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Sarcolipin (SLN) is a regulator of sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump 
and has been shown to be involved in muscle nonshivering thermogenesis (NST) and energy 
metabolism. Interestingly, SLN expression is significantly upregulated both during muscle 
development and in several disease states. However, the significance of altered SLN 
expression in muscle patho-physiology is not completely understood. We have previously 
shown that transgenic over-expression of SLN in skeletal muscle is not detrimental, and 
can promote oxidative metabolism and exercise capacity. In contrast, some studies have 
suggested that SLN upregulation in disease states is deleterious for muscle function and 
ablation of SLN can be beneficial. In this perspective article, we critically examine both 
published and some new data to determine the relevance of SLN expression to disease 
pathology. The new data presented in this paper show that SLN levels are induced in muscle 
during systemic bacterial (Salmonella) infection or lipopolysaccharides (LPS) treatment. 
We also present data showing that SLN expression is significantly upregulated in different 
types of muscular dystrophies including myotubular myopathy. These data taken together 
reveal that upregulation of SLN expression in muscle disease is progressive and increases 
with severity. Therefore, we suggest that increased SLN expression should not be viewed 
as the cause of the disease; rather, it is a compensatory response to meet the higher energy 
demand of the muscle. We interpret that higher SLN/SERCA ratio positively modulate 
cytosolic Ca2+ signaling pathways to promote mitochondrial biogenesis and oxidative 
metabolism to meet higher energy demand in muscle.
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INTRODUCTION

The sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) plays 
a central role in skeletal muscle physiology by regulating 
cytosolic Ca2+-level. Studies have highlighted that futile SERCA 
pump activity modulated by sarcolipin (SLN) can be important 
in muscle nonshivering thermogenesis (NST; Morrissette et al., 
2003; de Meis et  al., 2005; Babu et  al., 2007a,b; Kjelstrup 
et  al., 2008; Bal et  al., 2012, 2016). Recent structural analyses 
showed that SLN binds to SERCA pump in a transmembrane 
(TM) groove (Sahoo et  al., 2013, 2015; Toyoshima et  al., 
2013; Winther et  al., 2013) causing increased futile SERCA 
activity leading to heat production (Smith et  al., 2002; Mall 
et  al., 2006). By using the genetically altered mouse models, 
studies have demonstrated that SLN is a key mediator of 
muscle thermogenesis, especially NST (Bal et  al., 2012, 2017; 
Maurya et  al., 2015; Rowland et  al., 2015a; Sopariwala et  al., 
2015). In small mammals (rodents), brown adipose tissue 
(BAT) is a major site of NST and is actively recruited both 
under cold as well as diet-induced thermogenesis (Enerback 
et al., 1997; Klingenspor, 2003; Cannon and Nedergaard, 2004; 
Nedergaard et  al., 2005; Fromme and Klingenspor, 2011) 
employing uncoupling protein (UCP) 1 mediated heat 
production (Arechaga et  al., 2001; Crichton et  al., 2017; 
Klingenberg, 2017). The abundance of BAT is high in newborn 
babies (Bolton et  al., 1970), but it becomes very limited or 
nonfunctional in adult humans (Cypess et  al., 2009; Ouellet 
et  al., 2012; Carpentier et  al., 2018; Richard et  al., 2020). 
Further, there are several species of mammals that lack BAT 
function due to mutation or loss of UCP1 gene during 
evolution like pigs, wild boars, horses, whales, elephants, and 
sea cows (Gaudry et  al., 2017). Recent studies in wild boars 
by Nowack et al. (2017, 2019) demonstrated that SLN-mediated 
muscle NST plays a primary function during cold adaptation. 
Interestingly, studies in hibernating squirrels also showed that 
SLN expression correlates with sleep (down) and wake period 
(up; Oliver et  al., 2019). Remarkably, birds do not have BAT, 
yet they maintain higher body temperature (≥40°C) and 
depend on skeletal muscle as the primary source of heat 
production via both shivering and NST (Bicudo et  al., 2001; 
Teulier et  al., 2014; Zheng et  al., 2014a; Zhang et  al., 2015). 
In several birds including ducklings and penguins, SR Ca2+-
cycling has been implicated as the basis of muscle thermogenesis 
during cold adaptation (Duchamp et  al., 1989, 1991, 1993; 
Dumonteil et  al., 1993, 1994, 1995).

