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Abstract: In recent years, many promising nanotechnological approaches to biomedical research have
been developed in order to increase implementation of regenerative medicine and tissue engineering
in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased
or injured tissues is considered advantageous in most areas of medicine. In particular, for the
treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of
functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing,
nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix
and promote adhesion or differentiation of cells. This review focuses on the latest developments
in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue
engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation
methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to
their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds,
such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct
IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell
type through mechanotransduction.

Keywords: superparamagnetic iron oxide nanoparticles; SPION; magnetic drug delivery; magnetic
resonance imaging; magnetic particles; nanomedicine

1. Introduction

The number of publications related to the field of regenerative medicine have increased
dramatically over the last 20 years. Nanotechnology is also finding its way into biomedical
research and could significantly improve and accelerate tissue regeneration due to its
versatility and functionalization possibilities. The materials used are composed of a wide
variety of components and exhibit a broad range of shapes, from fibrous structures or
nanopatterned surfaces to particulate objects. Particulate materials, such as NPs, are
specifically utilized for diagnostic purposes, as they enable multimodal and multifunctional
molecular imaging [1,2]. Moreover, they can easily be modified to serve as vehicles for the
transport of drugs or genes and they are also increasingly used in cell therapy and tissue
engineering approaches [3–5]. Especially in stem cell therapy, they can be applied to trigger
a desired cell differentiation by positively influencing regeneration per se, coupled with
bioactive substances and/or in the presence of magnetic fields. Similarly, they can be used
in tissue engineering approaches as part of a biocompatible scaffold in combination with
cells and/or bioactive substances to support the regeneration or replacement of damaged
cells or tissue. Despite the stringent requirements for biocompatibility, scaffolds made
of different materials with a wide variety of surface properties and structures have been
developed to create conditions for cell adhesion and proliferation that are optimized for
the particular applications.
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One of the most promising nanoscale materials are iron oxide nanoparticles (IONPs),
which can be functionalized with other bioactive substances, embedded in composites, and
bound or taken up by cells [6]. IONPs are frequently used for drug delivery applications,
where a directed drug delivery is enabled either by the use of specific binding proteins,
such as antibodies, or by the influence of external magnetic fields [7,8]. Furthermore,
primary cells and cell lines can be magnetically labeled with IONPs, allowing non-invasive
in vivo monitoring of the efficacy of a cell therapy or tissue engineering approaches using
magnetic resonance imaging (MRI) if the particle loading is sufficient [9,10]. In this context,
it is worth noting that cells with high phagocytic activity, e.g., macrophages, enable the
uptake of high amounts of NPs without the need for transfection agents, whereas other
cells, such as T cells or stem cells, may require transfection agents, peptide-based delivery
systems or magnetotransfection to achieve an adequate IONP loading [11–13]. In any
case, IONPs can provide information about the correct positioning and function of cells
and materials over time and allow monitoring of the degradation or clearance of scaffold
materials. Moreover, IONPs-labelled cells can be magnetically directed to a specific location
to enhance the regeneration of a tissue or to restore a function [14]. Since stem cells are
also capable of differentiating into a variety of other cells, including myoblasts, adipocytes,
chondrocytes, osteoblasts and neuron-like cells, the applications of IONPs-loaded cells in
regenerative medicine are immense. Finally, biomaterials and particle-loaded cells can be
used to create biocompatible structures that can be implanted as grafts to replace destroyed
or diseased tissue. Even without the use of artificial support structures, it is possible to
generate three-dimensional tissue such as cell sheets and spheroids using particle-loaded
cells [15].

The successful use of NP-based cell therapy and tissue engineering and its monitoring
by MRI for regeneration or replacement of diseased or injured tissue has been demonstrated
in numerous preclinical in vitro and in vivo studies. This review highlights developments
in regenerative medicine and focuses on the use of iron oxide nanoparticles in cell therapy
and tissue engineering. Outlined is not only the use of IONPs for cell tracking by MRI,
but in particular the active use of these particles to promote cell and tissue regeneration in
cardiovascular, osteochondral and neuronal diseases and defects, among others. Excluded
are the broad applications of IONPs in tumor treatment or imaging, as these have been
described in detail elsewhere.

2. IONP Synthesis, Functionalization and Targeting

Over the past decades, there have been countless different IONPs developed for
biomedical purposes. However, there are basically only a few synthesis methods used for
the production of the raw particles, including physical, chemical or biosynthetic methods
(Figure 1a) [11,16–20]. While physical and biosynthetic methods are utilized for the pro-
duction of less than 10% of all IONPs, chemical methods, most notably coprecipitation,
microemulsion and hydrothermal synthesis, account for the majority of reported produc-
tion methods [16,17,21]. Since the initial synthesis determines to a large extent the basic
properties of the particles, such as crystal structure, magnetizability, size, size distribution
and shape, it must be carefully selected to best match the desired IONP properties [16,22].

The versatility and broad applicability of IONPs is achieved by surface coating and
functionalization. This provides a certain stability and biocompatibility, which are crucial
for many applications, and may equip the nanoparticle surface with targeted substances to
ensure specific interaction, e.g., with cells. There are many strategies to increase the stability
and achieve the necessary hydrophilicity of NPs for medical research. IONPs can be
stabilized as part of a composite in core-shell structures, shell-core-shell structures, matrix-
dispersed structures, Janus-type structures and combinations thereof (Figure 1b) [16].
However, it should be noted that the iron oxide core may exist as a single-core or as a
multi-core particle [23].

In medical research, organic materials are the most frequently used surface coatings to
prevent aggregation and increase stability and biocompatibility, and are applied either by
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an in-situ reaction or after the actual synthesis [16]. The available materials are diverse and
often consist of polymers such as dextran, chitosan, polyethylene glycol (PEG), polyvinyl
alcohol (PVA), etc. (Figure 1c) [11,24–26]. Apart from polymers, single small molecules such
as citrate, lauric acid or proteins such as albumins are also widely utilized [6,11,27]. Besides
organic compounds, inorganic materials, such as silica, carbon, noble metals, metal oxides
and metal sulfides, have often been used as surface coatings to enhance optical absorption,
electron density (e.g., Ag and Au) and magnetic moment (e.g., manganese or cobalt oxide)
or to introduce features such as phosphorescence by doping with Y2O3 [16]. In addition,
other bioactive molecules such as growth factors, enzymes, genes, drugs, antibodies or
other substances containing a specific binding motif can be attached to existing reactive
groups (e.g., –COOH, –OH, –NH2, –SH) of the primary coating or to linkers, enabling a
more specific functionalization and targeting ability [16,18,24,28,29].

Figure 1. IONP synthesis and applications. (a) Common methods for chemical, physical and biologically based synthesis of
IONPs. (b) Basic morphologies of iron oxide-based NPs (blue: iron oxide core; orange and green: coating materials). (c)
Frequently used organic and inorganic materials for coating NPs. (d) IONP-mediated therapeutic and diagnostic procedures
commonly used in biomedical research (Created with BioRender.com).

The functionalization of NPs enables their utilization in a variety of biotechnological
and biomedical applications. They are used as biosensors, in diagnostics as contrast agent
for magnetic resonance imaging (MRI), magnetic particle imaging (MPI), ultra sound (US),
positron emission tomography (PET), photo acoustic tomography (PAT) and computed
tomography (CT), and in the treatment of diseases, through targeted or stimuli-responsive
drug delivery of bioactive agents, in tissue engineering and regeneration [28,30–35]. Due
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to their magnetic properties, applications such as hyperthermia or magnetically guided
drug delivery are possible [26,34,36,37]. In addition, IONPs are suitable for theranostic
purposes, such as image-guided and microbubble-mediated blood-brain barrier opening,
image-guided drug delivery and theranostic tissue engineering [11,37].

The broad range of applications and the targeting specificity of IONPs are determined
by both their physicochemical and biological particle properties. An important factor is
the particle size, which is highly responsible for biodistribution and determines the ability
to overcome biological barriers [29]. Generally, very small particles with a hydrodynamic
diameter up to 5–8 nm are excreted by the kidneys. Larger NPs are easily captured by
the reticuloendothelial system (RES), e.g., in the liver and spleen, or by macrophages,
allowing liver and spleen imaging, as well as detection of inflammatory areas [11]. NPs in
the size of about 20 nm to 150 nm may also accumulate in the stomach, bone, and kidney.
However, medium-size particles are well suited for cancer imaging as they can be passively
incorporated into tumors through the enhanced permeability and retention (EPR) effect.
In addition, they can be used for drug delivery due to the relatively long circulating time
in blood vessels. Coating with polymers, e.g., PEG, can significantly reduce opsonization
with serum proteins and reduce removal by the RES, especially if a neutral surface charge
is achieved [24,29]. In contrast, negatively or positively charged NPs are rapidly removed
from the circulation by macrophages [29].

3. Cardiovascular Tissue Regeneration and Engineering

Over the decades, significant—albeit mainly experimental—progress has been made
in the development of materials and substances for cardiovascular regeneration, including
the functional restoration or production of e.g., blood vessels, heart valves and myocardium
(Figure 2) [38]. Nanotechnology is playing an increasingly important role in the develop-
ment of alternative cardiovascular therapies [39]. In addition, the design of nanoparticle
probes for noninvasive imaging of cardiovascular targets, such as vascular inflammation,
plaques, thrombosis, myocardial apoptosis, and angiogenesis, plays an increasingly im-
portant role in diagnostics and therapy monitoring [40–45]. In particular IONPs have
decisively advanced cardiovascular research and experimental therapies, by enabling mul-
timodal imaging and thus the diagnosis of diseases and the monitoring of pathological
processes and therapy, but also by serving as carriers of therapeutic agents [46–48].

Figure 2. Possible targets for IONP-assisted cardiovascular tissue engineering and regeneration (Created with BioRender.com).

3.1. Thrombolysis

Thrombosis is a common condition with a significant mortality rate by triggering
conditions such as stroke or myocardial infarction. Thus, drugs, such as tissue plasminogen
activator (tPA), which catalyzes the conversion of plasminogen to plasmin and thereby
dissolves clots, are used to treat ischemic stroke [49]. However, systemic treatment requires
a relatively high dose, which can lead to severe side effects. Therefore, efforts are underway
to develop techniques in which the thrombolytic drugs can exert their effects in a more
targeted manner [50–52].

In a comparative study from our group, Friedrich et al. investigated different coupling
methods to efficiently and functionally bind tPA to poly(acrylic acid-co-maleic acid)-coated
IONPs [53]. We found that the loading efficiency, enzymatic activity and long-term stability
of covalently coupled tPA were significantly higher than IONPs with adsorptively coupled
tPA. In another study from the same group, tPA was bound to dextran-stabilized IONPs
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by carbodiimide-mediated amide bond formation and its functionality was confirmed on
thrombus-mimicking fibrin-containing agarose gels as well as on blood plasma clots [54].
IONPs with covalently bound tPA were also used in studies by Chen et al. [55–58]. Using
tPA covalently bound to carboxymethyldextran-coated IONPs, the authors detected no
cytotoxicity and were able to demonstrate full retention of the thrombolytic activity of
tPA [57]. Chitosan-coated and tPA-functionalized IONPs were found to be suitable for mag-
netically guided thrombolysis, reducing blood clot lysis time by 50% and 53%, respectively,
compared with tests without magnetic targeting and free tPA [55]. Moreover, effective
thrombolysis under magnetic guidance was also demonstrated in a rat embolism model, in
which one-fifth the dose of tPA was able to produce comparable thrombolytic efficacy of
the free drug. Similar results were obtained in a later study with silica-based IONPs [56].
In addition to good in vitro and in vivo biocompatibility, the SiO2-IONP-tPA particles also
showed increased blood and storage stability. Furthermore, magnetically targeted throm-
bolysis in an ex vivo model resulted in a 34% reduction in blood clot lysis time compared to
the required lysis time without magnetic targeting and 40% reduction compared to free tPA.
In a further study, authors from the same group evaluated the possibility of a dual targeting
strategy using poly(lactic-co-glycolic acid) (PLGA) IONPs functionalized with tPA and
fibrin [59]. The particles showed complete retention of tPA activity, high biocompatibility,
fibrin-binding effects and the possibility of magnetic guidance. Targeted in vivo thromboly-
sis was confirmed in a rat embolism model, in which tPA-IONPs at only one-fifth of the tPA
dosage compared with free tPA were sufficient to restore blood flow in a vascular thrombus.
The feasibility of magnetic targeting was also demonstrated in other studies. For example,
after intravenous injection, a large local aggregation of tPA-IONPs was detected in the left
iliac arteries of rats when a magnet was previously placed at appropriate sites [60]. Yang
et al. developed poly [aniline-co-N-(1-one-butyric acid) aniline] coated IONPs functional-
ized with tPA [61]. The immobilized tPA not only showed improved storage stability and
in vitro thrombolytic activity but also rapidly restored blood flow in a rat embolism model
with only one-fifth of the regular tPA dose. Huang et al. produced tPA functionalized and
polyacrylic acid (PAA)-coated NPs that enabled accelerated and targeted thrombolysis
and reduced infarct area in a mouse model of cerebral embolism [62]. In the work of Xie
et al., so-called biomimetic magnetic microrobots (BMMs) loaded with tPA were fabricated
from aligned IONP chains embedded in a non-swelling microgel shell [63]. The BMMs
were capable of delivering and releasing thrombolytic drugs via magnetic guidance, which
would be advantageous for minimally invasive microvascular thrombolysis. A potential
treatment of in-stent thrombosis in coronary arteries was demonstrated in an in vitro study
by Kempe et al. Under flow conditions, tPA-functionalized IONPs were efficiently bound
to the surface of a ferromagnetic coiled wire [64].

Peptide-based targeting of tPA-functionalized IONPs was shown in other studies. In a
murine model of venous and arterial thrombosis, Erdem et al. demonstrated the targeting
ability of dextran-coated IONPs which were conjugated with the targeting peptide FXIIIa
and functionalized with tPA [65]. In another study, IONPs were prepared from PLGA with
embedded IONPs and tPA surrounded by a chitosan film onto which cRGD was grafted.
The nanoparticles accumulated specifically at the edge of the thrombus and achieved a
significant thrombolytic effect [66].

Besides tPA, there are other endogenous substances such as streptokinase (SK), hep-
arin, urokinase (UK) and nattokinase (NK) that exhibit potent thrombolytic effects. An ex-
perimental thrombolytic therapy was developed by Tadayon et al. via co-functionalization
of silica-coated NPs with tPA and SK [67]. The SiO2-NP-tPA-SK particles showed increased
blood stability as well as increased storage stability in buffer. In addition, the thromboly-
sis efficiency could be significantly increased by magnetic targeting. A heparin delivery
platform composed of IONPs, polyethylenimine (PEI) functionalized black phosphorus
nanosheets, and heparin loading demonstrated accurate magnetic enhancement capacity
and offers a promising multifunctional strategy to prevent deep vein thrombosis in pa-
tients at high risk of thrombosis [68]. Thrombolysis efficiency of UK can be improved by
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magnetic control of UK-coated IONPs [69,70]. After injection of IONPs and UK into an
in vitro thrombus model, a static magnetic field created elongated NP clusters that were
forced into rotation by a rotating magnetic field [71]. The generated vortex enhanced the
diffusion of UK to the thrombus surface, thus accelerating its dissolution. Another study
using experimental clots demonstrated the thrombolytic efficacy of IONPs functionalized
by heparin-mediated cross-linking of urokinase [72]. NK-conjugated IONPs showed de-
layed NK release and could be targeted into the thrombus under the control of an external
magnetic field or by RGD targeting [73,74].

In addition to the strategies already presented, other technologies are being developed
and explored to find the most effective and rapid treatment of thrombi. Sonothrombolysis
represents a technical development to increase thrombolysis efficacy. Magnetic microbub-
bles can be retained and set in vibration by a rotating magnetic field in the target region
and then activated by ultrasound to significantly increase the lysis of blood clots [75,76]. In
a mouse model of venous thrombosis, a combination of external magnetic field and high-
intensity ultrasound allowed porous magnetic microbubbles loaded with tPA to be targeted
to the thrombi, efficiently delivering the tPA into the clot and significantly accelerating
thrombolysis [77]. In another study, multifunctional NPs were prepared that, in addition
to functionalization with the EWVDV peptide that recognizes the P-selectin of thrombi,
also allowed multimodal imaging by photoacoustics, magnetic resonance and ultrasound.
Focused ultrasound irradiation, which induced a phase transition of NPs, enabled effective
thrombolysis [78]. Focal hyperthermia may also lead to improved thrombolysis. In a rat
embolism model, controlled release of tPA from thermosensitive magnetoliposomes was
achieved by thermodynamic and magnetic manipulation, thereby efficiently restoring iliac
blood flow [79]. Another technique to resolve thrombi was demonstrated in the study
by Jeon et al., in which the combination of a traversing proton beam and IONPs caused
a thrombolytic effect in an arterial thrombosis mouse model [80]. The technique could
potentially be applicable in cases where treatment with tPA is not possible or ineffective.

3.2. Vascular Grafts and Stents

Despite the continuous improvement in biocompatibility and performance of car-
diovascular grafts made from biomaterials, their successful translation into the clinic is
very slow [38,81]. The reasons for this are manifold. For one, efficacy and safety must
be demonstrated in vitro and in vivo in relevant animal models and confirmed in clinical
trials. So far, many materials have demonstrated promising mechanical, chemical and
physical properties for biomedical applications leading to the development of a wide range
of nanostructured copolymers for cardiovascular grafts and stents [82,83]. Moreover, the
incorporation of IONPs in biomaterials enables magnetic-based non-invasive imaging to
monitor the position and performance of tissue-engineered constructs after implantation.
This ought to minimize the likelihood of unexpected effects in clinical trials, shorten the
regulatory pathway, and increase the commercial appeal and profitability of the therapy
when translated from the laboratory to the clinic. Finally, as incomplete endothelialization
leads to an increased likelihood of thrombosis formation and anastomotic intimal hyperpla-
sia, vascular grafts and stents can be manufactured with a protecting endothelial cell (EC)
layer or with an enhanced capability to be endothelialized in vivo post implantation [84].

