently developed to closely mimic
parameters including pore sizes and micro-geometry to improve
the analysis of interstitial migration (75, 76). During migration

Frontiers in Immunology | www.frontiersin.org 4 November 2018 | Volume 9 | Article 2680

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Salvermoser et al. Nuclear Deformation During Neutrophil Migration

in such confined 3D environments, neutrophils need to pass
physical restrictions much smaller than their nucleus similar to
the situation in the tissue or 3D collagen gels. Nevertheless, while
microchannels are rigid, dense 3D collagen polymers are not
only more elastic but can be also locally degraded by neutrophil
proteases. Thus, neutrophil passage through microchannels and
collagen barriers involve similar but not identical requirements
of nucleus deformation.

MOLECULAR MECHANISMS OF NUCLEAR
DEFORMATION

During cell migration through different mechanical constrictions
the dynamic interaction of the nucleus with the actin
cytoskeleton is required to ensure proper positioning of the
nucleus and nuclear deformation to successfully squeeze the cell
through these constrictions (77). Indeed, nucleus deformation
is the rate-limiting step for cells to pass through different
constrictions smaller than the nucleus (78–81). The neutrophil
nucleus is composed of 2–6 nuclear lobes with a diameter of
2µm connected by a segment with a size of ∼ 0.5µm (82, 83).
Nuclear deformation follows three different phases while the cell
squeezes through physical barriers, namely the initiation phase,
the deformation phase and the remodeling phase (Figure 2A)
(78, 84). When the cell reaches the constriction, the nucleus
is the first organelle pushing against the constriction (50, 84).
During the deformation phase the nucleus elongates into

an hour-glass shaped nuclear morphology while squeezing
through the constriction. After passing the constriction, the
rear of the nucleus pushes forward to refold into its original
spherical morphology. The nucleus is mechanically stabilized
by a thin, elastic shell encoded by three genes, LMNA, encoding
lamins A/C, and LMNB1 and LMNB2, encoding lamin B1
and lamin B2, respectively (85). The rigidity of the nuclei
is determined by the relative levels of their A and B lamins
(86, 87). The nuclear lamina of neutrophils is much softer than
the lamina of most tissue resident cells due to their negligible
content of lamin A/C (Figures 2B,C) (88). The neutrophil
nucleus is further adjusted for rapid squeezing through small
confinements by its unique multi-lobular shape. Expression
of a lamin B receptor (LBR) on the inner nuclear membrane
is critical for this multi-lobular shape (Figures 2B,C) (89).
Interestingly, interference with the multi-lobular shape of the
nucleus by LBR knockdown keeping lamin A content low
bears minimal effects on nuclear squeezing via rigid pores (90).
Notably, bone marrow neutrophil precursors regulate both their
nuclear shape and lamin A/C content during maturation. The
nuclei of immature neutrophils are stiff and circular as they
express higher levels of lamin A/C and lack LBR. Upon full
maturation neutrophils adapt their nuclear shape and rigidity to
optimize their squeezing through bone marrow sinusoids (89).
Similarly, naïve T cells temporally upregulate their lamin A/C
expression during TCR activation and remain stationary until
they downregulate lamin A/C expression and regain nuclear
deformability as they become migratory (91). Thus, nuclear

FIGURE 2 | Different phases of nuclear deformation and structural components of the neutrophil nucleus. (A) While neutrophils squeeze through restrictive barriers

(indicated by black arrowheads) smaller than their nucleus, the individual nuclear lobes undergo different phases of deformation. During the initiation phase neutrophils

use one of its preexistent lobes to penetrate the barrier. This is followed by pushing, deformation, and elongation of the lobe and its neighbor lobes. Myo1f is critically

required for nuclear pushing and deformation during this squeezing process. (B) Schematics of the structural proteins that regulate the shape and mechanical

properties of a neutrophil nucleus as well as its crosstalk with the neutrophil cytoskeleton. ONM, outer nuclear membrane; INM, inner nuclear membrane; NPC,

nuclear pore complex; LBR, Lamin B receptor; (C) Expression levels of different nuclear proteins in neutrophils.
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shape and deformability are adapted to the squeezing needs of
particular cells.