In addition to cold, SLN-mediated NST is also recruited 
during diet induced thermogenesis in mice (Bombardier et  al., 
2013a; Maurya et  al., 2015). Loss of SLN in mice resulted in 
HFD induced obesity, whereas transgenic overexpression of 
SLN in the skeletal muscles increased basal metabolic rate 
and resistance against HFD-induced obesity (Maurya et  al., 
2015, 2018). Interestingly, SLNOE mice did not show any muscle 
dysfunction, they exercised longer and showed higher fatigue 
resistance compared to SLN−/− mice (Sopariwala et  al., 2015). 
Exercise training has been shown to upregulate SLN expression 
in muscle suggesting a role for SLN in meeting increased 
energy demand (de Snoo, 2009). Despite recent progress, the 

functional relevance of altered SLN expression in muscle 
pathophysiology is not completely understood. Some studies 
have suggested that SLN upregulation in diseased muscle can 
be  a contributing factor to muscle dysfunction especially in 
diseased muscle (Schneider et  al., 2013; Voit et  al., 2017; 
Campbell and Dicke, 2018; Niranjan et  al., 2019). Therefore, 
the primary objective of this article is to explore the relevance 
of SLN expression in muscle pathophysiology, whether it is a 
cause or consequence of disease.

Relevance of High SLN Expression in 
Neonatal Skeletal Muscle
Neonates are highly vulnerable to death due to hypothermia and 
effective thermogenesis increases the chances of their survival. 
As neonate muscles are not fully mature to sustain shivering in 
most mammals including rodents, their thermogenic demand is 
primarily reliant on NST mechanisms. SLN protein is detectable 
in muscle during gestational development but its level peaks 
around birth in all muscle types (Babu et  al., 2007a; Pant et  al., 
2015a), which suggests that SLN mediated muscle NST plays a 
critical role in thermogenesis. SLN expression is high during the 
1st week but is gradually decreased to low level by 21  days in 
the fast-twitch skeletal muscles. However, SLN continues to 
be expressed at high levels in fast oxidative and slow-twitch fibers 
in several muscles (diaphragm, soleus, atria, red gastrocnemius, 
masseter, trapezius, and tongue) throughout adult life (Pant et al., 
2015a; Rowland et  al., 2015b; Sopariwala et  al., 2015). We  found 
that gradual cold adaptation of neonatal mice prevents programmed 
developmental downregulation of SLN expression in adult 
quadriceps and gastrocnemius, glycolytic muscles (Pant et  al., 
2015a). Neonatal mice have significant amounts of BAT with 
very high UCP1 expression (Cannon and Nedergaard, 2004; Harris 
et  al., 2020; Liu et  al., 2020) and, therefore, it can be  argued 
that the thermogenic demand of neonatal mice is met by BAT 
based NST. The finding that UCP1−/− neonates are able to survive 
at 22°C (below thermoneutrality of 28°C) and can be  gradually 
cold adapted to 4°C suggests the existence of additional NST 
components (Enerback et  al., 1997). To further explore the role 
of SLN during neonatal NST, we  generated double knockout 
(DKO) mice lacking UCP1 and SLN by breeding them either at 
22°C or at 28°C. When bred at 22°C, (cold stress) the DKO 
offspring had higher mortality and were found to be  below the 
expected Mendelian ratio. When bred at 28°C (thermoneutrality), 
the survival rate of DKO pups was close to the expected Mendelian 
ratio, indicating that SLN-mediated muscle NST is critical for 
survival of mice during their neonatal (Rowland et  al., 2015a). 
Recent studies in pigs (which lack BAT-mediated NST) have 
shown that SLN and muscle NST are recruited during neonatal 
development of pigs (Nowack et  al., 2017, 2019).