However, it should be noted that surgical interventions to restore blood flow, whether
by percutaneous transluminal angioplasty, endarterectomy, bypass grafting or even vascu-
lar prostheses or stenting, often lead to another blockage called restenosis. For this reason,
more studies have now been conducted on anti-restenosis drug delivery systems based on
nanomaterials, including the utilization of IONPs [85].

3.2.1. IONP-Based MRT Monitoring of Grafts and Stents

Cellular coating of tissue-engineered vascular grafts (TEVGs) with IONP-labeled
cells or embedding of IONPs into the scaffold itself has been shown to be an efficient
method for visualizing TEVG function and localization using MRI. One of these studies
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evaluated ways to reduce the production of reactive oxygen species (ROS) often induced
by IONPs [86]. For this purpose, the authors coated artificial ePTFE vascular grafts with
poly(1,8-octamethylene citrate) (POC) as an antioxidant coating and seeded the scaffolds
with ECs pre-labeled with chitosan-coated IONPs. This approach allowed in vitro MRI
monitoring of the endothelium on artificial vascular prostheses without increased oxida-
tive stress.

In the study by Luderer et al., biodegradable scaffolds made of a polymer blend
of poly(l-lactide) (PLA)/poly(4-hydroxybutyrate) in which gold, silver and magnetite
nanoparticles have been embedded were investigated as a replacement for permanent
metallic stents [87]. In X-ray experiments, the NP-modified polymers showed improved
scaffold material visibility. While scaffolds with rod-like gold nanoparticles visualized well
in the near-infrared region at 820 nm, IONPs enable enhanced visualization by MRI.

In another study including in vivo experiments, ultra-small IONPs were incorporated
into polyvinylidene fluoride (PVDF)-based textile fibers that were knitted into vascular
scaffolds. The scaffolds were then seeded with a composite of fibroblasts, smooth muscle
cells (SMCs) and fibrin, and the inner lumen was seeded with ECs in a bioreactor to prevent
inflammation and thrombus formation. The functionality of the grafts, as well as their
suitability for MRI were successfully verified after implantation in sheep as arteriovenous
shunts between the carotid artery and the jugular vein [88]. In another publication, the
group evaluated the feasibility of using multimodality imaging modalities, such as MRI
and positron emission tomography–computed tomography (PET-CT), to further assess the
function of their TEVGs [89]. The combined data from MRI, to monitor graft localization
and function, and FDG-PET-CT, to identify and ultimately accurately quantify vascular
inflammation, revealed comprehensive quality control of TFVGs in the sheep model, with
no calcification, negative effects on extracellular matrix (ECM) or endothelialization.

An interesting study by Harrington et al. took the opportunity of MRI imaging to
investigate the fate of cells on TEVGs [90]. Biodegradable polyglycolic acid-based scaffolds
sealed with poly-ε-caprolactone (PCL) and PLA were seeded with ultra-small IONP-labeled
murine macrophages and implanted into mice as inferior vena cava interposition grafts.
Serial MRI studies demonstrated rapid loss of seeded cells. The findings demonstrated the
need for imaging techniques to monitor and verify the functionality of tissue engineered
products. In contrast to the aforementioned publication, Nelson et al. achieved non-
invasive monitoring of ultra-small IONP-labeled human aortic SMCs and human aortic
endothelial cells (hAECs) incorporated into TEVGs of PLA nonwoven felts. These scaffolds,
coated with a copolymer of PCL and PLA were implanted into mice as aortic interposition
grafts and monitored for 3 weeks by MRI [91].

3.2.2. IONP-Based Improvements of Vascular Scaffolds

There are a variety of materials that can be used for TEVG production. These include
hydrogels, polymers and nanomaterials, which may not only act as a support structure
and provide a compatible surface for cells, but also release substances when required and
promote and accelerate tissue formation.

Karbastian et al. fabricated artificial blood vessels reinforced with carbon nanotubes
and IONPs from biodegradable polyurethane (PU)-thermoplastic-elastin compounds that
exhibited efficient tensile strength and reasonable flexibility [92]. Another study evaluated
a strategy to improve the adhesion of ECs to various membranes of bacterial cellulose (BC)
by applying oscillating magnetic fields [93]. Compared with BC and magnetic BC, ECs on
RGD peptide-grafted magnetic BC membranes generally showed better cell adhesion and
proliferation that is further enhanced by applying a low magnetic field frequency of 0.1 Hz.
Magnetic BC with embedded IONPs was also used by Arias et al. for TEVG production [94].
The embedded IONPs were protected from oxidation by an additional dextran coating.
Magnetization of the resulting composite hydrogel allowed magnetically-functionalized
SMCs to be retained under dynamic flow conditions and form a biologically active dense
cell layer.
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In contrast to the aforementioned strategy of capturing IONPs-loaded cells by mag-
netizable scaffolds, the work of Perea et al. demonstrated another possibility [95,96].
IONPs-loaded ECs or human SMCs were uniformly applied by a radial symmetric mag-
netic force to the lumen of PTFE or collagen scaffolds placed at the center of a ring-shaped
electromagnet. By this method, scaffolds could be rapidly and efficiently fabricated with
multiple cell layers. The same technique was used to endothelialize tubular 3D electrospun
scaffolds composed of a mixture of PCL and silk fibroin, combining the mechanical advan-
tages of PCL with the enhanced support of cell attachment provided by silk fibroin [97]. In
another work, a cylindrical magnet was inserted into the lumen of decellularized porcine
common carotid artery (dCCA) and immersed in a suspension of magnetically labeled
murine 3T3 fibroblasts. Magnetic cell seeding resulted in effective cell colonization, which
was also successfully performed with human SMCs and dermal fibroblasts [98]. Fayol et al.
prepared polysaccharide-based and gelatin-coated porous scaffolds [99]. Efficient cellular
coating was enabled by a magnet-based technique in which human ECs or endothelial
progenitor cells (EPCs) were labeled with IONPs and then magnetically directed into the
lumen, where they attached and formed a continuous endothelium. Pluricellular TEVGs
could be achieved by pre-incorporation of mesenchymal stem cells (MSCs) into the pore
structure and subsequent magnetic cell seeding with IONPs-labelled ECs. Another study
used a Halbach cylinder device to rapidly direct IONP-loaded fibroblasts to the luminal
surfaces of large tubular constructs [100]. Compared with the dynamic rotation technique,
in which cell distribution was highly irregular, the distribution of cells achieved by the
magnetic method was much more uniform. This study demonstrates the advantages of
using radially symmetric and homogeneous magnetic fields and IONPs-loaded cells over
conventional methods in colonizing tubular structures.

3.2.3. IONP-Based Stent Improvements

Stent implantation is one of the most common invasive treatments for patients with
coronary artery disease. Meanwhile, a variety of commercial stents and experimental
stents made of different materials are available, based on polymer-free metal platforms,
biodegradable/bioresorbable polymers, as well as stents that allow drug delivery by mag-
netic nanoparticles [101,102]. Since accelerated endothelialization may lead to a reduced
incidence of restenosis or thrombosis not only in TFVGs but also in stents, rapid endothe-
lialization is therefore of great importance to ensure long functionality and minimize
complications [103]. Consequently, stents made of magnetic and biocompatible materials
capable of attracting and retaining IONP-labeled ECs are advantageous [104–107].

In one study, a biocompatible polymer-free composite coating of magnetic mesoporous
silica nanoparticles (MMSNs) and carbon nanotubes (CNTs) was prepared, which had a
sufficient drug (rapamycin) release performance, and the advantage of rapid endothelializa-
tion compared with other commercial polymer-coated drug-eluting stents [108]. Lee et al.
coated magnesium stents with biodegradable PLA polymer with embedded magnetizable
iron-platinum (FePt) NPs [109]. These stents allowed efficient and uniform capture of
IONPs-labeled progenitor stem cells even under flow conditions. Tefft et al. demonstrated
rapid in vivo endothelialization of novel stents made of magnetizable duplex stainless
steel (2205 SS) [110]. By labeling autologous blood-derived ECs with PLGA-coated IONPs
and administering them intracoronary, the stents, which were additionally magnetized
by attaching two 1.0-T permanent magnets to the chest wall of the pigs, were extensively
endothelialized within 3 days. In another work, Adamo et al. demonstrated the feasibility
of rapid and efficient in vivo endothelialization of stented carotid arteries in a rat carotid
model after stent angioplasty by magnetically guided delivery of IONP-loaded ECs [111].
In a rat carotid artery stent angioplasty model, the benefits of magnetically assisted delivery
of ECs to prevent vascular lumen narrowing after stent angioplasty were demonstrated by
Polyak et al. [112]. Magnetic cell colonization at the distal end of the stented artery showed
significant protection against stenosis after 2 months compared with the proximal part of
the stent.
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Targeted cell delivery was shown by Chen et al. by using anti-CD34-conjugated IONPs
with high affinity for EPCs. Magnetization of iron stents resulted in a high adsorption
of IONPs and magnetically labeled EPCs, demonstrating that this method can efficiently
promote EPC capture and endothelialization of iron stents [113].

IONPs could also be used to functionalize stents with antirestenotic drugs or an-
tiplatelet agents to prevent stenosis and thromboembolic complications until the metallic
surface is covered with a neo-EC layer [114,115]. Furthermore, a repeatable, targeted,
and patient-specific drug delivery by drug-coupled IONPs and magnetizable stents is
another promising procedure for the treatment of restenosis [107,116]. Räthel et al. coupled
rapamycin, which has an antiproliferative activity, to IONPs and then incorporated them
into lipid-based microbubbles. In vitro flow-through experiments demonstrated successful
trapping of the microbubbles by an external magnet and increased deposition on the stent
struts of nickel-plated commercial stents [117]. Other studies used IONPs with paclitaxel
(Ptx) to prevent SMC migration and proliferation. Johnson et al. fabricated biodegrad-
able PLA/PLGA-based paclitaxel (Ptx) and IONP-loaded nanoparticles that potentially
could allow re-dosing of depleted drug-eluting stents, thereby extending the life of the
implant [118]. In another study, Chorny et al. demonstrated the feasibility of site-specific
delivery of paclitaxel (Ptx) to implanted magnetizable stents in a rat carotid stenting model
by uniform magnetic field-guided targeting of Ptx-loaded IONPs that resulted in significant
inhibition of in-stent restenosis [119]. Finally, to treat in-stent restenosis after stent implan-
tation, Wang et al. developed Ptx-loaded PLGA nanoparticles embedded in IONP-coated
microbubbles. After magnetic targeting to the stents, focused low-intensity ultrasound
induced microbubble vibration and release of PLGA-Ptx [120].

3.3. Atherosclerosis

Despite immense diagnostic and therapeutic advances, atherosclerosis remains a
global public health problem and will continue to require the development of new strate-
gies. These new approaches are increasingly based on molecular understanding of the
disease, allowing specific nanomedicine-based molecular imaging and therapy [121–126].
Of particular interest are IONPs that can be used as transport vehicles for diagnostic or
therapeutic agents through specific surface coating and functionalization, thus enabling
site-specific and targeted delivery [127–130]. Meanwhile, there are numerous studies
on NP-based imaging of plaques [131,132]. Among these, contrast-enhanced MRI plays
a dominant role and reports demonstrate that MRI with IONPs is suitable for detailed
mapping of biomarker expression in lesions compared with other contrast agents such as
gadolinium [133,134].

3.3.1. IONP-Based Atherosclerosis Imaging

Imaging of atherosclerotic plaques is critical for diagnosis, assessment of treatment
modality and monitoring of therapy progress. Numerous studies have shown that the use
of IONP and its targeted delivery to atherosclerotic plaques are able to provide accurate
imaging. In the following, some studies are described in which IONP were specifically ap-
plied for the detection of plaque-associated cells or cell components, such as macrophages,
foam cells, monocytes, ECs, platelets, or for the detection of other potential biomarkers of
atherosclerotic plaques.

A large number of studies have reported the imaging of atherosclerotic plaques by
labelling of macrophages with IONPs. In particular, the use of ultra-small IONPs or very-
small IONPs particles for the detection of macrophages and pathological inflammation in
atherosclerotic tissue is well established [135–141]. Especially, ferumoxytol (Feraheme®)
and ferumoxtran-10 (Sinerem®/Combidex®), which have an excellent safety profile and
are selectively taken up by macrophages, has been widely reported [142–151]. In a recent
study, ultra-small IONPs was tested for potential high-risk atheroma imaging in which
nanoparticles deposited in plaque macrophages, SMCs and ECs and associated with
areas of plaque neovascularization and impaired surface endothelial permeability [152].



Nanomaterials 2021, 11, 2337 10 of 72

However, the slightly larger IONPs are also suitable for the imaging of atherosclerosis [153]
and a clinical study demonstrated the potential suitability of fercarbotran for detecting
infiltration of macrophages in human atherosclerotic carotid plaques [154].

To improve the labeling efficiency of macrophage-rich plaques, IONPs can be function-
alized with substances for increasing the IONP accumulation or targeting efficiency. Naka-
mura used heparin-modified calcium phosphate nanoparticles loaded with ferucarbotran
(Resovist®) and showed higher delivery of iron oxide in form of composite nanoparticles
to macrophage-rich carotid artery lesions in mice compared to free ferucarbotran [155].
Other studies used IONP with dextran, a ligand of macrophage scavenger receptor type
A (SR-A) for macrophage-targeted MRI. For example, IONPs coated with dextran sulfate
showed significant signal loss at the injured carotid artery after intravenous injection into
an atherosclerotic mouse injury model [156]. Another study used oleyl-dextran-coated
magnetic nanoclusters for the detection of macrophage-rich atherosclerotic plaques in a rat
arterial balloon injury model [157]. After intravenous injection of PEG-coated and DNA
oligonucleotide-coupled IONPs in an apolipoprotein E knockout (ApoE−/−) mouse model,
DNA-IONPs were shown to accumulate effectively in macrophages of atherosclerotic
plaques, most likely by binding to SR-A and lipid rafts, thus providing an effective strategy
to enhance systemic delivery of NP to atherosclerotic plaques [158]. In vivo recognition
of macrophages in atherosclerotic carotid arteries could also be achieved with IONPs pro-
vided with a ferritin protein shell [159]. Segers et al. used ultra-small IONPs with the SR-AI
peptide ligand PP1 (LSLERFLRCWSDAPAK) to achieve higher iron uptake in macrophages
for improved visualization of atherosclerotic plaques in ApoE−/− mice [160]. In another
study, Kitagawa et al. demonstrated effective MRI detection of vascular inflammation and
angiogenesis in carotid disease and abdominal aortic aneurysm by RGD-conjugated iron
oxide nanoparticles and their specific targeting of macrophages and angiogenic ECs [161].
There are also reports of antibody-based targeting. Tarin et al. used gold-coated IONPs
coupled with an anti-CD163 antibody to enable targeted detection of the CD163 receptor,
which expression is increased in macrophages at inflammatory sites [162]. Finally, Ji et al.
developed anti-CD68 receptor-targeted Fe-doped hollow silica nanoparticles as a multi-
modal ultrasound/MRI contrast agent to identify macrophages in atherosclerotic plaques
in ApoE−/− mice [163].

Foam cells, or lipid-laden macrophages, are cholesterol-containing cells which play a
critical role in the occurrence and development of atherosclerotic plaques and are induced
by several factors, such as imbalance of cholesterol influx, esterification and efflux [164].
Wu et al. fabricated magnetic mesoporous silica NPs with near-infrared fluorescence
(NIRF) dye (IR820) and PP1 peptide, a targeting peptide that binds to the surface receptor
(SR-AI) on foam cells, to detect macrophage accumulation in atherosclerotic plaques of
ApoE−/− mice by dual MR/NIRF imaging [165]. In another study, annexin V, which
binds to apoptotic cells such as foam cells of atherosclerotic plaques by interaction with
phosphatidylserine, was bound to IONPs and administered parenterally to rabbit models
of human atherosclerosis [166]. Annexin V-IONPs distributed rapidly and deeply into
early apoptotic plaque foam cells and enabled a biologically targeted MRI detection and
evaluation of cardiovascular lesions and the differentiation between occlusive and mural
plaques. Annexin V was also utilized in another study to produce an ultra-small IONP-
based multimodal nanoparticle system for single photon emission computed tomography
(SPECT)/ MRI to detect apoptotic macrophages in vulnerable plaques [167].

An early marker of atherosclerotic plaque formation is the migration of monocytes
from the circulation into the beginning lipid accumulation in the arterial wall. IONPs
coupled with a monocyte chemoattractant protein-1 (MCP-1) peptide motif accumulated
in the aorta of atherosclerosis model mice that exhibited monocyte accumulation, and thus
could serve as a diagnostic tool for atherosclerosis [168].