In contrast to epithelial and mesenchymal cells, which keep
their stiff nuclei at their rear, motile leukocytes readily translocate
their nuclei to their pseudopodia and do so irrespectively of
barrier rigidity (50). In a recent study on granulocyte-like
differentiated HL-60 cells, we found that this property of the
neutrophil nucleus is conserved and is independent of the barrier
rigidity the neutrophil is squeezed through. Nevertheless, when
the stiffness of the nucleus was elevated by overexpression of
lamin A, and when the neutrophil was embedded in a dense
collagen matrix the nucleus could no longer translocate to
the neutrophil pseudopodia (92). Thus, the exceptional ability
of neutrophils to squeeze through mechanically rigid barriers
such as collagen-rich interstitial spaces, or the BMs of blood
vessels and epithelial barriers likely depends on both low
lamin A content, nuclear lamina deformability, and high LBR
expression (90). These requirements are dispensable, however,
for neutrophil squeezing through the much softer endothelial
junctions and consequently for TEM, because of the higher
elasticity of the endothelial cytoskeleton than the elasticity of
individual collagen fibers within collagen-rich interstitial spaces
and the BMs of blood vessels and epithelial barriers.

The nuclear translocation to the neutrophil’s pseudopodia,
a shared feature among all motile leukocytes which appears
to facilitate their squeezing may be regulated by specific
interactions of the nuclear cytoskeleton (nucleoskeleton) and
the perinuclear actin filaments. The neutrophil nucleoskeleton is
deficient of several linker of the nucleoskeleton and cytoskeleton
(LINC) complex proteins, including nesprin1, 2, and SUN1
(Figures 2B,C) (93) which are implicated in force transmission
in adherent cells (94). Mature neutrophils are possibly devoid
of these nuclear-cytoskeletal interactions as part of their highly
motile nature and preference of chemotactic cues over integrin-
dependent adhesions specialized to transduce forces to the
nucleus (95). The nuclei of neutrophils can be also pushed to the
leading edge by actomyosin machineries that orchestrate nuclear
positioning and squeezing and bridge the neutrophil’s uropod
with the microtubule-organizing center (MTOC) at the back of
the squeezed nucleus (96).

In addition to the unique shape and deformability of the
neutrophil nucleus, neutrophil migration to sites of inflammation
critically depends on the unconventional class I myosin Myosin
1f (Myo1f), found to facilitate nuclear deformation (84). This
recent work suggests that the deformation of the nucleus
is almost completely absent in Myo1f-deficient neutrophils

compared to control cells resulting in diminished in vitro
neutrophil migration within 3D collagen gels and impaired
in vivo trafficking toward sites of lesions. Whereas, class II
myosins are involved in the generation of contractility forces,
class I myosins exist as monomers and link membranes to the
actin cytoskeleton (97) potentially implicating these myosins
in nuclear deformation critical for neutrophil squeezing. How
precisely this unique myosin communicates with the nucleus and
its closely associated microtubules remains an open question for
future investigations.

CONCLUSION

Neutrophil migration to sites of inflammation is indispensable
for innate immunity as neutrophils are the predominant
immune cells combating pathogens. Efficient neutrophil
migration critically relies on the exceptionally dynamic
deformation of the nucleus of neutrophils. Accordingly,
neutrophils obtained from mice lacking LBR expression
show hyposegmentation of the nucleus associated with a
decreased nuclear deformability and impaired neutrophil
responses (98). The same is true for patients suffering from
Pelger-Huet anomaly (PHA), a mutation in the human LBR
leading to hyposegmentation of the neutrophil nucleus (99).
Thus, impaired nuclear deformability can hamper neutrophil
migration and function in inflammation. The improvement
of our current knowledge of the molecular mechanisms
underlying nuclear deformation events critical for neutrophil
crossing through distinct mechanical barriers may therefore
help to identify novel therapeutic targets for the treatment of
neutrophil-driven acute and chronic inflammatory pathologies
as well as for the manipulation of neutrophil crosstalks with
tumor cells.
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