SLN Based NST Is Hyper-Recruited When 
BAT Function Is Minimized
The existence of muscle NST has been reported in large 
adult mammals including dogs and humans (Davis, 1967; 
Hanssen et  al., 2015; Blondin and Haman, 2018). 
However, the importance of muscle NST has been ignored 
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since the mouse model was widely used as an experimental 
model for thermogenesis. Unlike large mammals, mice are 
endowed with significant amount of BAT masking the role 
of skeletal muscle NST (Bal et  al., 2018). However, when 
BAT function is compromised (as found in UCP1−/− and 
iBAT-ablated mice), the role of muscle based NST became 
obvious; remarkably, both UCP1−/− and iBAT-ablated mice 
could be  cold adapted to 4°C (Rowland et  al., 2015a; Bal 
et  al., 2016, 2017); even mild cold exposure of UCP1−/− mice 
(16°C), a condition that does not evoke shivering increased 
SLN expression. Cold adaptation induced substantial remodeling 
in the skeletal muscles including increased mitochondrial 
abundance and expression of several markers of oxidative 
metabolism, this response was significantly blunted in the 
SLN−/− littermates (Rowland et  al., 2015a; Bal et  al., 2017). 
Surprisingly, adaptation of SLN−/− mice to mild cold (16°C) 
exhibited increased expression of UCP1 and other markers 
of BAT recruitment such as electron transport chain proteins 
and sympathetic innervation. Hence, loss of SLN in muscle 
is compensated by hyper-recruitment of BAT-based NST, 
suggesting that SLN-based thermogenesis is important even 
under mild cold (Bal et  al., 2017). A recent study reported 
that cold adaptation in humans increased both insulin sensitivity 
and SLN expression (Hanssen et  al., 2015). These studies 
suggest that both BAT and muscle-based NST are required 
for optimal thermogenesis and muscle NST can compensate 
for compromised BAT function as found in adult large mammals 
including pigs, wild boars, and humans.

Induction of SLN Expression in Muscular 
Dystrophy and Atrophy
Sarcolipin upregulation is a consistent observation in several 
mouse models of muscle dysfunction with compromised muscle 
structure and contractile function (Schneider et al., 2013; Ravel-
Chapuis et  al., 2017; Voit et  al., 2017; Fajardo et  al., 2018; 
Liu et  al., 2018; Tanihata et  al., 2018; Niranjan et  al., 2019; 
Wang et  al., 2020). The majority of these studies explored 
SLN expression in the muscular dystrophy models generated 
by either gene deletion and/or mutations (Pant et  al., 2015b; 
Rodrigues et  al., 2016). In a utrophin-dystrophin DKO mouse 
model of Duchenne muscular dystrophy (DMD), we  found 
upregulation of SLN expression in extensor digitorum longus 
(EDL), quadriceps, and diaphragm (Figure  1A and 
Supplementary Figure  1A). The degree of upregulation in the 
glycolytic muscles (EDL and quadriceps) was much greater 
than oxidative muscle like diaphragm, where SLN is abundant. 
Using the genetically altered mouse models of muscular dystrophy, 
Fajardo et  al. (2018) reported that SLN deletion worsens 
dystrophic phenotype of the MDX mice, suggesting SLN 
upregulation as protective. Truncated dystrophin reintroduction 
by Tanihata et  al. (2018) showed mitigation of dystrophic 
phenotype along with reduction in SLN expression, indicating 
SLN upregulation as a secondary event in DMD pathogenesis. 
Also, our studies in collaboration with Jeffrey Molkentin 
(University of Cincinnati) found that introduction of SLN-KO 
to MDX background does not improve the phenotype 
(unpublished data). On the other hand, Voit et  al. (2017) 

reported that reduction of SLN expression improves DMD 
conditions and survival. Studies by Niranjan et  al. (2019) 
suggested that SLN overexpression impairs myogenic 
differentiation of cultured muscle cells and silencing of SLN 
improves differentiation of dystrophic dog myoblasts. However, 
differentiating primary muscle cells and neonatal muscles are 
known to express significant levels of SLN protein (Babu et al., 
2007a; Pant et  al., 2015a; Maurya et  al., 2018), indicating that 
it is not deleterious to muscle function.