While the healthy endothelium has a protective function, activation and dysfunction of
endothelial cells affects, among other things, leukocyte adhesion and recruitment, platelet
activation and thrombus formation, ultimately promoting the formation of atherosclerotic
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plaques [126]. Endothelium-directed NPs can therefore be used in combination with
imaging methods to visualize structures and activities of the atherosclerotic endothelial
wall. Kelly et al. developed targeted IONPs for MRI imaging that were coupled with the
phage display-derived peptide sequence VHSPNKK and could bind to endothelial vascular
adhesion molecule-1 (VCAM-1), a critical component of the leukocyte-endothelial adhesion
cascade, and thus be taken up by VCAM-1-expressing cells [169]. In vivo, IONPs identified
VCAM-1-expressing ECs in a murine tumor necrosis factor-alpha-induced inflammation
model and colocalized with VCAM-1-expressing cells in atherosclerotic lesions present in
cholesterol-fed ApoE−/− mice. In similar studies, magnetic NPs modified with VHPKQHR
peptides were used for targeting VCAM-1-expressing cells [170], which could in principle
be loaded with therapeutic agents and thus be suitable for drug delivery [171]. In the study
by Michalska et al., the use of ultra-small IONPs functionalized with VCAM-1-binding
peptide (P03011) resulted in a distinct visualization of the aortic root of ApoE−/− mice [172].
Histological analysis confirmed iron accumulation in the intima, in colocalization with
VCAM-1-expressing macrophages and ECs.

For early detection of atherosclerotic plaques and activated platelets, which play a
central role in thrombosis, atherosclerosis and inflammation, Prévot et al. coupled the
platelet-specific scFv-Fc TEG4-2C antibody with a IONP-containing magnetic oil-in-water
nano-emulsion and achieved significant labeling of atheroma plaques both in vitro and
ex vivo in animal models using magnetic particle imaging (MPI) and MRI [173]. Specific
targeting of platelets was also achieved by using a single chain antibody (scFv) [174,175].
Coupling of scFv to IONPs or cells provided the possibility of molecular imaging and
cell homing in cardiovascular and inflammatory diseases. In another study, rhodamine-
labeled PEGylated dextran/IONPs were used in conjunction with an anti-human P-selectin
antibody to target P-selectin, which is expressed at high levels on activated platelets and
ECs, with high affinity to identify the early stages of atherosclerosis [176]. A successful
targeting of activated platelets within atherosclerotic lesions was also achieved by ultra-
small IONPs functionalized with a recombinant human IgG4 antibody (rIgG4 TEG4) [177].

There are abundant biomarkers suitable for NP-based homing to atherosclerotic
plaques. One study used hybrid metal oxide-peptide amphiphile micelles (HMO-Ms),
which are designed to enable MRI imaging of thrombosis at atherosclerotic plaques through
the fibrin-targeting sequence CREKA [178]. In vivo studies in a murine ApoE−/− plaque
model using poly(maleicanhydride-alt-1-octadecene) (PMAO)-coated IONPs showed that
the IONPs accumulated in similar vascular regions as an elastin-targeting gadolinium-
based contrast agent which accumulated in plaques [179]. Kim et al. compared the potency
of the two targeting ligands, cRGD peptide and collagen IV, which binds to αvβ3-integrin
overexpressed in neovasculature and collagen type IV present in plaque, respectively [180].
Of the two IONP-conjugated targeting ligands, cRGD-based targeting was more efficient
than collagen IV targeting peptide in the early stage of atherosclerosis in the Apo E-/-
mouse model. Targeting of atherosclerosis was also successfully achieved with spherical
nanocomplexes of zinc-doped ferrite nanoparticles, bovine lactoferrin, PEG, and Hsp-70
antibodies [181]. Histological studies after injection into a Psammomys obesus model of
type 2 diabetes, obesity and atherosclerosis confirmed site-specific accumulation at the
atherosclerotic aortic arch and descending thoracic aorta of animals with severely damaged
intima full of ruptured microatheromas. Multimodal molecular imaging of atherosclerotic
plaques from ApoE−/− mice was similarly enabled by profilin-1-targeting IONPs, through
conjugation of a polyclonal profilin-1 antibody and an NHS-Cy5.5 fluorescent dye [182].
Wie et al. used IONPs functionalized with the fusion protein ‘enhanced green fluorescent
protein with the first epidermal growth factor domain’ (EGFP-EGF1) to detect tissue factor
(TF)-positive atherosclerotic plaques in ApoE−/− mice [183].

Another approach to detect atherosclerotic plaques is the use of IONPs with high-
density lipoproteins (HDL) [124]. After injection of these particles into ApoE−/− mice,
the iron oxide nuclei were found in large amounts within the atherosclerotic plaques of
the aorta and thus penetrate into the plaques, similar to native HDL. In a similar study,
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multimodality imaging confirmed that HDL-labeled IONPs and quantum dots accumu-
lated in atherosclerotic lesions in mice after intravenous and especially after intraperitoneal
injection [184]. Another study used polyethylene glycol (PEG)-coated ultra-small IONPs
conjugated with polyclonal anti-mouse oxidized low-density lipoproteins (OxLDL) anti-
body for direct detection of OxLDL and imaging of atherosclerotic lesions in ApoE−/−

mice [185]. Li et al. used β-cyclodextrin-conjugated IONPs for potential molecular imaging
of crystallized cholesterol in atherosclerotic plaques [186].

A further study demonstrated that tenascin-C, a multifunctional extracellular gly-
coprotein that is highly expressed in advanced atherosclerotic plaques and is associated
with inflammatory changes and plaque rupture, can serve as a marker for atherosclerotic
plaques [187]. After injection of anti-tenascin C-ultra-small IONPs, MR images correlated
well with histopathological analysis and the progression of atherosclerotic plaques. IONPs
can not only be used for plaque detection, but are also suitable for assessing the condition
of plaques. Embedding perfluorooctyl bromide and IONPs in PLA and linking vascular
endothelial growth factor receptor-2 (VEGFR-2) antibody on the surface of the particles
enabled bimodal MRI and ultrasound visualization of intraplaque neoangiogenesis, which
is a biomarker for impending plaque rupture [188]. Atherosclerotic plaques could also
be detected by using hyaluronan-conjugated iron oxide nanoworms (hyaluronan-NWs).
Compared with spherical hyaluronan-coated nanoparticles, hyaluronan-NWs bind more
strongly to CD44, a cell surface protein overexpressed in plaque tissues, and enabled
the non-invasive plaque detection by MRI in an ApoE−/− mouse model [189]. GEBP11-
peptide-targeted IONPs showed good visualization of angiogenesis in atherosclerotic
plaques after intravenous injection in a rabbit model of atherosclerosis, which may be
useful for molecular imaging of progressive plaque angiogenesis leading to plaque hemor-
rhage and vulnerability [190]. In the work of Tong et al., multimodal NPs were developed
by conjugating IONPs with 5-hydroxytryptamine and cyanine 7 N-hydroxysuccinimide es-
ter to detect active myeloperoxidase (MPO), a potential inflammatory marker of vulnerable
atherosclerotic plaques [191]. MPI, fluorescence imaging (FLI), and computed tomographic
angiography (CTA) in an ApoE−/− mouse model confirmed high specificity and sensitivity
of the particles and allowed quantitative assessment of the degree of inflammation. Finally,
to identify vulnerable plaques and rupture plaques, dimercaptosuccinic acid (DMSA) was
bound to ultra-small IONPs and showed high specificity and sensitivity for early detection
of vulnerable plaques and ruptured plaques after injection into an atherosclerotic rabbit
model [192].

3.3.2. IONP-Based Therapy of Atherosclerosis

IONP not only enable the imaging of artherosclerotic plaques, but can also serve as
vehicles for therapeutic agents. The efficacy of drug delivery is mostly achieved by passive
aggregation provided by the enhanced permeability and retention effect. Active drug
delivery can also be achieved using targeting molecules, or specific stimuli such as magnetic
fields or ultrasound, to effectively target atherosclerosis at the molecular level [193]. The
study by Banik et al. presented a theranostic nanoparticle platform with mitochondria-
and macrophage-targeted surface functionalities that lowered lipid levels in the body
without causing a significant immunogenic effect [194]. The presence of a mannose-
bearing ligand also allowed targeting of macrophages normally present in atherosclerotic
plaques. Zhang et al. used theranostic composite IONPs containing non-inflammatory
cyclodextrin, a profilin-1 antibody, and the anti-inflammatory drug rapamycin to target
vascular SMCs in atherosclerotic plaques and inhibit the progression of atherosclerosis
in ApoE−/− mice [195]. Another theranostic approach to plaque treatment, based on the
expression of alpha(v)beta3-integrin by the vasa vasorum, was described in the study
by Winter et al. [196]. Administration of fumagillin, an antiangiogenic agent, with ανβ3-
integrin-targeted paramagnetic nanoparticles allowed the quantitation of angiogenesis and
inhibition of the proliferation of the vasa vasorum in hyperlipidemic rabbits.
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Reactive oxygen species (ROS) play an important role in inflammatory reactions such
as those associated with atherosclerosis. In an in vitro study with theranostic Fe3O4/CeO2
core-shell nanoparticles, it was shown that they can effectively capture ROS and are well
detectable by MRI, making them potentially suitable for the treatment and diagnosis of
ROS-related inflammatory diseases [197].

Another theranostic strategy for vulnerable plaques using an adaptable nanoparticle
platform was demonstrated in the work of Bonnet [198]. They developed a PEG-coated
nanoemulsion (NE) functionalized with human scFv-Fc antibody and loaded with IONPs
and an active pharmaceutical ingredient (alpha-tocopherol). Targeted antibody recognition
of galectin 3, an atherosclerosis biomarker and reduction of oxidation by alpha-tocopherol
could potentially reduce the risk of plaque rupture. Another group used PEG-coated
ultra-small IONPs coupled with antibodies against connective tissue growth factor (CTGF)
as well as free anti-CTGF to recognize and neutralize CTGF within atherosclerotic lesions
of mice [199]. While anti-CTGF-treated animals exhibited reduced macrophage deposition,
CTGF expression, and plaque volume, future experiments are needed to verify the effect of
the NPs.

The combination of IONPs with the phase transition material perfluorohexane and
with dextran sulfate (DS) targeting SR-A enabled specific targeting of activated macrophages
in an atherosclerotic plaque model of ApoE−/− mice [200]. Low intensity focused ul-
trasound irradiation (LIFU) could trigger the induction of apoptosis in macrophages
with endocytosed NPs, allowing theranostic treatment of atherosclerosis. Oumzil et al.
demonstrated that solid lipid nanoparticles loaded with IONPs and the therapeutic agent
prostacyclin (PGI2) can inhibit platelet aggregation and also exhibit very good relaxation
properties for MRI imaging [201]. Finally, Gao et al. presented a strategy to distinguish
and treat rupture- or erosion-prone plaques [202]. PLGA-NPs containing IONPs and per-
fluoropentane coated with PP1 and cRGD peptides, enabled plaque characterization by
ultrasound and MRI. In addition, the NPs might also promote therapeutic effects through
the ultrasound-induced phase change from nanodroplets to gaseous microbubbles. Theo-
retically, by ultrasound, the NPs could induce apoptosis in macrophages via binding of
PP1 to SR-A, thereby reducing chronic infiltration of inflammatory cells into rupture-prone
plaques. The NPs could also target erosion-prone plaques, through binding of cRGD to
glycoprotein (GP) IIb/IIIa on activated platelets, and promote platelet disaggregation
by ultrasound.

3.3.3. Magnetic Drug Targeting to Atherosclerotic Plaques

Targeted enhancement of IONPs can be achieved by the presence of local magnetic
fields, promising enhanced and improved diagnosis of inflammatory plaques by MRI. By
applying an external magnetic field, Shi et al. achieved a slowdown of IONPs in blood
flow, alteration of their trajectory, and ultimately efficient uptake into inflammatory cells,
resulting in a clear visualization of plaques via MRI [203]. Similar to the magnetically
enhanced plaque detection, drug-loaded IONPs can be directed and retained at the desired
location by magnetic fields for theranostic approaches [204]. Magnetic drug targeting
(MDT) thus realizes higher concentrations of bioactive molecules at the target site and
mitigates potential systemic side effects. In proof-of-concept studies from our group,
magnetic accumulation of circulating IONPs in the non-uniform shear stress region of a
bifurcating flow model was investigated by Matuszak et al., showing the applicability of
magnetic targeting of arterial-like geometries [205,206]. In a further study of our group,
dexamethasone phosphate (Dexa)-functionalized IONPs were directed into the abdominal
aorta of an atherosclerosis rabbit model by MDT [207]. Although the treatment did not
produce the expected anti-inflammatory results, the study demonstrated good targeting
efficacy that has the potential to provide an efficient treatment of atherosclerotic plaques
with other IONP-coupled drugs, such as statins.



Nanomaterials 2021, 11, 2337 14 of 72

3.3.4. Cell-Based Plaque Regeneration

Apart from pure IONP-based treatment of atherosclerotic plaques, cells, especially
EPCs, may also be used for therapeutic angiogenesis and vascular repair and, after loading
with IONPs, to monitor the cell migration into vessels. For instance, after transplantation
of ultra-small IONP-poly-l-lysine-labeled EPCs into an atherosclerotic rabbit model, results
suggest that ultra-small IONP-labeled EPCs may play a role in repairing endothelial
damage and preventing atherosclerosis [208].

3.4. IONPs as Modulator and Enhancer of Cardiovascular Regeneration

Currently, there are a variety of pharmaceutical drugs for the treatment of cardio-
vascular diseases, including calcium channel blockers, antioxidants, oxygen free radical
scavengers and anti-apoptotic agents, but they are often associated with side effects. The
use of IONPs as vehicles for targeted drug delivery could significantly reduce systemic
effects. Moreover, NPs can either be coupled with drugs or other active substances or
enable gene transfer for overexpression or silencing of relevant genes by binding DNA
or RNA. Xiong et al. have demonstrated cardio protective activity of DMSA-IONPs after
intravenous injection [209]. The IONPs were effective in protecting against ischemic dam-
age and also exhibited no significant toxicity toward cardiomyocytes. However, the exact
underlying mechanisms for the cardioprotective effect were uncertain.

Functionalized IONPs can also be used to reduce leukocyte migration and thereby
attenuate inflammatory responses. In one study, siRNA against chemokine (C–C motif)
receptor 2 (CCR2), a chemokine receptor critical for leukocyte migration, was encapsu-
lated in nanoparticles to treat inflammatory cell infiltration of the heart and subsequent
deterioration of cardiac function in myocarditis [210]. CCR2 silencing in mice with acute
myocarditis reduced the migration of granulocyte-macrophage progenitor cells from the
bone marrow into the blood, suggesting that this strategy may indicate a pathway for
successful treatment of myocarditis. It should be mentioned that nanoparticles can be used
not only to suppress inflammation, but also for its detection. After intravenous application
of ultra-small IONPs, they will be absorbed by macrophages. As macrophages and other
immune cells accumulate at the site of inflammation, they can be detected by MRI and, for
example, enable the early detection of rejection reactions, e.g., of transplanted hearts [211].
After intravenous injection of magnetic nanobeads functionalized with adenoviral vector-
encoded human vascular endothelial growth factor (hVEGF) gene, Zhang et al. achieved a
strong therapeutic gene expression and significantly improved function in ischemically
injured hearts of rats with acute myocardial infarction by magnetic targeting [212].

Alternative approaches for magnetically-based targeted drug delivery are currently
under intense investigation, as this technique is expected to enable the local enrichment of
IONPs and improve the therapeutic outcome by specifically enhancing tissue production.
IONPs externally navigated by applied magnetic fields could help to regain tissue function,
e.g., in the treatment of cardiac arrhythmias [213]. Improved cardiac function in systolic
heart failure rat models was achieved by Kiaie et al. by loading chitosan-coated IONPs
with the cardiac myosin activator omecamtiv mecarbil and targeted delivery using an
external magnet to the rats’ hearts [214]. Sivaraman et al. focused on localized elastic
matrix stabilization and regenerative repair [215]. An underlying cause of the growth of
abdominal aortic aneurysms is chronic overexpression of matrix metalloproteases (MMPs),
which destroy the elastic matrix in the aortic wall while further decreasing the poor
autoregeneration of these matrix structures. One way to increase elastic matrix deposition
and to inhibit MMPs is by sustained administration of doxycycline from PLGA NPs [215].
In a further publication, the same group demonstrated increased elastic matrix deposition
and significant inhibition of MMP synthesis and activity by controlled targeting of PLGA
NPs containing doxycycline and IONPs by an applied external magnetic field [216].

As an alternative cell-free therapy, angiogenesis and cardiac function in infarcted heart
tissue could be enhanced by the accumulation of extracellular vesicles, which are necessary
to maintain tissue homeostasis. To this end, Liu et al. used SiO2-coated and PEG-decorated
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IONPs functionalized with two antibodies, one against CD63 antigens on the surface of
extracellular vesicles and one against myosin light chain surface markers on injured car-
diomyocytes, and performed magnetically directed accumulation of exosomes on injured
cardiac tissue in rabbit and rat models of myocardial infarction [217]. Another study
demonstrated the production of IONP-loaded exosome-mimetic extracellular nanovesicles
from IONP-loaded MSCs [218]. After injection into the infarcted heart, magnetic guidance
significantly increased their retention, induced an early shift from the inflammatory phase
to the reparative phase, decreased apoptosis and fibrosis, and enhanced angiogenesis
and recovery of cardiac function. In a study by Santoso et al., cardiomyocyte-derived
exosomes improved cardiac function and myocyte viability after myocardial infarction by
regulating autophagy in hypoxic cardiomyocytes, which may in the future enable cell-free,
patient-specific therapy for ischemic cardiomyopathy [219].