Sarcolipin expression was also examined in a mouse model 
of facioscapulohumeral muscular dystrophy (FSHD; Gabellini 
et al., 2006). FSHD is caused by chromatin relaxation at human 
chromosome 4q35, leading to toxic upregulation of genes that 
would otherwise be  epigenetically silenced in normal muscle. 
Although DUX4 gene de-repression is now considered the 
primary insult underlying FSHD, several other candidate genes 
have been tested in cells and mice over the years, including 
FRG1. FRG1 is an evolutionarily conserved protein located in 
the 4q35 region that causes a severe myopathy when overexpressed 
at high levels in mouse muscle (Gabellini et  al., 2006; Wallace 
et  al., 2011). Interestingly, SLN expression was upregulated in 
trapezius muscle in a progressive manner: significantly higher 
upregulation was observed in 10-week old compared to 5-week 
old mice (Figure  1B). In TA muscle, upregulation was found 
in 10-week old FRG1 mice but not in 5-week old. However, 
SLN levels were not affected in diaphragm, where SLN expression 
is already abundant. Trapezius, that is most affected by the 
FSHD disease showed higher SLN levels, suggesting that it 
might not be  the cause of the disease.

Another myopathy model studied is a mutant myotubularin 
knock-in mouse model (Pierson et  al., 2012). Myotubularin 
is a phosphoinositide lipid phosphatase and loss of its activity 
leads to myotubular myopathy (MTM; Pierson et  al., 2012; 
Lim et  al., 2015). The knock-in (MTM1-KI) mouse carried 
a point mutation at R69C and exhibit mild progression of 
the myopathy with median life span of 66  weeks and 
we  analyzed tissues taken at 5, 10, and 20  weeks of age. 
Quadriceps, soleus, and gastrocnemius exhibited progressive 
upregulation of SLN in the MTM1-KI mice (Figure  1C and 
Supplementary Figure 1B). Induction of SLN was prominent 
in quadriceps, a glycolytic muscle, while diaphragm (oxidative) 
did not show any appreciable upregulation. The finding 
that SLN upregulation was maximal in the most affected 
muscle (glycolytic) indicates that SLN upregulation might 
be  compensatory to meet energy demand (metabolic 
adaptation of the muscle), since SLN is known to increase 
mitochondrial biogenesis and oxidative metabolism.

A common feature in all muscular dystrophies and other 
myopathies is altered mitochondrial metabolism and dysfunction 
(Bernardi and Bonaldo, 2013; Gan et  al., 2018; Abrigo et  al., 
2019). In the utrophin-dystrophin DKO mice, the affected muscles 
showed distorted mitochondrial dynamics that impair metabolism 
(Pant et al., 2015b). In FSHD mouse models and patients, skeletal 
muscles show increased oxidative stress and abnormal mitochondrial 
function (Turki et  al., 2012; Ansseau et  al., 2017). In MTM, 
affected muscles exhibit abnormal mitochondrial positioning, shape, 
dynamics, and function (Pierson et  al., 2012; Lim et  al., 2015). 
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In addition, in any myopathy, the structural architecture of muscles 
is impaired compromising the contractile efficiency leading to 
higher energy demand. The increase in SLN expression indicates 
a compensatory response to augment mitochondrial biogenesis 
and oxidative metabolism to meet the higher energy demand. 
Several recent studies in different types of muscle dystrophies 
showed upregulation of SLN expression (Ravel-Chapuis et  al., 
2017; Liu et  al., 2018; Wang et  al., 2020). Wang et  al. (2020) 
created a new SLN−/− mice model to test its role in a muscular 
dystrophy caused by Lamin A deficiency and found that genetic 
deletion of SLN enhances the disease process in Lmna−/− which 
suggests that SLN upregulation is a protective mechanism, as a 
part of metabolic adaptation both in cardiac and skeletal muscles.