3.5. Stem Cell Therapy

Stem cell therapy has been considered the greatest hope for the treatment of cardiovas-
cular diseases. In principle, their use could promote regeneration of all injured and diseased
tissues. In the treatment of cardiovascular and cerebrovascular diseases, the promotion
of angiogenesis in ischemic tissues and organs represents a particular challenge [220].
Functional restoration of blood supply depends on the restoration of functional collateral
networks. To this end, most tissues have molecular mechanisms to compensate for low
oxygen levels through mechanisms of vasodilation, angiogenesis, arteriogenesis, vascular
remodeling and hematopoiesis. However, the inherent modulators of vascular remodeling
are often unsatisfactory and must be supported by proangiogenic and arteriogenic factors,
such as FGF-2 and PDGF-B. In addition, regeneration of injured blood vessels or repair
of ischemic tissue can be achieved by localized cell therapy with stem cells or EPCs [221].
However, cell therapy is only effective if the cells reach the place where they are expected
to fulfill their purpose and remain viable there. Therefore, the route of administration is
very important as the homing of intravenously administered cells is not as effective as
when the cells are delivered directly to the injured or diseased tissue or steered by magnetic
attraction [222]. Nevertheless, in all cases monitoring of the treatment is extremely impor-
tant. Below, IONP-assisted cell-based approaches to cardiovascular therapy and tissue
engineering are discussed. Examples of various IONP-loaded stem cells used for imaging,
cell targeting and cell modulation in cardiovascular regeneration are listed in Figure 3.

Figure 3. IONP-assisted cell-based therapy and tissue engineering. Shown are examples of various IONP-loaded stem cells
used for imaging, cell targeting and cell modulation in cardiovascular regeneration.

3.5.1. IONP-Based In Vivo Monitoring

Concomitant noninvasive in vivo MRI monitoring of therapy and visual differentia-
tion of any implanted cells or grafts from a host tissue can be achieved by labeling with



Nanomaterials 2021, 11, 2337 16 of 72

paramagnetic agents, such as IONPs due to their inherent imaging properties [223,224].
However, it must be noted that the MRI signal always originates from the IONPs, re-
gardless of the surrounding area. Consequently, extracellular particles, especially after
long-term tracking of transplanted stem cells, are also detected [225]. Apart from this, it is
not possible to distinguish whether the cells are still vital, have already died or that the
MRI signal originates from phagocytosing cells due to clearance of dead cells and their
IONP-loading [226]. Although other work confirmed the possibility of tracking IONP-
labeled cells during or shortly after direct intramyocardial stem cell transplantation, due to
the reuptake of IONPs by tissue macrophages, MRI cannot provide reliable information
about long-term cell viability and fate of transplanted cells [227–229]. In another study
in which IONP-labeled EPCs were injected into rat myocardium, it was shown that the
long-lasting signal from the iron-positive cells was mainly due to macrophages that had
taken up IONPs bound to dead cells [230]. However, there are also reports that long-term
tracking of IONP-labeled primary myoblasts incorporated into fibrin glue and injected into
the atrioventricular groove of rat hearts is possible for up to 1 year with µCT and MRI [231].
Analyses confirmed that the IONPs were confined to viable cells in the implant and that
there was no evidence of phagocytosis of the labeled cells by macrophages or release of
nanoparticles from the grafted cells. In their study, Naumova et al. evaluated the efficacy
of MRI imaging of cells by cellular uptake of exogenous IONPs or by overexpression
of ferritin, an endogenous iron storage protein [226]. Mouse skeletal muscle cells were
labeled either by co-culturing with iron oxide particles or by overexpressing ferritin and
transplanted into infarcted mouse hearts. Both approaches were found to have advantages
and disadvantages. For example, ferritin overexpression showed lower signal intensity
and was restricted to living cells, whereas NP labeling resulted in a comparably strong
signal in all injected cells, whether dead or alive.

Despite the previous reports, the study by Chung et al. demonstrated a strategy in
which long-term in vivo assessment of transplanted cells by MRI is possible [232]. For
this purpose, embryonic stem cells (ESCs) were first equipped with a reporter gene to
express antigens (hemagglutinin A and myc) and luciferase on the ESC surface. After
transplantation, the viability of the transplanted ESCs was demonstrated in vivo by using
IONP-conjugated antigen-specific monoclonal antibodies. Another study demonstrated
a variable viability of transplanted stem cells. To accurately assess viability, cell local-
ization and regenerative potential of transplanted cells, Hung et al. injected IONP- and
luciferase-labeled mouse ESCs into three different zones of myocardial infarction in a
mouse model [233]. Multimodality imaging demonstrated that despite decreased survival
of mESCs, precise delivery into the peri-infarct region resulted in significant functional
recovery of the damaged anterolateral myocardium.

Up to date several stem cells of different origins has been utilized for cardiovascular
tissue regeneration. A relatively new therapeutic approach for the treatment of cardiac
and other diseases is the usage of human ESCs (hESCs). For in vivo visualization of
transplanted hESCs, the cells can be labeled with IONPs and tracked with MRI. In an early
study, hESCs cells were loaded with dextran-coated ferumoxides (Feridex IV®/Endorem®)
and injected into explanted mouse hearts as well as in vivo into the anterior left ventricular
wall of rats [234]. The experiments demonstrated the feasibility of safe MRI-based in vivo
tracking of transplanted hESCs cells. Skelton et al. used ferumoxytol-labeled hESC-derived
cardiac progenitor cells to evaluate the distribution of cells after transplantation into the
left ventricular free wall of uninjured pig hearts [235]. The localization and distribution of
labeled cells could be effectively imaged even after 40 days, demonstrating the suitability
of ferumoxytol as a long-term, differentiation-neutral cell labeling agent.

Safe and effective loading of stem cells with IONPs to track cardiac regenerative
capacity of bone marrow-derived human mononuclear cells and C2C12 skeletal myoblasts
using ferumoxides as a label has also been demonstrated after injection of the cells into rat
myocardium [236]. Another study showed that DMSA-coated IONPs allowed imaging of
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skeletal muscle tissue-derived human myoblast cells and that the IONPs did not adversely
affect basic cellular functions [237].

In the study by Salamon et al., a bimodal detection of single MSCs after uptake of
carboxyfluorescein succinimidyl ester-linked IOMP was performed by histological fluores-
cence methods and MRI [238]. In another study, it was demonstrated that differentiation
of bone marrow mesenchymal stem cells (BM-MSCs) into cardiac and neuronal lineages
was unaffected by IONP-labelling [239]. Other studies investigated multimodality imag-
ing of BM-MSCs) [240,241]. MRI and bioluminescence imaging were thus used to track
IONP-, Firefly luciferase reporter gene- and fluorescently labeled cells transplanted into
rat hearts in vivo, whereas fluorescence imaging accurately tracked transplanted cells only
in vitro [240,241]. The transplantation of NP-labeled MSCs and BM-MSCs in rats, mice and
pigs allowed simultaneous cell tracking and evaluation of cardiac function in animal mod-
els using clinical MRI devices [242–244]. Another study showed that allogeneic BM-MSCs,
transfected with a minicircle vector encoding mutant HIF1-α and labeled with IONPs for
MRI tracking, significantly reduced infarct volume and improved left ventricular function
after injection into the peri-infarct of sheep undergoing coronary occlusion [245].

In the therapy of aneurysms, embolization with coils is widely used. However, the
endothelial layer of the aneurysm neck often loses its integrity after embolization with
the consequence that the aneurysms may reappear. MRI-sensitive and IONP-loaded bone
marrow-derived EPCs (BM-EPCs) could be used to regenerate the injured endothelium
by differentiating into mature ECs while monitoring the regeneration process. In a rat
embolization model of abdominal aortic aneurysm, IONP-labeled BM-EPCs were shown to
settle mainly in the aneurysm neck and accelerate the formation of fibrous tissue, indicating
that BM-EPCs can play a crucial role in the repair and remodeling of the aneurysm neck
orifice [246].

The success of vascular regeneration was demonstrated by IONP-labelled adipose-
derived stem cells (ASCs) after intravenous injection into the tail vein of a mouse carotid
artery injury model [247]. MRI confirmed homing of the ECs into the injured carotid tissue
over the following 30 days. Transplantation of allogeneic adipose-derived regenerative
cells (ARCs) is also a promising treatment for ischemic diseases. Using fluorescent ARCs
(GFP-ARCs) loaded with acetylated 3-aminopropyltrimethoxysilane (APTS)-coated IONPs,
Zheng et al. investigated the efficacy of therapeutic angiogenesis in an ApoE−/− mouse
model with hind limb ischemia [248]. Implantation of the labeled ARCs into ischemic
muscles was demonstrated in vitro by immunohistochemistry and in vivo by MRI and
confirmed the enhancement of neovascularization. Another study demonstrated that
hypoxia is a potent stimulus for the angiogenic activity of ASCs [249]. After implantation of
ex vivo hypoxia preconditioned IONP-labeled ASCs in which VEGF and HIF-1α expression
was increased into the infarcted myocardium of rats, capillary density and left ventricular
function were improved.

Hence, several studies have demonstrated the feasibility of tracking stem cells with
incorporated IONPs. However, biological safety must also be ensured when using NPs. In
this context, the work of Elkhenany et al. showed large differences in the effects of different
IONPs, either uncoated or coated with starch, after labeling ASCs [250]. In particular,
labeling ASCs with starch-Fe2O3 NPs improved cell migration and angiogenic potential
and provided them with higher resistance against apoptosis. Hill et al. demonstrated that
labeling of MSCs did not affect proliferation or differentiation ability and also provided
long-term detection after injection into normal and freshly infarcted myocardium in pigs.
The IONP-loaded cells even provided sufficient MRI contrast for in vivo detection in a
beating heart [251].

In addition to the numerous and promising research results on monitoring stem
cell-based treatment of cardiovascular diseases using IONP-loaded cells, first clinical
studies have now been launched. In one trial, administration of ultra-small IONP-labeled
autologous BM-MSCs after intramyocardial injection in patients with chronic ischemic
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heart disease was shown to be safe and the cells were detectable at the injection sites by
MRI for up to two weeks after transplantation [252].

3.5.2. IONP-Based Cell Targeting

The use of nanoparticles in stem cell therapy is not limited to monitoring transplanted
cells, but can also be used to target cells to specific sites by specific functionalization or/and
magnetic forces [223]. In this context, magnetic targeting can significantly enhance cell
retention. However, the applied magnetic field strength must not be too high, as this would
lead to microembolization and undermining the benefits of cell transplantation [253].

In particular, magnetic targeting has been shown to significantly increase cell homing.
In a heart failure rat model, IONP-loaded MSCs could significantly improve cardiac
function and myocardial hypertrophy and reduce fibrosis in the presence of a magnetic
field [254]. Magnetic targeting also offers advantages in retrograde coronary venous
delivery of MSCs for the treatment of cellular cardiomyoplasty due to increased cell
retention [255]. The study by Ottersbach et al. demonstrated significantly increased
short- and long-term engraftment rates after direct intramyocardial injection of NP-labeled
cardiomyocytes and application of a magnet, ultimately leading to greatly improved left
ventricular function [256].

Cheng et al. enabled targeted accumulation of cells to injured tissue using antibodies
and magnetic fields [257]. IONPs were coupled with two different antibodies, one targeting
CD45 on exogenous BM-MSCs and the other targeting endogenous CD34-positive cells
on injured cardiomyocytes to treat acute myocardial infarction. Additionally, the targeted
enrichment of therapeutic cells can be further enhanced by external magnets. The same
group increased cell retention and engraftment of cardiosphere-derived stem cells (CSCs)
by ferumoxytol labeling with magnetic targeting after intracoronary infusion into a rat
ischemia/reperfusion model, thereby improving the therapeutic benefit [258]. Transplan-
tation of IONP-labeled EPCs via the tail vein and guidance by an external magnet over
the infarct area demonstrated increased cell retention, microvessel density and proangio-
genic factor expression, significantly improved cardiac function, decreased infarct size
and reduced myocardial apoptosis in rats with myocardial infarction [259]. Wang et al.
showed that after intramyocardial injection of IONP-labeled ASCs and the presence of a
subcutaneously implanted magnet, cardiac retention of the cells increased and improved
the recovery of cardiac function in rats with myocardial infarction [260].

Dangerous vessel occlusions can be restored in the clinic with interventional balloon
angioplasty. However, the injury to the vessel walls that occurs during this procedure
carries the risk of restenosis and neointimal hyperplasia. In one study, magnetic cell tar-
geting of IONP-loaded MSCs in a rabbit model was shown to result in a six-fold increase
in cell retention and ultimately a reduction in restenosis [261]. The study by Vosen et al.
followed a different approach to restore vascular function based on radial symmetric
re-endothelialization [262]. Lentiviral vectors and IONP were used to overexpress vaso-
protective endothelial nitric oxide synthase (eNOS) in ECs. The IONP-loaded cells could
then be positioned on the vessel wall by magnetic fields under flow conditions. Thus, it
could be shown that a combined application of IONP, cell therapy and magnetic fields
can lead to a re-endothelialization and functional improvement of vessels. Precise move-
ment of IONP-loaded cells was recently demonstrated by the use of Halbach magnets by
Blümler et al. [263]. Kyrtatos et al. used a Halbach array-based magnet design to deliver
ferumoxides-loaded EPCs to the site of arterial injury to reduce neointima formation by
re-endothelialization [264].

3.5.3. MNP-Based Cell Modulation

The modulating capacity of IONPs towards cells was investigated by Han et al. [265].
The therapeutic efficacy of MSCs in myocardial infarction is mainly dependent on the
differentiation into an electrophysiological phenotype, which is determined by the active
gap junctional crosstalk of MSCs with cardiac cells in co-culture. In another study, gap
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junctional protein Cx43 was shown to be increased in IONP-loaded myoblasts and to
enhance communication with MSCs, resulting in significantly higher levels of cardiac
electrophysiological biomarkers and a paracrine profile favorable for regeneration [265].
Accordingly, injection of primed MSC in rat myocardial infarction models resulted in
significantly improved survival and cardiac function. Chen et al. developed multifunctional
silica-IONPs that are intrinsically suited for noninvasive imaging, magnetic guidance, and
as vehicles for the sustained release of insulin-like growth factor (IGF), a pro-survival
agent [266]. In a rabbit ligation/reperfusion model, labeling of human MSCs increased
the efficacy of cell therapy and enhanced cell survival through sustained release of pro-
survival agents. The study of basic electrophysiological properties was the major focus of
the work of Takanari et al. [267]. Co-cultures of cardiomyocytes and IONP-loaded skeletal
myoblasts (SkMB) on multi-electrode arrays were used as an in vitro model of myoblast
transplantation. Subsequently, the electrophysiological, and arrhythmogenic evaluation of
the experiments indicated that transplantation of co-cultures with magnetically patterned
SkMB could reduce arrhythmogenecity compared with conventional transplantation by
simple cell injection.

3.6. Cardiac Tissue Engineering and Regeneration

Another approach to restore functional cardiac tissue is the use of biomaterials, which
can be manufactured from a broad variety of components and exhibit a wide diversity of
structures. To achieve long-term cell retention and thus enhance the efficacy of cell-based
therapies, Blocki et al. developed injectable microcapsules of agarose, supplemented with
the ECM proteins collagen and fibrin and the glycosaminoglycan-like dextran sulfate, with
embedded IONP-labeled MSCs, and administered them into the infarcted heart wall [268].
In contrast to free MSCs, MSCs derived from the solubilized microcapsules were detectable
in the myocardium by MRI for several weeks. In another study, ASCs were encapsulated in
IONP (ferumoxides)-labeled semipermeable alginate microspheres and showed improved
cell retention in the myocardium of a porcine model of myocardial infarction [269].

One promising manufacturing method is electrospinning. In one study, to improve
mechanical properties and surface area, casein-coated IONPs were incorporated into
electrospun silk fibroin nanofibers [270]. After seeding mouse embryonic cardiac cells
(ECCs), the scaffold was confirmed to be cytocompatible, revealed no negative effects
on proliferation ability, and demonstrated upregulation of key cardiac genes, including
GATA-4, cardiac troponin T, Nkx 2.5 and alpha-myosin heavy chain.

The generation of heart-mimicking tissues can also be achieved based on hydrogels.
Zwi-Dantis et al. produced MRI-detecTable 3D collagen hydrogels with aligned human
cardiomyocytes from collagen by embedding IONP-loaded cells and transient application
of a magnetic field, which resulted in no alteration of normal cardiac function after trans-
plantation onto rat hearts [271]. Another study demonstrated an infection-inhibiting effect
of nanoparticles [272]. By incorporating IONPs into bioengineered porous type I collagen
patches to repair damaged myocardium, Mahmoudi et al. developed a biodegradable ma-
terial that could be imaged with MRI and also prevented the growth of Salmonella bacteria
in the presence of the embedded NPs. In another work, it was shown that internalization of
DMSA-IONPs by cardiac cells into collagen/Matrigel-based 3D engineered cardiac tissues
increased biological activity and assembly of gap junctions, enhanced the assembly of
electrochemical junctions and decreased adherens junctions and desmosomes [273].

Allginate scaffolds are among hydrogels most commonly tested in tissue engineering
of cardiac patches. It has been shown that prevascularization, by the addition of a mixture
of prosurvival and angiogenic factors, significantly increases the repair capacity of such
transplanted patches [274]. The same group demonstrated that capillary-like networks,
even without the addition of angiogenic factors, can be generated by the use of magnetically
labeled ECs seeded in macroporous alginate scaffolds through stimulation by an alternating
magnetic field [275]. In another study, they demonstrated the generation of functional
cardiac patches by combining the use of macroporous alginate scaffolds impregnated with
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IONPs and seeded with neonatal rat cardiac cells and stimulation by external magnetic
fields [276].

In a rat model of chronic myocardial infarction, Blondiaux et al. showed that fibrin
patches containing IONPs-loaded human BM-MSCs enhanced myocardial regeneration,
and presumably serve as paracrine reservoirs that allow increased release of soluble media-
tors [277]. In a similar study, cardiopatches of IONP-labeled bone morphogenetic protein 2
(BMP-2)-primed cardiac-committed mouse ESCs were embedded in a biodegradable fibrin
matrix and transplanted onto infarcted rat hearts. The results demonstrated efficient cell
implantation and improved global and regional cardiac function [278].

A potential treatment of myocardial infarction or severe ischemic diseases by magnetic
tissue engineering of multilayered cell sheets was proposed by Ishii et al. [279,280]. In one
work, adipose-derived regenerative cells (ARCs) were isolated from wild-type mice, loaded
with IONP-containing liposomes (MCLs), and mixed with a diluted ECM precursor. Using
a magnet, multilayered cell sheets were formed after 24 h, which, when transplanted onto
infarcted mouse myocardium, resulted in significant improvements in systolic function,
infarct wall thinning, and angiogenesis.

Scaffoldless multilayered cell sheets of cardiomyocytes (CMs) were prepared by
Shimizu et al. using cationic magnetite liposomes-loaded rat CMs by magnetic tissue
engineering [281]. Immunofluorescence staining of connexin 43 confirmed the presence
of gap junctions, and extracellular potential mapping verified the presence of electrical
connections. A similar approach was pursued by Akiyama et al. for magnetic-based pro-
duction of multilayered cell sheets composed by a mixture of IONP-loaded cardiomyocytes,
and ECM precursor [282]. A cylinder placed in the center of the cell culture wells resulted
in a homogeneous 3D ring-shaped tissue densely packed with cardiomyocytes, which
exhibited contractile properties and was electrically excitable.

Kito et al. generated induced pluripotent stem (iPS) cell layers for therapeutic an-
giogenesis [283]. For this purpose, mouse IPS cell-derived Flk-1+ cells were loaded with
magnetic nanoparticle-containing liposomes (MCLs) and mixed with diluted ECM precur-
sor. Multilayer cell sheets were then generated using an external magnet. Implantation
of the cell sheet accelerated revascularization of ischemic hind limbs in nude mice and
increased expression of VEGF and bFGF in ischemic tissue.

Mechanical stimulation and physical forces can lead to cell differentiation or con-
ditioning. Chouhan et al. developed a silk fibroin-based and magnetically responsive
matrix by incorporating IONPs and seeded it with neonatal rat cardiomyocytes and H9c2
cells [284]. The influence of pulsed magnetic field resulted in significantly increased cell
proliferation and higher expression of the connexin 43 gene, indicating the potential stim-
ulation of cultured cardiac cells to develop functional artificial constructs. In addition,
the magnetic actuator device also demonstrated the ability to be loaded with drugs and
showed a differential drug release profile depending on the stimulation frequency.

Functional tissue engineering of heart valves is a major challenge. To observe cell
migration into the developing tissue structure under dynamic conditions, human vascular
SMCs, ECs and BM-MSCs were labeled with IONPs and then seeded onto a nonwoven
scaffold of a mixture of polyglycolic acid (PGA) and PLA in a hybridization tube [285].
Mechanical conditioning under dynamic flow conditions was performed in a flow chamber
of an MRI-compatible bioreactor and enhanced cell migration of SMCs, ECs and BM-MSCs
within the scaffold and significantly increased extracellular collagen content.

4. Hard and Connective Tissue Regeneration and Engineering

In the following chapter, relevant work in the field of stem cell therapy and tissue
engineering for cartilage and bone defects in which IONPs were utilized are described
(Figure 4). Consideration will be given to work that uses IONPs as drug carriers or as tools
for fabricating composite scaffolds, as well as work that exploits the magnetic properties
of IONPs for visual inspection and control of cell- and material-based treatments, for
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magneto-mechanical induction to regulate cell function and differentiation, or for targeted
enrichment of NP-loaded cells.

Figure 4. Possible targets for IONP-assisted tissue engineering and regeneration of hard and connective tissues (Created
with BioRender.com).

4.1. Cartilage
4.1.1. MRI-Assisted Stem Cell Therapy for Cartilage Regeneration

IONPs represent a commonly used labeling agent that can effectively and rapidly
label most cells in vitro without exerting excessive negative interference on cellular func-
tions, such as proliferation or differentiation. This labeling allows the non-invasive in vivo
control and monitoring of cells applied for cartilage regeneration or cartilage tissue engi-
neering [286,287]. In this context, Saha et al. investigated the effect of IONPs (ferucarbotran)
on chondrogenic differentiation, viability, morphology and proliferation of human BM-
MSCs, neonatal and adult chondrocytes [288]. The results indicated that downregulation
of chondrogenic genes is time- and cell type-dependent and that ferucarbotran at the
concentration used appears to be suitable for noninvasive monitoring of stem cells and
mature chondrocytes. Another study showed that the influence of IONPs on stem cell
differentiation also depends on the colloidal stability of the nanoparticles before cellular
uptake [289]. While stable nanoparticles do not appear to have any effect on osteogenesis
or adipogenesis and these exerted a deleterious effect on chondrogenesis only in the pres-
ence of high intracellular iron levels, the harmful influence became more pronounced in
the presence of nanoparticle aggregates, while adipogenesis and osteogenesis were still
unaffected. Jing et al. investigated the fate of IONP-labeled BM-MSCs after injection into
the knee joint cavity of rabbit models of cartilage defects by MRI and found that although
the injected cells migrated into the synovial fluid at the suprapatellar bursa, the popliteal
space site, and the subchondral bone of the femur, they did not actively participate in the
repair of articular cartilage defects [290].

4.1.2. Magnetically-Based Targeted Cell Therapy for Cartilage Regeneration

In addition to the possibility of enhancing proliferation, differentiation, and migration
of stem cells by mechanical stimulation of an applied external magnetic field, magnetically
based enrichment of IONPs or IONP-loaded cells at diseased or defective sites is another
promising approach in the field of tissue regeneration [291]. Chiang et al. developed
transforming growth factor (TGF)-β1-loaded magnetic gelatin nanocapsules composed
of hexanoic anhydride-grafted gelatin and iron oxide nanoparticles to enable combined
treatment by magnetically induced stimuli and TGF-β1, as well as to enable magnetic-
based enrichment of loaded cells at the site of action [292]. Loading of a chondrogenic
ATDC5 cell line with nanocapsules resulted in the magnetically induced upregulation of
Col2a1 and, after release of TGF-β1 from degrading nanocapsules, further increased Col2a1
and aggrecan expression and stimulated chondrogenesis. Using an in vitro phantom of a
cartilage defect site, Feng et al. demonstrated that SPION-labeled human BM-MSCs can
be magnetically directed to the target region to form a three-dimensional (3D) cell sheet
structure at the location of the defect [293]. For the treatment of patellar defects, Kobayashi
et al. demonstrated that magnetically-labeled MSCs can be enriched after injection into
knee joints of rabbit and pig models at the site of the osteochondral defect under the effect
of an external magnetic force [294]. The results suggested the potential use of the minimally
invasive technique for other cartilage defects caused by osteoarthritis or trauma. In a
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recent study, autologous BM-MSCs were magnetized with ferucarbotran and injected into
the knee joint in patients with a focal articular cartilage defect to which a 1.0 T magnet
was pre-attached at an appropriate site [295]. Magnetic targeting demonstrated complete
closure of the defects with cartilage-like tissue and significant improvement in the clinical
outcomes 48 weeks post treatment.

4.1.3. Tissue-Engineered Cartilage

One of the most widely used scaffold materials, especially for tissue engineering of
bone and cartilage, is collagen. Mertens et al. incorporated ultra-small IONPs passively
or actively by chemical conjugation during crosslinking into collagen-based scaffolds.
The study showed not only a high biocompatibility of the structures towards different
cell types, but also that they can be easily, efficiently and stably labeled with ultra-small
IONPs. The collagen patches could be precisely monitored by MRI for up to 22 days after
subcutaneous implantation into the hind limb of mice [296]. In the study published by
Liu et al., MSCs were loaded with N-alkyl-PEI 2k stabilized IONPs and dispersed in a
collagen type I hydrogel before the nanocomposite was injected subcutaneously into the
flank of mice. Again, the hydrogel could be visualized by MRI for at least 19 days after
transplantation [297]. Recently, Huang et al. published a study involving the preparation
of magnetic nanocomposite hydrogels from Fe3O4, polyvinyl alcohol (PVA) and type II
collagen, which exhibited good physical properties as well as good swelling behavior
and cell compatibility [298]. In another work, Yang et al. fabricated scaffolds of cross-
linked collagen/cellulose nanocrystals in which ultra-small IONPs functionalized with
the chondroinductive small molecule kartogenin were incorporated [299]. The resulting
microenvironment stimulated the growth and differentiation of BM-MSCs and thus the
formation of chondrocytes.

Chen et al. demonstrated the noninvasive monitoring of hydrogel degradation by
multiparametric MRI during cartilage regeneration using a hydrogel system composed of
ultra-small IONPs, cellulose nanocrystal and silk fibroin and confirmed it by histological
analysis in a rabbit cartilage defect model [300]. Furthermore, no changes in mechanical hy-
drogel properties or viability of BMSCs were detected by ultra-small IONP treatment. In the
study of Yang et al. a cellulose nanocrystal/dextran hydrogel with embedded ultra-small
IONPs was reported which were functionalized with KGN, a non-protein compound that
can promote the differentiation of BM-MSCs into chondrocytes [301]. In vitro and in vivo
studies showed that KGN indeed recruits endogenous host cells and stimulates BM-MSCs
to differentiate into chondrocytes and that the regenerated cartilage tissue closely resembles
natural hyaline cartilage. Ramaswamy et al. fabricated two different cartilage constructs
composed of polyvinylidene difluoride (PVDF) fibers and poly(ethylene oxide) diacrylate
polymer hydrogels, which were both colonized with ferumoxide-labeled chondrocytes
derived from the patellar groove and femoral condyle of calves [302]. Using histological
methods, they demonstrated that the spatial location of the IONP-loaded cells matched the
position detected via MRI, confirming the utility of MRI-based visualization and tracking.

Nedopil et al. developed a protocol for the preparation of matrix-associated stem
cell implants from agarose and ferumoxides-loaded adult MSCs for articular cartilage
repair and noninvasive in vivo tracking of the therapeutic progress [303]. Another group
prepared a magnetically stimulable, three-layer biomimetic cartilage graft using different
concentrations of agarose that exhibited elastic and depth-dependent elongation properties
and that formed a gradient with sulfated glycosaminoglycan by colonization with bovine
chondrocytes [304]. Hou et al. developed cartilage tissue mimetic pellets with excellent
structural stability and cytocompatibility consisting of chondrocytes from New Zealand
White rabbit articular cartilage, hyaluronic acid-amphiphilic gelatin microcapsules with
embedded IONP [305]. Magnetic stimulation enhanced chondrogenesis and synthesis of
sulfated glycosaminoglycan (sGAG) and cartilage tissue-specific gene expressions of Col II
and SOX9. Preliminary results after transplantation of microcapsules and chondrocytes in
an osteoarthritis rabbit model with a pre-implanted magnet in the femoral head, showed
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that the presence of a magnetic force improved the retention and biofunctionality of the
transplanted chondrocytes. Daňková et al. developed a nanofibrous scaffold of PCL
and IONP by electrospinning and demonstrated in vitro that the composite improved the
viability of MSCs from the bone marrow of miniature pigs, accelerated proliferation, and
increased support for differentiation of MSCs compared with IONP-free scaffolds [306].

4.1.4. Drug Supported Cartilage Tissue Engineering

Magnetic stimulation can be used to release growth factors and drugs from stimuli-
responsive polymeric systems in a controlled manner to influence the differentiation of
cells in a required direction [307]. Fan et al. has developed a magnetic IONP-encapsulated
biopolymer nanogel composed of chitosan and heparin via specific nucleobase pairing for
vector delivery of BMP-2, which plays an important role in cartilage and bone develop-
ment [308]. In vitro, the nanogel showed high efficiency in supporting the viability of the
osteosarcoma cell line MG-63, especially under a magnetic field. Kim et al. prepared a mag-
netoresponsive gel of alginate with conjugated heparin and loaded with the TGF-β1 [309].
TGF-β1, which has a heparin-binding domain, was released in a controlled manner by
an applied magnetic field, thereby enhancing chondrogenic differentiation of the murine
chondrogenic cell line ATDC5. Another study demonstrated the preparation of magnetic
scaffolds of silk fibroin and nanoparticles carrying basic fibroblast growth factor (bFGF) by
an electrogelation process [310]. In the presence of bFGF-IONPs, the mechanical properties
as well as the viability and growth of the osteosarcoma cell line SaOS-2 were improved
and showed an inductive effect on collagen synthesis, alkaline phosphatase activity and
total protein synthesis.

4.1.5. Scaffold-Free Cartilage Tissue Engineering

In addition to fabricating composites based on cells and biomaterials, there are ap-
proaches to generate tissues using only cells without supporting materials. Son et al.
loaded human BM-MSCs with IONP from Magnetospirillum sp. AMB-1 and exposed
them to a static magnetic field after pelleting [311]. Magnetic stimulation increased the
content of collagen and sulfated glycosaminoglycan (sGAG), the main components of
cartilage tissue-specific ECM, and improved chondrogenic cell differentiation. Murata
et al. demonstrated the feasibility of homogeneous labeling and visualization of human
iPS cell-derived 3D cartilage tissue [312]. After dissociation of cartilage tissue and labeling
with gelatin nanospheres containing three types of quantum dots (QD) with different
fluorescence wavelengths and IONPs, the labeled cells were processed into 3D pellets or
cell sheets and could be fluorescently visualized over 4 weeks.

4.2. Bone Regeneration

Reconstruction of bone tissue is an important goal in regenerative medicine. Promising
approaches include the controlled differentiation of stem cells and the use of different materials
to generate bone scaffolds (Figure 5). The use of IONPs has been demonstrated not only to
allow the visualization of the therapeutic process by MRI imaging, but also to promote cell
differentiation and, through the application of magnetic fields, to enhance osteogenesis and
even to specifically deliver labeled cells or drugs to the target site [313–315].
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Figure 5. Stem cell therapy and tissue-engineering for bone regeneration. Possible strategies for bone regeneration and
examples of materials and composites from studies reviewed below.

4.2.1. Stem Cell Therapy for Bone Regeneration

As in other cell-based therapies, stem cell therapies for bone regeneration can be
non-invasively monitored and tracked after pre-loading of the administered cells with
IONPs. For example, Kérourédan et al. used a laser-assisted in situ bioprinting method to
print viable human stem cells from apical papilla onto a mouse calvarial defect. Printed
patterns of cells with superparamagnetic microspheres demonstrated the feasibility of
noninvasive cell tracking by MRI [316].

Apart from the suitability for imaging, the tissue repair-stimulating effect of IONPs
has been known for a while, but the exact underlying mechanisms are still unclear. Using
gene microarray assays and bioinformatics analyses, Wang et al. have shown that gene
expression of human BM-MSCs is strongly regulated after treatment with IONPs and that
the classical mitogen-activated protein kinase (MAPK) signaling pathway is activated,
thereby regulating downstream genes and promoting osteogenic differentiation [317].
Schulze et al. investigated the effect of amino-polyvinyl alcohol (PVA)-coated IONPs
on BM-MSCs after systemic injection into rat veins and found an accumulation of the
particles in the bone marrow and an increase in the metabolic activity and migration rate
of BMSCs [318]. Thus, the particles have high potential MRI imaging of bone marrow and
may be of interest for future applications in regenerative medicine.

Another possibility to positively influence cell differentiation is mechanotransduction.
The application leads to a conversion of an external force acting on a cell into internal
biochemical signaling pathways and affects cell differentiation, proliferation and ECM
composition, among others, and can be used in regenerative medicine for tissue-forming
approaches [319–321]. Hu et al. developed a Magnetic Force Bioreactor for ex vivo induced
bone formation by magneto–mechanical stimulation, capable of activating specific cell
surface receptors, such as platelet-derived growth factor receptor α (PDGFRα), using
IONPs [322]. Thus, mechanical stimulation by magnetic labeling could positively affect
osteogenesis and mineralization of MSCs. Rotherham et al. activated Wnt signaling in
human MSCs by IONPs functionalized with UM206, a synthetic peptide and ligand for the
Wnt receptor Frizzled [323]. Injection and magnetic stimulation of UM206-IONP-labeled
MSCs into ex vivo chick femurs resulted in enhanced osteogenesis and mineralization.
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4.2.2. Bone Tissue-Engineering

The addition of IONPs to scaffolds can promote protein adsorption and the formation
of a protein corona, which exerts a positive influence on tissue regeneration. Zhu et al. have
provided insight into the underlying molecular mechanisms of the osteoinductive effect
of IONPs in magnetic hydroxyapatite (HA) scaffolds and demonstrated that functional
proteins enriched in the corona efficiently activate the MAPK/ERK signaling pathway,
ultimately leading to the promotion of cell proliferation [324,325]. In an in vivo bone repair
model, they showed that the dynamic protein corona formed on the scaffolds promotes the
activation of acute inflammatory responses and leads to the recruitment of immune cells,
remodeling of the ECM, and acceleration of bone healing.