SLN Expression in Muscle Atrophy
Studies from two different laboratories indicate a temporal 
upregulation of SLN expression with muscle atrophy. A hind 
limb immobilization study by Tomiya et  al. (2019) showed 

that skeletal muscle atrophy upregulates SLN expression. Recent 
studies from Tupling’s lab suggest SLN upregulation in muscle 
opposes atrophy (Fajardo et al., 2017a,b). Fajardo et al. (2017a) 
showed that deletion of SLN in phospholamban (PLB, other 
better known SERCA regulator expressed predominantly in 
the heart) overexpression mouse increases atrophy of soleus 
muscle, suggesting a protective role for SLN. It is to be highlighted 
here that PLB overexpression causes a skeletal muscle phenotype 
similar to centronuclear myopathy; in contrast, SLN 
overexpression protects muscle from fatigue (Sopariwala et  al., 
2015). SLN is also upregulated in skeletal muscle of nebulin-KO 
mice that display accumulation of structurally abnormal 
mitochondria within myofibers (Ottenheijm et  al., 2008).

Role of SLN in Fever and Immune 
Response
Viral and bacterial infection is known to cause inflammatory 
response and hyperthermia: however, the mechanism of fever 

A

C

D E

B

FIGURE 1 | Sarcolipin (SLN) expression is upregulated in muscles in multiple disease states. (A) Representative western blots showing upregulation of SLN in 
extensor digitorum longus (EDL) and diaphragm muscles in Utrophin-dystrophin double knockout (DKO) mouse. Western blotting was performed using standard 
procedure as described before (Pant et al., 2015a). (B) Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1)-overexpression mice exhibit SLN 
upregulation in an age-dependent manner. FRG1-overexpression, wild-type, diaphragm, tibialis anterior, and trapezius are abbreviated as FR, WT, Diap, TA, and 
Trap, respectively. SLN upregulation increases with disease progression, whereas expression of SERCA1a, SERCA2a, and calsequestrin (CASQ) are not significantly 
affected. Methods for western blotting to detect the above proteins have been previously published by us (Gupta et al., 2009; Bal et al., 2012). (C) Muscles of 
myotubular myopathy 1 knock-in (MTM-KI) mice exhibit upregulation of SLN in an age-dependent manner. Age (in weeks) of mice studied is shown as numbers on 
the top of the western blots. MTM-KI is labeled as “KI.” Expression of SERCA1a and SERCA2a is unaltered. (D) Lipopolysaccharide (LPS) treatment cause fever in 
mice and lead to SLN upregulation in several muscles. Representative images from different western blots are pooled together. Expression of SERCA1a, SERCA2a, 
and CASQ1 are not altered. Muscle labeled as “Back” consists of several muscle groups from lower back portion of the mice. (E) Salmonella infection upregulate 
SLN expression in quadriceps muscle of WT mice and in soleus muscle of interleukin (IL) 10−/− mice littermates. Control mice are labeled as C1 and C2. Mice 
infected with Salmonella are labeled as I1 and I2. TA, tibialis anterior; EDL, extensor digitorum longus; Trap, trapezius; Quad, quadriceps.
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response is poorly understood. Recent studies suggest that 
BAT mediated thermogenesis is not recruited during fever 
(Eskilsson et  al., 2020). We, therefore, investigated if SLN 
expression was altered in response to fever induced by 
lipopolysaccharide (LPS) treatment. LPS was administered 
intraperitoneally in a set of healthy wild type (WT) mice. 
Three days after treatment, SLN protein expression was analyzed 
in both glycolytic and oxidative muscles. Interestingly, SLN 
expression was induced in both fast glycolytic and oxidative 
skeletal muscles studied (Figure  1D), but there were no 
changes in the expression of SERCA 1a, 2a, and calsequestrin 
(CASQ) 1. To further explore the connection between SLN-based 
NST and fever, we  examined whether Salmonella infection 
(a Gram-negative bacterium producing LPS) induces SLN in 
the skeletal muscles. We  found that SLN expression was 
upregulated several folds in the quadriceps muscle, as compared 
to soleus, which express higher levels of SLN (enriched with 
oxidative fibers). Similarly, SLN expression was induced 
following Salmonella infection in interleukin (IL) 10 knockout 
mice in CBA/J genetic background (Figure  1E). IL-10 is 
known as a potent anti-inflammatory cytokine important in 
limiting pathogenic infection. These studies taken together 
suggest that SLN might play an important role in fever 
response; by increasing muscle thermogenesis and/or promote 
metabolic adaptation of muscle during fever, since prolonged 
fever can be  energetically costly. The mechanism of SLN 
induction and its functional relevance during fever needs 