HA is one of the most frequently used substances for bone tissue engineering, mostly
as part of biocomposites. Heidari et al. examined the properties of pure chitosan, chitosan
/HA, chitosan /HA/magnetite and chitosan/magnetite, materials used for bone tissue
engineering, and showed that all composites are cytocompatible and that the addition
of HA and magnetite to the chitosan matrix can significantly improve the mechanical
properties of pure chitosan [326]. In a study by Russo et al., implantation of a porous
HA/magnetite scaffold in a rabbit model of a critical femoral defect was shown to induce
and support bone tissue formation with no short-term adverse effects on biocompatibility
and bone formation ability compared to IONP-free HA, the current gold standard in the
treatment of critical bone defects [327]. Sahmani et al. produced bio mimicking scaffolds
with drug delivery capability [328]. The porous scaffolds, which can potentially be used for
biological as well as hyperthermal applications, were prepared from HA and IONPs and
loaded with gelatin into which ibuprofen, a non-steroidal and non-inflammatory substance,
was incorporated. In another study, Przekora et al. investigated the effects of oxygen and
nitrogen species on proliferation and osteogenic differentiation of human ASCs [329]. They
embedded FexOy/NPs catalysts in the polysaccharide matrix of chitosan/curdlan/HA
and colonized the scaffold with ADSCs. Short-term exposure of ADSCs to nitrogen plasma
accelerated stem cell proliferation without negatively affecting osteogenic differentiation.
Liu et al. demonstrated the feasibility of non-invasive in vivo monitoring of the biodegra-
dation of silk fibroin/HA/ultra-small IONPs bone scaffolds implanted subcutaneously
into the back of nude mice after loading with BM-MSCs using quantitative MRI [330]. In
addition to promoting cell adhesion and cell growth and facilitating osteogenesis, resorp-
tion of the scaffolds occurred with concomitant bone formation. In the study of Pistone
et al., a biocompatible nanocomposite system of HA, IONP and magnetic multi-walled
carbon nanotubes was developed for controlled drug delivery and represents a potential
multimodal platform that has the potential to be used for bone tissue engineering [331].
Finally, Brett et al. fabricated a HA-PLGA scaffold containing IONPs functionalized with
a minicircle plasmid to overexpress B-cell lymphoma 2 (Bcl-2) to inhibit apoptosis in im-
planted cells [332]. The constructs were implanted into a mouse calvarial defect model and
seeded with adipose-derived stromal cells. After in vivo magnetofection, a significantly
higher rate of bone regeneration was observed in the center of the scaffold after 8 weeks
compared with control groups.

In addition to the widespread use of HA-containing biocomposites in bone tissue
engineering, several other studies have demonstrated the functionality of biocomposites
without the involvement of HA. Cojocaru et al. developed biodegradable composites with
a macroporous structure containing chitosan, calcium phosphates, hyaluronic acid, and
bovine serum albumin and IONPs that showed good biocompatibility toward osteoblast
cells [333]. To enhance osteogenesis of human ASCs, Lee et al. introduced a nanoscaf-
fold of halloysite nanotubes modified with IONPs, chitosan and 2-D calcium phosphate
nanoflakes. Through the synergistic osteoconduction of IONPs, chitosan and calcium phos-
phate, the nanoscaffolds induced significantly enhanced osteogenesis of well-differentiated
osteoblasts [334]. Lalande et al. demonstrated the feasibility of in vivo monitoring of
human ASCs pre-loaded with ultra-small IONP-labeled agents and seeded into a porous
polysaccharide-based 3D scaffold [335]. After subcutaneous injection into nude mice, the
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human ASCs remained detectable by MRI for up to 1 month and migrated out of the
scaffold and populated the surrounding area.

Due to their biocompatibility, gelatin-containing scaffolds were also utilized for tissue
engineering. In a study by Wang et al. biodegradable bone scaffolds were fabricated from
shape memory PU, IONPs and polyethylene oxide (PEO) or gelatin by 3D printing [336].
After colonization with human MSCs, both scaffolds promoted osteogenesis through the
gradual release of IONPs with the PU-gelatin scaffolds exhibiting better cell viability and
the PU-PEO scaffolds exhibiting better shape memory properties. In another study, Hu
et al. fabricated an MRI-visualizable IONP-loaded gelatin sponge for bone regeneration
and demonstrated a strong IONP-induced active osteogenesis after implantation into the
incisor sockets of rats [337].

Apart from the above-mentioned possibilities for tissue engineering, there are also other
innovative methods including electrospinning. Wei et al. developed a biodegradable magnetic
nanofiber material of IONPs/chitosan/PVA, which exhibited improved cell adhesion and
proliferation over MG63 human osteoblast-like cells compared to cell culture plates [338]. The
biological and physicochemical properties of silk fibroin can be improved by blending or
crosslinking with other biopolymers, such as collagen, chitosan, alginate and hyaluronic acid,
and thus often serve as materials for tissue engineering applications [339]. Lalegül-Ülker et al.
proposed elektrospinned silk fibroin with embedded IONPs as potentially suitable for the
generation of magnetically responsive cytocompatible polymer composites [340]. Singh et al.
also used electrospinning for the fabrication of PCL and IONPs nanofiber scaffolds, which,
due to the incorporated IONPs, exhibited enhanced hydrophilicity and mechanical tensile
properties, increased nanofiber degradation, and improved cell adhesion and osteogenesis of
osteoblasts [341]. Finally, in vivo studies in rats confirmed the bone regeneration ability and
tissue compatibility of the PCL-IONP scaffolds.

4.2.3. Magnetic Force-Based Bone Tissue-Engineering

Zhuang et al. presented a magnetically assisted electrochemical technique to deposit
type I collagen nanofibers onto a substrate. The embedded IONPs and an external magnetic
field resulted in aligned collagen coatings that promoted the growth of BM-MSCs in the
form of elongated morphology, which strongly promoted cellular osteogenesis [342].

In contrast to the aforementioned biocomposites, cell sheet techniques offer the possi-
bility of producing a tissue without the use of supporting structures. Silva et al. produced
hierarchical vascularized heterotypic 3D cell constructs from IONPs-loaded human umbil-
ical vein ECs (HUVECs) and ASCs by magnetic force-based cell sheet engineering [343].
The heterotypic cell sheets showed increased alkaline phosphatase activity, matrix miner-
alization, osteopontin and osteocalcin levels, and induced osteogenesis and blood vessel
recruitment in vivo.

4.2.4. Magnetic Force-Enhanced Stimulation of Engineered Tissues

Magnetic scaffolds have the potential to enhance bone tissue formation by plain mag-
netic stimulation. Russo et al. addressed the preparation of PCL matrix and IONPs and the
effect of time-dependent magnetic field on adhesion, differentiation and proliferation of
human MSCs [344]. The results showed prolonged cell differentiation and increased ERK
phosphorylation levels, thus activation of the MAPK signaling pathway. Xia et al. investi-
gated the in vitro and in vivo osteoinductivity of IONP-incorporated calcium phosphate
cement (IONP-CPC) scaffold on human dental pulp stem cells (DPSCs) and showed that
IONP-CPCs had better cell spreading, and greater bone mineral synthesis and ALP activity,
than CPC controls and that cell differentiation was likely driven via the WNT signaling
pathway [345,346]. They also demonstrated that the differentiation of stem cells was en-
hanced by the magnetic field and increased active osteogenesis in mandibular defects of
rats, compared to IONP-free scaffolds [347]. Zeng et al. fabricated magnetic biomimetic
scaffolds made of HA by immersing HA scaffolds in IONP solutions [348]. After cell
colonization, the rat osteosarcoma cell line ROS 17/2.8 and the murine osteoblast precursor
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cell line MC3T3-E1 experienced stimulation of cell proliferation and differentiation by the
intrinsic magnetic field, which was further enhanced by an applied external magnetic
field. Similarly, the study of Tanasa showed that the presence of applied magnetic field
in scaffolds prepared from silk fibroin, poly(2-hydroxyethyl methacrylate) and IONPs
increased the proliferation of murine 3T3-E1 pre-osteoblasts and positively affected the
osteogenic differentiation capacity [349].

Many studies on bone tissue engineering are based on the preparation of hydrogels
with embedded IONPs. These biocomposites have demonstrated a strong impact on cell
differentiation under magnetic fields. Filippi et al. prepared magnetizable nanocomposite
hydrogels by incorporating IONPs into PEG-based hydrogels containing cells derived
from human adipose tissue [350]. Under a static magnetic field, cells showed an increase
in metabolic activity, expression of osteogenic markers, and deposition of mineralized
matrix and, after subcutaneous implantation in mice, denser, more mineralized, and
more rapidly vascularized tissue than in the control group. In a study by Aldebs et al.,
biomimetic hydrogels were prepared from the self-assembling peptide RADA16, which
consists of regular repeats of alternating ionic hydrophilic and hydrophobic amino acids,
IONPs, and human ASCs [351]. Direct stimulation by extremely low frequency pulsed
electromagnetic fields resulted in early differentiation of human ASCs into an osteoblastic
phenotype. Cau et al. prepared a chitosan/ PEG hydrogel with embedded IONPs and
showed that under an alternative magnetic field (AMF) and elevated temperature at 43 ◦C,
the main temperature used for hyperthermia treatment, the osteogenic differentiation
capacity of MSCs was significantly increased compared to direct heat treatment [352]. Yuan
et al. developed a bone model composed of plastic compressed collagen with embedded
IONPs and osteoblast cells (MG-63) and showed that in the presence of static magnetic
fields, the composite stimulated alkaline phosphatase production and mineralization of
the cells by affecting matrix/cell interactions and promoting the expression of BMP-2
and BMP-4, runt-related transcription factor 2 (Runx2) and osteonectin [353]. The study
by Hao et al. used PLGA and IONPs composites to investigate the synergistic effects of
magnetic nanocomposites and of external magnetic fields on osteogenic differentiation of
osteoblasts [354]. The results demonstrated a significantly enhanced cell attachment and
differentiation through increased alkaline phosphatase (ALP) activity, upregulation of the
expression of bone-associated genes (ALP, OCN, and BMP2) and increased mineralized
nodule formation.

In addition to the usual techniques for producing scaffolds, such as blending for hydro-
gel formation, some other techniques are used as well. By electrospinning IONPs, HA-NPs,
and PLA, Meng et al. fabricated magnetically responsive nanofibrous scaffolds that ac-
celerated the formation of new bone tissue under an external static magnetic field after
transplantation into a rabbit model of lumbar transverse defects by stimulating osteoblast
cells proliferation and secretion of new ECM [355]. Using a combination of electrospinning
and layer-by-layer assembly of IONPs, Chen et al. fabricated magnetic PLGA/PCL scaf-
folds that, through their surface properties and especially via their magnetic responsivity,
significantly enhanced osteogenic differentiation compared with scaffolds containing gold
nanoparticles [356].

By a solvent-casting method, Fernandes et al. fabricated a magnetoactive scaffold
of three different fiber diameters with different pore sizes using a piezoelectric polymer,
poly(vinylidene fluoride) (PVDF) and CoFe2O4 NPs, which stimulated the proliferation of
preosteoblasts by applied magnetic fields [357]. Marycz prepared IONP-doped sponges
of thermoplastic PU and PLA polymer using the solvent casting technique and demon-
strated increased expression of osteopontin and collagen type I and decreased expression
of BMP-2 and subsequently enhanced osteogenic differentiation of ASCs under a static
magnetic field [358]. In a study from Aliramaji et al., silk fibroin/chitosan-based magnetic
scaffolds with different amounts of IONPs were prepared by freeze-casting method and
demonstrated that under static magnetic fields, the IONP can enhance cell adhesion and
the number of living cells [359]. Finally, by laser writing via two-photon polymerization of
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IP-L780 photopolymer and coating with collagen-chitosan-HA-IONP composite, Paun et al.
produced a biomimetic structure that accelerates bone regeneration, especially under static
magnetic stimulation, in vitro, by enhancing the differentiation of human osteoblast-like
MG-63 cells [360].

4.2.5. Magnetic Force-Based Attraction of Agents to Engineered Tissues

Magnetic scaffolds are suitable for transporting magnetically labelled soluble factors
such as growth factors, hormones and polypeptides or cells directly to the site of implan-
tation. A method for in vivo loading of scaffolds with bio-agents was demonstrated by
Bock et al. [361]. By immersing commercially available scaffolds composed of HA and
collagen in aqueous IONP solutions, magnetizable scaffolds were created with the ability
to attract growth factors, stem cells or other bio-agents bound to magnetic particles by
magnetic propulsion. In another study, Panseri et al. compared the in vivo biocompatibility
and osteointegrative properties of magnetic hydroxyapatite/collagen scaffolds prepared
either by simultaneous nucleation of apatite and IONPs on self-assembling collagen fibrils
or by impregnation in ferrofluid solution after implantation in rabbits [362]. Both scaf-
folds showed no inflammatory response, good bone healing rates and appear promising
in attracting functionalized IONPs or IONP-loaded cells after implantation by a driving
magnetic force. Luo et al. enabled the internal vascularization of scaffolds prepared of hy-
droxyapatite and collagen-like polyamide by loading magnetic plasmid gene microspheres
to repair large bone defects [363]. Magnetic field-released plasmid genes led to transfection
of surrounding cells and protein expression of vascular endothelial growth factor (VEGF),
and finally to angiogenesis and osteogenesis of the scaffold in a rabbit model of a large
segmental radius bone defect.

4.2.6. Tissue-Engineered Osteochondral Scaffolds

In the meantime, techniques have been invented that allow a differentiated devel-
opment of tissues, e.g., the simultaneous locally separated formation of bone and carti-
lage tissue. Su et al. produced biphasic type II collagen-chitosan/PLGA scaffolds with
IONP-labeled rabbit chondrocytes, whose cellular distribution and proliferation within the
scaffold could be magnetically controlled and also exhibited increased gene expression of
type II collagen and aggrecan [364]. In another study, Huang et al. fabricated a diphasic
magnetic nanocomposite scaffold composed of collagen-I, nanohydroxyapatite, PLGA
and IONPs seeded with BM-MSCs) [365]. The scaffold exhibited good cell compatibility
along with good mechanical properties and showed pore size and porosity similar to the
physiological structure of normal articular cartilage and subchondral bone. Li et al. used
magnetic fields to guide glycosylated IONPs loaded with BMP-2 to establish biochemical
gradients in agarose hydrogels, pre-laden with human MSCs to generate osteochondral
tissue constructs that exhibited a clear mineral transition from bone to cartilage [366].

4.3. Intervertebral Disc and Joint Repair

Saldanha et al. demonstrated that ferumoxides-labeled MSCs can be detected in vitro
in natural and synthetic polymers as well as distinguished in vivo from the native tissue
environment in rat intervertebral disc degeneration by MRI, thus appearing potentially
suitable for longitudinal in vivo tracking of stem cell-based disc regeneration [367]. Multi-
potent MSCs are commonly used in cellular therapy for joint repair. To track IONP-labeled
MSCs injected into joints with osteochondral defects in sheep, Kaggie et al. used ultrafast
MRI using a 3D cone acquisition trajectory, which provided excellent anatomic details [368].
Together with histological staining, it was shown that IONP-loaded cells aggregated at
the injection site and did not migrate to the defect site, suggesting that if MSCs are indeed
involved in repair, the mechanism of action is in the recruitment of secondary cells.
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4.4. Tendon

Musculoskeletal tissue injuries such as tendon and ligament pathologies are common
in the elderly and especially in athletes, with traumatic rupture of the anterior cruciate
ligament and Achilles tendinopathy being the most common [369]. Scharf et al. established
an IONP-based cell tracking method in a sheep model of tendinitis [370]. Labeling of ovine
BM-MSCs was detectable by MRI for up to 7 days, which was confirmed by correlative
histology. The study demonstrates the feasibility of evaluating the location, distribution,
and disappearance rate of cells in the musculoskeletal system of large animals in a time-
dependent manner.

The feasibility of IONP-based cell tracking was also demonstrated by Kremen et al. [371].
They used genetically modified IONP-loaded and luciferase (Luc+) expressing murine mes-
enchymal progenitor cells (C3H10T1/2 MPCs) for implantation into nude rats with surgically
created Achilles’ tendon defects. The IONPs allowed MRI-based monitoring of the grafts and
did not affect viability of the MPCs, as demonstrated by quantitative bioluminescence imaging.

The use of decellularized tendon tissue as a basis for tendon tissue engineering
represents a very promising therapeutic approach. Ideally, in addition to the required
biocompatibility, scaffolds should approximate natural biomechanical properties as closely
as possible. Therefore, decellularization of donor tissue offers the possibility to obtain
hypoimmunogenic scaffolds with a natural ECM structure that supports subsequent repop-
ulation with cells. Burk et al. has shown that decellularization of horse tendons by repeated
freeze-thaw cycles, especially in combination with Triton X-100, was cytocompatible with
IONP-loaded MSCs and showed no morphological changes of the ECM [372].

Another study follows the approach of generating magnetic polymer scaffolds [373].
Aligned fibrous magnetic scaffolds were fabricated from a blend of starch and PCL by
rapid prototyping through incorporation of IONPs (Micromod) into SPCL powder. Seeded
ASCs underwent tenogenic differentiation under magneto-stimulation conditions and
synthesized a collagen type I and tenascin C rich matrix. The scaffolds revealed good
biocompatibility and integration with surrounding tissues after subcutaneous implantation
in rats, indicating the potential utilization of this approach for tendon regeneration. In a
later study, the same group developed magnetically responsive, scaffold-free and ECM-rich
patches using a magnetic cell layer technology (magCSs) for tendon regeneration [374]. The
magCSs patches, for which tenomodulin-positive (TNMD+) subpopulation of human ASCs
was used, may be a promising approach to stimulate endogenous regenerative mechanisms.

4.5. Teeth

Interest in regenerative methods in dentistry is growing steadily. There are now a
variety of approaches in tissue engineering for almost all anatomical areas of the tooth,
in particular the enamel, dentin and pulp [375]. Anastasiou et al. demonstrated the
exogenous mineralization of hard tissues based on the use of femtosecond pulsed lasers
and fluorapatite powder mixed with IONPs [376]. The photothermal process triggered
the sintering and densification of the surrounding calcium phosphate crystals, forming a
new layer bonded to the underlying surface of the natural enamel. The material produced
in this way was more acid-resistant than natural enamel and its hardness and modulus
of elasticity made it significantly better adapted to enamel than the restorative materials
currently used in clinical dentistry.

Li et al. developed a magnetic adhesive composed of dimethylaminohexadecyl
methacrylate, amorphous calcium phosphate NPs and magnetic NPs that exhibited signifi-
cantly higher dentin adhesion than the commercial control and reduced S. mutans biofilm
colony-forming units by 4 logs [377]. Thus, the material could improve the connection
between tooth and resin and suppress secondary caries at the restoration edges.

In a recent paper, a multifunctional periodontal hybrid scaffold was developed that
mimics the various compositional and microstructural features of alveolar bone, periodon-
tal ligament and cementum [378]. The scaffold exhibited good cytocompatibility and cell
viability and could promote osteogenesis through the bioactive superparamagnetic apatite
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phase and be activated by remote magnetic signals. In another study, human DPSCs
were seeded on calcium phosphate cementum scaffolds with incorporated IONPs [379].
Incorporation of IONP into the scaffold increased osteogenic differentiation and bone
matrix mineral synthesis of the cells, indicating a potential approach for improved dental
as well as craniofacial and orthopedic bone regeneration. Zhang et al. was dedicated to
the development of a biomaterial for dental pulp tissue regeneration and repair with the
possibility of noninvasive imaging [380]. An ultra-small IONP-labeled hydroxyapatite/silk
fibroin scaffold loaded with DPSCs was implanted with a tooth fragment into the subcuta-
neous space under the nude mice. Expression of dentin acidic matrix phosphoprotein 1
and dentin sialophosphoprotein indicated odontoblast-like cell differentiation, and optical
imaging confirmed good revascularization and mineralization. At about the same time,
Zare et al. demonstrated that dental pulp stem cells can be loaded with dextran-coated
IONPs without significant reduction in viability, proliferation and differentiation properties,
demonstrating the suitability of the MRI-based method for monitoring labeled cells [381].

5. PNS and CNS Regeneration

Stem cells and progenitor cells, as well as differentiated cells such as adult neurons,
Schwann cells and astrocytes, have been used to treat many different pathologies of the
central and peripheral nervous system, including various neurodegenerative diseases such
as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), is-
chemic stroke, amyotrophic lateral sclerosis (ALS), spinal cord injury and multiple sclerosis
(MS) [382–385].

The use of nanotechnology in diagnostics but also in drug delivery and tissue engineering
could significantly improve the treatment of patients with injured neuronal tissue [386–390].
Hence, IONP-labelling of stem cells or other cells, such as astrocytes and microglia can be
used to track and monitor transplanted cells after implantation, e.g., by a noninvasive imaging
modality such as MRI, magnetic particle imaging, positron emission tomography, and multiple
photon microscopy [391–402]. Moreover, IONPs and IONP-loaded cells allow the delivery
of therapeutic biomolecules, such as neurotrophic factors, drugs, proteins, DNA and siRNA
by specific NP functionalization [403–407]. Functionalized IONPs and IONP-loaded cells
can be effectively enriched at the injury site by external magnet fields to efficiently promote
neuronal repair or guide axonal growth [408–415]. Finally, the use of scaffolds made of various
nanomaterials can serve as structural support, induce or mimic the formation of an ECM, inhibit
glial differentiation, promote neuronal growth and control hemostasis. In this context, IONPs
can be used as part of the biocomposite for diagnostic purposes, to magnetically induce a specific
surface topology or neurite outgrowth or to further improve cellular differentiation [416–420].

In the following, we highlight other interesting approaches in the treatment of specific
PNS and CNS injuries by stem cell therapy or by the use of nanomaterials as tissue engi-
neering scaffolds. Possible targets for IONP-assisted tissue engineering and regeneration
of tissues within PNS and CNS are depicted in Figure 6.

Figure 6. Possible targets for IONP-assisted tissue engineering and regeneration of tissues within the peripheral and central
nervous system (Created with BioRender.com).

BioRender.com
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5.1. PNS
5.1.1. Dorsal Root Ganglia

Sensory neurons of the dorsal root ganglia (DRG) transmit information from stimuli
that trigger feelings of touch, pain, muscle tension and temperature, among others, from the
body to the CNS. There a variety of diseases and disorders that directly and indirectly lead
to degeneration or dysfunctionality of sensory neurons. In addition to hereditary diseases
such as Charcot Marie Tooth Disease and Friedreich’s Ataxia, as well as autoimmune
diseases and toxic substances such as alcohol, DRG neurons can be severely damaged by
physical trauma [421]. Meanwhile reports are increasing in which IONPs were used to
support the regeneration of injured neurons.

For example, in one study, the neurotrophic factors including nerve growth factor
(βNGF), bFGF-2, and glial cell-derived neurotrophic factor (GDNF) were coupled to IONP
to increase the very short half-life of these compounds. Liu et al. showed that nano-
hydroxyapatite (n-HA)-coated IONPs could potentially be used for nerve regeneration by
effectively increasing the viability of primary cultured DRG neurons and promoting axonal
elongation through activation of the Netrin-1 signaling pathway [422].

The combination of IONPs with hydrogels are another promising approach for the
regeneration of DRGs. In NVR-Gel, which is mainly composed of hyaluronic acid and
laminin, the functionalized NPs were able to enhance early nerve fiber sprouting compared
to free factors in organotypic DRG cultures and significantly accelerate the progression
of myelin formation [423]. The study by Assunção-Silva demonstrated the use of syn-
thetic Gly-Arg-Gly-Asp-Ser peptide-modified biodegradable gellan gum-based hydrogels
enriched with glial derived neurotrophic factor (GDNF)-coated IONPs to treat severe pe-
ripheral nerve injury [424]. The hydrogels supported the attachment and growth of ASCs,
enhanced neurite outgrowth from DRG, and, in the presence of GDNF, IONPs alone or in
combination with ASCs, significantly increased neurite growth from DRGs.

Other studies were based on the use of electrospun fibers. Zuidema et al. controlled
the preferential DRG neurite outgrowth along aligned electrospun PLA microfibers in the
presence of nerve growth factor (NGF)-releasing IONPs [425]. Similarly, Johnson et al.
fabricated magnetic electrospun fiber scaffolds composed of PLA and oleic acid-coated
IONPs [426]. After injection into a collagen or fibrinogen hydrogel solution supplemented
with Matrigel and magnetic alignment, the scaffolds provided internal directional guidance
to neurites growing from dorsal root ganglion explants and improved the neurite growth.

5.1.2. Sciatic Nerves

Autologous nerve transplantation is an accepted therapy for peripheral nerve re-
pair. Since, among other things, available donor nerves are scarce, there are promising
approaches for replacement with biomaterials or biomaterials in combination with cells.

Lacko et al. presented the preparation of aligned tubular hydrogel scaffolds of glycidyl
methacrylate hyaluronic acid and collagen I by magnetic templating of dissolvable magnetic
alginate microparticles and their subsequent dissolution [427]. The tubular microstructures
were able to guide axon extension of dorsal root ganglia, and a pilot study on a 10 mm
rat sciatic nerve model showed qualitatively improved axon regeneration compared to
non-templated controls.

Liu et al. developed a Schwann cell-loaded magnetic nanocomposite scaffold com-
posed of a biodegradable chitosan-glycerophosphate polymer and IONPs [428]. When
inserted into a 15-mm sciatic nerve gap in rats and in the presence of a magnetic field, the
scaffold improved Schwann cell viability and promoted nerve regeneration.

Tseng and Hsu investigated the effect of MSC-derived spheroids compared with single
cells on the regeneration of transected rat sciatic nerves [429]. They demonstrated that
the spheroids have greater differentiation capacity than single cells and accelerated the
functional recovery of rats in which the sciatic nerve was transected to a length of 10
mm and bridged by a microporous PLA nerve guide conduit. In addition, IONP-labeled
spheroids could be visualized by MRI, whereas the use of brain-derived neurotrophic
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factor (BDNF)-transfected spheroids resulted in the shortest gap-bridging time, the largest
regenerated nerve and the thickest myelin sheath.

5.2. CNS

Nanotechnology, in combination with stem cells, offers great potential in the treatment
of brain and spinal cord injuries [430,431]. To treat nerve tissue injuries of the CNS,
current research involves a variety of different aspects and techniques of cell therapy and
tissue engineering. To monitor therapy progress and functional recovery or guide stem
cell injection to the injury site, cells or applied biomaterials can be labeled with IONPs
and thereby be monitored by several imaging modalities, such as MRI or microwave and
optical imaging, among others [432–441]. The use of biomaterials can promote regeneration
by providing structuring fiber scaffolds or ECM-like matrices to regenerate axons [442].
Moreover, regenerative capacity can be enhanced by the use of IONPs. However, even if the
NPs appear to be innocuous under normal conditions, the specific NPs needs to be carefully
selected as they might induce adverse reactions [443,444]. Nevertheless, IONPs have been
shown to enhance neuroregeneration, for example, by their potential to positively influence
neuromodulation, to dictate growth direction in response to an external magnetic field, or
to enhance regeneration by coupling with growth-promoting agents [445,446].

5.2.1. Optic Nerves

Optic nerve diseases, such as diabetic retinopathy and glaucoma, are the most common
causes of blindness [447]. Vision loss occurs when optic nerve injury, such as crushing or
transection, leads to axon degeneration and retinal ganglion cell death. There are currently
few promising neuroprotective strategies that could promote neuronal survival and protect
against vision loss and retinal cell death. These include the administration of various
drugs and rehabilitative methods such as exercise and electrical stimulation therapies but
also gene and cell therapies [447,448]. Meanwhile, applications have been suggested in
which NPs are used as vehicles for the delivery of genes, drugs, and trophic factors, among
others [449,450]. However, reports about the usage IONPs are still very rare.

In one study, rat whole-animal MRI and fluorescence analyses demonstrated that
IONP-labeled polymeric nanospheres remain at the injury site after injection and also
partially penetrate injured axons and are transported to the parent somata, thus offering
the possibility of delivering therapeutic agents to the injury site and somata of injured
CNS neurons [451]. The work of Giannaccini et al. demonstrated in a model of oxidative
stress-induced retinal ganglion cell (RGC) loss that IONP-coupled neutrophins, such as
NGF and BDNF, completely prevented RGC loss, in contrast to the administration of the
free drugs [452]. In a rat model of optic nerve crush, injection of IONP-loaded MSCs into
the vitreous body was shown to exert a neuroprotective effect on RGCs and stimulate axon
regeneration [453]. Finally, Pita-Thomas et al. used IONPs functionalized with antibodies
against retinal ganglion cell (RGC) membrane molecules and an external magnetic field
to induce a directed mechanical force on growth cone filipodia and thereby filopodia
elongation and growth [454]. However, future experiments will be needed to determine
whether this approach can be optimized to induce axonal growth.

5.2.2. Spinal Cord

Spinal cord injuries often lead to pain and permanent loss of sensory and motor
functions. Currently, there is still no established therapy to restore the lost functions
in patients, although research into possible solutions has been ongoing for a long time.
Despite reports that transplantation of IONP-labeled BM-MSCs did not result in clinical
improvement in neurologic function [455], there are many promising approaches and
developments in cell therapy and tissue engineering for the treatment of spinal cord
injury that have already been tested in animal models and patients [456,457]. Stem cell
transplantation is currently considered the most promising therapeutic approach for spinal
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cord injury. Labeling with IONP offers a very beneficial way to evaluate the fate of
transplanted or injected cells and the success of therapy [458–472].

Spinal Cord Regeneration by IONP-Enhanced Cell Therapy

Besides the very advantageous possibility to observe IONP-loaded cells during ther-
apy by imaging methods, cells and their regenerative capacity can also be positively af-
fected by uptake of IONPs—either by magnetically controlled targeting or/and by specific
functionalization.

In a study by Cho et al., a pulsed electromagnetic field (PEMF) directed IONP-loaded
human BM-MSCs to the vicinity of the spinal cord-injured site in rats, resulting in improved
behavioral tests [473]. Other studies confirmed a rapid targeting of IONP-loaded MSCs to
rat spinal cord lesions in presence of external magnetic fields and the benefits for neuronal
regeneration and neuropathic pain treatment [474–476]. Another group developed a
magnetic targeting system using an implanted magnet to guide IONPs-labelled BM-MSCs
to the injured site in the spinal cord of rats after subarachnoid injection [477,478]. Similarly,
Vaněček et al. increased the targeting efficiency of transplanted IONP-labeled MSCs near
the lesion site in rat spinal cord after intrathecal injection and the use of an implanted
plate-shaped permanent magnet [479].

Several other studies demonstrated positive effects of cell therapy with incorporated
functionalized IONPs. Choi et al. demonstrated that human ASCs loaded with core-shell
particles made of IONPs with a ZnO envelope enhanced the regenerative activity and
effectively alleviated neuropathic pain in induced traumatic spinal cord injury mouse
models [480]. However, not only the regenerative capacity of stem cells can be enhanced
by loading with IONPs, but also by other cells such as glial cells. Glia cells can alleviate the
formation of scars followed by spinal cord injuries and enhance axonal growth by releasing
bioactive substances and potentially create a glia bridge in the CNS environment to guide
regenerated axons to their distal destination. However, the efficacy of Schwann cell (SC)
transplantation is limited by the poor migratory ability of SCs into the astrocyte-rich CNS
environment. To enhance transplantation efficiency, IONP-loaded SCs can be guided into
the astrocyte-rich region by a directional magnetic field [481]. In addition, transfection
of SCs with chondroitinase ABC (ChABC)-polyethylenimine-functionalized IONPs can
overexpress ChABC and induce the removal of chondroitin sulfate proteoglycans, thereby
inhibiting scar formation [482]. In another study, SCs were initially magnetofected with
polysialyltransferase-functionalized IONPs to induce the overexpression of polysialylation
of neural cell adhesion molecule (PSA-NCAM) to enhance the migratory ability [483].
The migration direction of the SCs could then be controlled by an applied magnetic field,
causing the cells to migrate efficiently into the astrocyte domain.

The transplantation of olfactory ensheathing cells (OEC), a type of glia which ensheat
axons of the olfactory receptor neurons, have shown promising results in promoting
the regeneration of CNS axons after transplantation into the injured CNS [484]. IONP-
labelling was shown not to affect cell proliferation, migration and viability and it has been
demonstrated that IONP-labelled OECs can be controlled by an external magnetic field and
integrate in organotypic slices of spinal cord and peripheral nerves [485,486]. In another
work, however, the migratory and regenerative capacity of OEC has been shown to be
inefficient when challenged with the glial scar of a transected spinal cord [487]. However,
it has been shown that genetic modification of OECs could enhance their therapeutic
potential by secreting neurotherapeutic factors. Delaney et al. showed that magnetic
particles combined with magnetic fields and DNA minicircle vectors can safely bioengineer
OECs to secrete important key neurotrophic factors, such as BDNF [488].

Regeneration by IONPs

Even without cells, IONP can be applied to regenerate spinal cord injuries, partic-
ularly when combined with directed magnetic fields or/and used as vehicles to deliver
therapeutic agents across the blood-brain-barrier (BBB) to the site of injury [489]. However,
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the optimal timing seems to be of crucial importance for a successful therapy. Jeffery et al.
examined the uptake of intravenously administered IONPs into areas of experimental
rodent spinal cord injury [490]. Their data suggest a “therapeutic window” during post-
injury BBB impairment during which IONP-based delivery of biomolecules, particularly in
combination with magnetic targeting strategies, may be most successful.

Other studies exploited the magnetic properties of the particles. For instance, Kim et al.
investigated the therapeutic efficacy of exosome-mimetic and IONP-containing nanovesicles
from IONP-treated human MSCs in a mouse model of spinal cord injury [491]. The exosomes
were magnetically enriched in the injured spinal cord after systemic injection and were able
to deliver larger amounts of therapeutic growth factors induced by the IONPs in the hMSCs
to the target cells. The vesicles improved blood vessel formation, attenuated apoptosis and
inflammatory responses and consequently improved spinal cord function.

Due to the influence of external magnetic fields and transactivation transduction
protein (TAT), which has a remarkable membrane translocation ability, TAT-conjugated
PEGlated magnetic polymeric liposomes accumulated significantly around the site of SCI
and even within neurons [492].

In another study, Song et al. showed that the combination of magnetic field-mediated
gene transfer and TAT-assisted intracellular delivery provides an improvement in trans-
fection efficiency in rat spinal cord after lumbar intrathecal injection and that transgene
expression can even be mediated by a magnetic field in a remote region [493]. In contrast to
external magnetic fields, Zhang et al. constructed a magnetic targeting system containing a
C-shaped permanent magnet and a ferromagnetic needle to generate a magnetic force large
enough for growth-promoting magnetic nanomaterials to remain at the target site [494].