additional work and future studies should clarify this using 
the SLN−/− and UCP1−/− mouse models.

DISCUSSION AND FUTURE 
PERSPECTIVES

Sarcolipin is an important regulator of SERCA pump in both 
cardiac and skeletal muscle. However, its role in muscle patho-
physiology is still an evolving topic. It has also become a topic 
of interest, whether SLN upregulation during muscle dystrophy/
atrophy disease is detrimental or beneficial to muscle function. 
In this perspective article, we  critically examined several studies 
carried out in the muscle disease models where SLN expression 
is upregulated and as well data from an SLN over-expression 
mouse model. The studies from the SLN over-expression mouse 
model suggest that higher levels of SLN expression in adult life 
do not cause muscle pathology but can be  beneficial to muscle 
function including exercise capacity. The SLNOE mice remained 
healthy and maintained better muscle health even after 2  years 
(Bal et al., unpublished data). Studies using the genetically altered 
mouse models have shown that SLN plays a central role in 
promoting fat utilization and oxidative metabolism in muscle 
(Maurya and Periasamy, 2015; Pant et  al., 2016; Periasamy et  al., 
2017; Bal et  al., 2018). These studies suggest that SLN acts as a 
dual regulator of energy metabolism as schematically shown in 
Figure  2: (a) by uncoupling SERCA, it increases ATP utilization 

FIGURE 2 | High SLN levels increase oxidative metabolism in the skeletal muscle. sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump couples ATP 
hydrolysis to Ca2+ transport (1 ATP = 2 Ca2+) but this coupling is altered by SLN interaction with SERCA. When SLN is low or absent, SERCA efficiency is higher and 
no ATP is wasted, leading to lower energy demand. When SLN is abundant, it uncouples SERCA from Ca2+ transport causing futile cycling of SERCA and higher 
amount of ATP hydrolyzed, thus increasing the energy demand. At the same token, uncoupling of SERCA by SLN leads to elevation of cytosolic Ca2+ and ADP 
levels, both are strong activators of mitochondrial ATP synthesis, thereby helping in meeting the increased metabolic demand. Enhanced SLN activity plays an 
important role in muscle adaptation to high energy demand/expenditure such as cold/diet induced thermogenesis and endurance exercise that relies on 
mitochondrial oxidative metabolism. In addition, higher SLN expression/activity is beneficial to meet the increased energy demand in structurally compromised 
dystrophic muscles. MCU, mitochondrial uniporter; ETC, electron transport chain; VDAC, voltage dependent anion channel.
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creating energy demand and (b) by activating Ca2+-signaling, it 
promotes mitochondrial biogenesis and ATP production 
(Smith et al., 2002; Babu et al., 2007a,b; Bal et al., 2012; Bombardier 
et  al., 2013a,b; Sahoo et  al., 2013, 2015; Maurya et  al., 2015, 
2018; Paran et  al., 2015; Gamu et  al., 2020). In addition studies 
conducted in several dystrophic mouse models suggest that the 
induction of SLN expression is progressive (Figure  1) and is a 
consequence of the disease. Further hypothyroidism, a condition 
that compromise recruitment of BAT function, significantly induces 
SLN expression in the skeletal muscle and suggested that SLN 
is important for adaptive thermogenesis (Kaspari et  al., 2020). 
Therefore, upregulation of SLN should not be viewed as the cause 
of the disease; rather, it is a compensatory response to meet the 
increased thermogenic and metabolic demand in muscle.

Although numerous studies have shown that SLN gene/protein 
expression is altered in muscle pathophysiology, the mechanisms 
that regulate SLN gene/protein expression have not been addressed. 
Conditions that increase SLN expression are closely linked with 
increased mitochondrial biogenesis/dynamics, oxidative 
metabolism, and fat utilization. It is also conceivable that similar 
mechanisms that regulate SLN expression during cold stress are 
also recruited in pathological states. It is presently unclear whether 
disease states activate inflammatory cytokines that might along 
with other energy sensors, increase SLN expression. Future 
research undoubtedly needs to explore what factors induce SLN 
expression and how its levels can be  upregulated. There is also 
significant difference in the pattern of SLN expression in mice 
vs. large mammals. Unfortunately, majority of the studies thus 
far have primarily relied on the mouse models that contain 
significantly higher amount of glycolytic fibers than oxidative. 
Unlike rodents, SLN expression is at least 10-fold higher in 
large mammals (having larger proportion of oxidative fibers) 
including humans which suggest that it is essential for muscle 
physiology. Future research should be focused on large mammals 
to better define the relevance of SLN in muscle pathophysiology.

Two other poorly studied physiological conditions where SLN 
might be involved are fear-induced hyperthermia and postprandial 
heat production. Fear induced thermogenesis has been shown to 
be  BAT-independent and depend on skeletal muscle, employing 
β-adrenoceptors (Marks et  al., 2009). A recent study has shown 
that exposure of predator odor (trigger fear without other stress) 
induce skeletal muscle NST via β-adrenergic receptors of the 
sympathetic nervous system, which provides resistance to fatigue, 
altering fuel selection (Gorrell et  al., 2020); these conditions that 
are known to activate SLN-based functions. Interestingly, some 
preliminary studies have indicated that SLN mRNA is upregulated 
in brain-induced muscle thermogenesis, suggesting that SLN 
mediated NST might be  neurally recruited (Titus et  al., 2017; 
Gibson et  al., 2019). However, the detailed role of SLN in fear-
induced muscle thermogenesis is yet to be illustrated. Postprandial 

thermogenesis also recruits skeletal muscle associated with 
augmented mitochondrial metabolism and increased expression 
of RyR1 and SERCA2a (Henry et  al., 2008; Clarke et  al., 2012). 
These conditions are linked to SLN-based thermogenesis during 
cold adaptation (Bal et  al., 2016). SLN is also expressed in the 
myocardium but the functional relevance is not completely 
understood. In the healthy heart, SLN is expressed abundantly 
in the atria but it is very low in the ventricle (Minamisawa et al., 2003; 
Vangheluwe et  al., 2005; Babu et  al., 2007a). Intriguingly, during 
several different cardiac pathologies, including heart failure, SLN 
expression is induced in both atria and ventricle (Zheng et  al., 
2014b; Morales Rodriguez et  al., 2020). These data suggest that 
SLN expression is increased in the failing heart, which is energy 
starved and SLN upregulation might play a compensatory role 
to increase oxidative mitochondrial metabolism. Answer to these 
questions will provide insight to define role of SLN in the disease 
conditions. These findings will help in targeting muscle metabolism 
to counter muscle pathologies as well as metabolic syndromes 
like obesity and type 2 diabetes.
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