Spinal Cord Regeneration by IONP-Containing Biocomposites

Other tissue regeneration strategies include biocomposites consisting of IONP and
other biocompatible materials such as hydrogels. For instance, Bhattacharyya et al. pre-
pared a gelatin–genipin hydrogel system impregnated with IONPs that was injected into
rats in a spinal cord injury model [495]. After repeated magnetic field exposure, there
was a clear improvement in neuronal repair and regeneration, as evidenced by significant
improvement in behavioral, electrophysiological, and morphological parameters, among
others. Rose et al. developed injectable magnetoceptive, anisometric microgels that allowed
alignment by external magnetic fields, resulting in parallel nerve and fibroblast growth over
relatively long distances [496]. In another study, an increased sprouting of mature neurons
and axons and more myelinated fibers appeared after spinal cord transection in Wistar
rats and implantation of IONP-loaded agarose gels and repeated magnetic field expo-
sure [497,498]. Chen et al. prepared temperature-dependent magnetite/polymer nanopar-
ticles from IONPs and poly(ethylene imine)-modified poly(ethylene oxide)-poly(propylene
oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer. In primary mouse experi-
ments, drug-entrapped IONPs demonstrated good biocompatibility and effective therapy
for spinal cord injury [499]. Finally, Min et al. developed a magnetic field-driven graphene
oxide and IONP-based hybrid pattern that enabled stable and controlled neuronal cell
growth and specific cell patterning [500].

Some strategies also rely on biocomposites that have been pre-loaded with cells.
In an in vitro work, a structured neuronal microphysiological system was fabricated by
bio-printing IONP-loaded spheroids and PEG-based hydrogels to mimic the hierarchical
structure of the nervous system [501]. The study by Syková et al. demonstrated rapid
integration of IONP-loaded MSC-seeded hydrogels, based on derivatives of 2-hydroxyethyl
methacrylate (HEMA) and 2-hydroxypropyl methacrylamide (HPMA), into hemisected rat
spinal cords, demonstrating their potential suitability for bridging voids after spinal cord
injury [457]. Finally, Adams et al. presented a potential method in which IONP-labeled
canine olfactory mucosal cells (OMCs) were encapsulated in collagen hydrogels to increase
the low viability of graft cells for implantation at injured sites, particularly the spinal cord,
to improve regeneration outcomes [502].
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5.2.3. Brain
Monitoring by IONP-Labelled Cells

Stem cells are promising candidates for the treatment of stroke, multiple sclerosis,
Huntington’s disease, Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclero-
sis and epilepsy, among others [383,503–505]. As with all cell-based therapies, the appli-
cation of IONP-labeled cells, are helpful to monitor safety, delivery, fate and therapeutic
potential of the applied cells for regeneration of injured brain tissue [506–521].

Enhanced Brain Regeneration by IONP-Labelled Cells

IONP-labelled cells have been shown to crucially enhance the regeneration of brain
tissue. Jenkins et al. showed clear differences in magnetic particle uptake and intracellular
processing between neuronal subtypes [522]. They also demonstrated that oligodendro-
cyte precursors can be transfected efficiently and with high viability with reporter and
therapeutic genes using IONPs and applied static or oscillating magnetic fields [523]. The
transfected cells showed good migration, proliferation and integration ability in three-
dimensional tissue engineering models using rat brain slices. Another study from Huang
et al. showed that IONPs could not only label MSCs and track the fate of the cells by
MRI, but also revealed that various IONPs could actively enhance the expression of the
chemokine receptor CXCR4 of MSCs and improve homing efficiency in traumatic brain
injury and glioblastoma mouse models compared with unlabeled MSCs [524]. Further
work confirmed the therapeutic efficiency of particle-loaded MSCs. For example, loading
with dextran-coated IONPs led to improved efficacy of MSCs in a mouse model of PD,
including enhancement of the cell migration to the site of lesioned dopaminergic (DA)
neurons and differentiation of MSCs to DA-like neurons [525].

IONP-Based Magnetic Cell Targeting

The intrinsic capability of IONPs enable magnetic guided cell targeting and manipula-
tion. Schöneborn et al. and Raudzus et al. functionalized IONPs with RAS or SOS proteins,
which are involved in the regulation of axonal growth as a strategy for the treatment of
Parkinson’s disease (PD) that is accompanied by loss or dysfunction of dopaminergic neu-
rons in the substantia nigra (SN). The magnetic translocation of the functionalized IONPs
into the cytoplasm and from the cytoplasm to the neurite tip of human dopaminergic
neurons led to the accumulation of endogenous RAS protein and the elongation of the
growth cone elongated in the desired direction [526,527]. A promising approach to treat
neurological diseases, including Alzheimer’s disease, is the use of MSCs. It has been shown
that after intravenous injection of IONP-loaded human MSCs derived from Wharton’s
Jelly (WJ-MSCs) can be magnetically directed through a Halbach magnet array into the
hippocampal area in the brain of AD rats, where they improve memory and cognitive
performance [528].

To treat and alleviate intracerebral hemorrhage, a rat model underwent intravenous
injection of human ESC-derived spherical neural masses loaded with magnetosome-like
ferrimagnetic iron oxide nanocubes. In the group with an external magnet attached to the
helmet, there was significant downregulation of proinflammatory cytokines, decreased
recruitment of macrophages and neutrophils, and improved neurological function [529].

Brain Regeneration by Application of Functionalized IONP

IONPs are frequently used as theranostic drug carriers. However, their potential
neurotoxicity to the brain has not been well studied and reports show that IONPs may well
have negative effects on neuronal viability. For example, Liu et al. showed dose-dependent
cytotoxicity on neuronal cells and reduction in motor coordination and spatial memory
in mice [530]. Despite those findings, NPs can also contribute directly to neuroprotection
and neuroregeneration through specific functionalization with therapeutics and localized
delivery to the injured brain [531,532]. One important substance is erythropoietin, which is
used for injuries of the central nervous system and could be used in magnetic nanocarriers
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to enable rapid targeted delivery within the therapeutic time window by external magnetic
navigation [533,534]. Another study showed that curcumin-functionalized IONPs had a
strong antineurotoxic activity in the cerebellum of schizophrenic rats [535].

Brain Regeneration by IONP-Containing Biocomposites

Treatment of aneurysms often leads to thrombus formation and rupture near the arte-
rial walls. In one work, revascularization of a stent was improved by coating with an elastic,
magnetic and biocompatible biopolymer hydrogel based on bacterial nanocellulose (BNC)
and IONPs [536]. A similar study was shown by Echeverry-Rendon et al. by fabrication of a
PEG-coated magnetic BMC hydrogel membrane and IONPs for brain aneurysm treatments
to render a local region of a stent scaffold magnetic and biomimetic [537]. IONP-loaded
human aortic SMCs could thus be attracted to the neck region of the “aneurysms” by using
a magnet to settle and proliferate.

6. Other Soft Tissue Regeneration and Engineering

The use of IONPs is considered a promising strategy tor functional restoration of
different soft tissues and organs, beyond the heart and the brain. The possible targets of
IONP-assisted tissue engineering and regeneration approaches reported in literature are
shown in Figure 7.

Figure 7. Possible targets for IONP-assisted tissue engineering and regeneration of various soft tissues (Created with
BioRender.com).

6.1. Ear, Eye, Nose, Vocal Fold and Salivary Glands
6.1.1. Ear

Stem cell transplantation is considered to be a promising strategy tor functional
restoration of inner ear damage, such as sensorineural hearing loss. Thereby, it would
be of greatest advantage if the course of therapy can be reliably tracked and monitored.
Watada et al. showed that MSCs labeled with IONPs could be reliable monitored by MRI
after transplantation into the cochleae of living animals [538]. Another study showed that
MNP can penetrate the oval and round window and produce a T2 contrast effect in the
inner ear, making them suitable for diagnostic purposes and potentially also as transport
vehicles for therapeutic agents to treat ear damage [539]. No adverse effect on hearing was
observed after intratympanic injection of ferrocene-loaded nanocarriers into guinea pigs,
indicating the possibility of future applications in inner ear theranostics [540]. Magnetic
guidance of IONP-labeled stem cells could increase the number of cells in the target area,
and thus most likely improve the therapeutic effect in the treatment of ear damage, e.g.,
after exposure to ototoxic substances [541].

6.1.2. Eye

Stem cell therapies are since long being explored for treatment of degenerative eye
diseases [542,543]. Meanwhile, there are also approaches to treat eye diseases with the
assistance of IONP. Stem cells could also serve as a therapy for glaucoma, one of the main
causes of blindness. In glaucoma, the trabecular meshwork (TM) which primarily regulates
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intraocular pressure, has reduced cell numbers. In the ex vivo study of Snider et al. it
was shown that MSCs loaded with IONPs can be targeted to the TM by external magnetic
fields after injection into the anterior chamber of the eye [544]. Damage to the corneal
endothelium can lead to corneal edema, opacification, and ultimately vision loss. In a
feasibility study, corneal endothelial cells (CECs) were shown to be minimally affected by
IONP labeling, and initial magnetic exposure even had a significant positive effect on cell
viability [545]. The results suggest a potential treatment of ocular injury by IONP-loaded
CECs. Ocular diseases or injuries, such as choroidal neovascularization (CNV), could also
be treated by tissue engineering techniques. In the study by Ito et al., magnetic force was
used to create multilayered cell sheets from magnetite liposome-loaded retinal pigment
epithelium cells, which might be useful for CNV treatment [546].

6.1.3. Nose

Intranasal delivery and magnetically controlled enrichment of IONP-loaded MSCs
could also be used to treat olfactory damage. In an olfactory damaged mouse model,
enhanced migration of magnetized MSCs could be achieved using external magnets. [547].

6.1.4. Vocal Fold

The treatment of voice defects, e.g., vocal fold damage, is a strong challenge in
regenerative medicine. So far, there are only a few surgical or tissue engineered approaches
for the restoration of such defects [548–550]. Meanwhile, efforts are ongoing to build the
vocal fold constructs using IONP-loaded cells. Dürr et al. isolated vocal fold fibroblasts
from rabbit laryngeal heads and achieved their magnetization by incorporating IONPs [551].
The same group characterized the cellular effects of IONP uptake and demonstrated
feasibility for magnetic cell guidance and possible generation of magnetic tissue-engineered
3D vocal fold constructs [552,553].

6.1.5. Salivary Glands

The loss or hypofunction of salivary secretory epithelial cells, e.g., due to autoimmune
diseases or radiation therapy for the treatment of cancer, could be compensated by stem cell
or tissue engineering techniques. In a mouse model, the function of damaged salivary glands
could be restored by cell therapy with ultra-small IONP-labeled BM-MSCs and acinar-like cells,
however, the acinar-like cells showed better therapeutic potential than the BM-MSCs [554]. In
another study, salivary secreting organoids/mini-glands were used to assemble IONP-tagged
primary salivary gland-derived cells by magnetic levitation, which exhibited various salivary
gland-specific cellular compartments and secretory function upon cholinergic stimulation [555].
Meanwhile, there is a possibility to generate salivary gland-like epithelial organoids from
NP-labeled stem cells by magnetic bioprinting [556,557].

6.2. Kidney

Chronic kidney disease and acute kidney injury leads to high mortality rate. Current
treatment options are limited to dialysis and kidney transplantation. However, tissue engi-
neering and regenerative medicine could help reduce the problems encountered during
treatment, such as graft failure, shortage of donor organs, and numerous other compli-
cations [558]. In addition to the utilization of promising cell-based approaches to restore
normal kidney functions, renal tissue engineering, despite its complex structure and func-
tion, is also a potential future possibility [559].

The use of nanomaterials in nephrology has not yet been widely explored, but may be
beneficial for diagnosing renal function, monitoring the course of chronic kidney disease,
and producing renal drugs nanotherapies [560,561]. In an experimental rat model of
mesangiolysis, Hauger et al. investigated renal glomerular homing of intravenously
injected IONP-labeled MSCs and demonstrated that these cells specifically target to focal
areas of glomerular damage [562]. In another study, induced pluripotent stem cell (iPSC)-
derived MSCs were labeled with IONPs and injected intravenously into rats after 5/6



Nanomaterials 2021, 11, 2337 38 of 72

nephrectomy [563]. MRI studies showed that iPS-MSCs were targeted to the parenchyma
of chronic kidney disease (CDK) animals and effectively protected the kidney against
CKD injury.

6.3. Liver and Bile Duct

In the past, the overall mortality of chronic liver disease has steadily increased, causing
a significant health and economic burden [564]. The most effective treatment for end-stage
liver fibrosis is liver transplantation, but this is limited by shortage of organ donors
and immunological rejection. A possible alternative is stem cell therapy, and potential
applications including IONPs are steadily increasing [565].

Although there is evidence that long-term observation of IONP-loaded cells is not
reliable, several studies have shown that IONP-labeled cells allows safe monitoring during
liver therapy [566]. For instance, BM-MSCs have been demonstrated to decrease liver
fibrosis and associated early liver dysplasia as well as accelerate liver healing after hepatec-
tomy [567,568]. In another study, IONP labeling and overexpression of human hepatocyte
growth factor (HGF) into MSCs improved the localization of MSCs and supported the liver
repair in a rat model of liver fibrosis [569].

Functionalized IONPs have also been shown to be advantageous for liver regeneration.
Fibroblast growth factor 2 (FGF2) is known to possess antifibrotic effects and promote
tissue regeneration in fibrotic diseases. Eftekhari et al. found that FGF2-IONPs improved
early liver fibrogenesis in vivo in the acute carbon tetrachloride-induced liver injury mouse
model in contrast to free FGF2 [570].

One of the first approaches to generate in vivo-like 3D liver tissue using IONPs was
in 2004 when Ito et al. used human aortic ECs loaded with cationic magnetite liposomes
to form a magnetic-based accumulation of ECs on hepatocyte monolayers and thus a
heterotypic, layered construct [571]. This “magnetic force-based tissue engineering” (Mag-
TE), as termed by the authors, showed significantly increased albumin secretion and
increased adsorption of heterotypic cells compared with single cell cultures or co-cultures
without magnet.

Repair and replacement of diseased bile ducts is another area of regenerative medicine.
Li et al. described a method to create biocompatible artificial bile ducts by tissue engineer-
ing [572]. A tubular composite scaffold with good mechanical properties made of PCL
by 3D printing was coated externally with gelatin methacryloyl (GelMA) hydrogel with
dispersed ultra-small IONPs to increase biocompatibility and allow monitoring by MRI. By
co-culture with BM-MSCs, the scaffold could be almost completely colonized and might be
used as an artificial bile duct for implantation in the body.

6.4. Islets and Pancreas

Diabetes mellitus is a serious disease, characterized by abnormally elevated blood
glucose levels due to a defect in insulin production or a reduction in insulin sensitivity and
function [573]. A promising strategy to restore insulin secretion in diabetes mellitus is the
transplantation of pancreatic islets. In addition, the course of therapy and the localization of
the grafts can be monitored by using cells that have been pre-loaded with IONPs [574–580].

Li et al. demonstrated the therapeutic efficacy of magnetically enhanced targeting of
umbilical cord–Wharton’s jelly-derived MSCs loaded with polydopamine-coated IONPs
in a clinically relevant rat model of streptozotocin-induced diabetes [581]. Magnetic
targeting increased long-term cell retention in pancreatic tissue and improved islet function
compared with injection of Wharton’s jelly-derived MSCs alone.

Espona-Noguera et al. followed a different approach in which IONP-loaded INS1E
pseudoislets were encapsulated in alginate and alginate-poly-L-lysine-alginate (APA) mi-
crocapsules [582]. Prior to transplantation, removal of empty microcapsules by a mi-
crofluidic magnetic sorting device was performed to reduce transplant volume. After
subcutaneous implantation of APA microcapsules, which have higher mechanical integrity
and stability compared with alginate microcapsules, into induced diabetic Wistar rats, the
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animals were returned to normoglycemia for almost 17 weeks. Similarly, Delcassian et al.
used IONP-loaded alginate hydrogel microcapsules containing viable islets [583]. After
transplantation into immunocompetent diabetic mice, normal glycemia is restored for at
least 6 weeks. IONP loading not only allowed visualization of the graft, but also allowed
rapid removal of up to 94% of the transplant via a magnetically assisted retrieval device,
which is important in the event of graft failure.

Other studies investigated ways to reduce the loss of transplanted cells. Loading
islet cells with IONPs functionalized with siRNA against caspase-3 decreased caspase-3
expression and cell apoptosis in pancreatic islets which were transplanted into the left
kidney capsule of NOD-SCID mice or infused into diabetic baboons, thereby increasing the
survival of the transplanted cells [584,585].

Due to the instant blood-mediated inflammatory responses (IBMIR), engraftment
of a majority of the transplanted cells fails. By using anticoagulant heparin-conjugated
IONPs, IBMIR could be attenuated and stable visualization of implanted islet cells could
be obtained for more than 150 days without reduction of the MRI signal [586]. Pancreatic
infiltrating innate immune cells, such as macrophages, are known to play an important
role in the development of acute pancreatitis [587]. Administration of IONP clodronate-
containing liposomes attenuated the pathological changes in the pancreas and kidneys of
rats with acute pancreatitis [588].

6.5. Bladder and Urethra

Cell therapy is also a promising method for the treatment of diseased or injured
bladder or ureter, which can be monitored noninvasively by using IONPs. Lee et al.
demonstrated that transplantation of magnetic NP-labeled B10 human MSCs into the
bladder wall of rats with spinal cord injury inhibits bladder fibrosis and ameliorates bladder
dysfunction [589] and Kim et al. showed that after periurethral injection of IONP-labeled
human amniotic fluid stem cells (hAFSCs) can restore urethral sphincter competence in
a mouse model of stress urinary incontinence (SUI) [590]. Another study using a rat
model of bladder outlet obstruction, transplantation of IONP-loaded MSCs inhibited
bladder fibrosis and mediated recovery of bladder dysfunction [591]. In a rabbit model
of urogenital tuberculosis (TB), which often results in bladder contraction, a reduction
in urinary reservoir capacity and eventually true microcystitis to complete obliteration,
interstitial injection of IONP-loaded MSCs in combination with standard anti-TB treatment
was shown to restore bladder function [592]. One strategy to treat the insufficiency of the
striated urethral sphincter is the use of myogenic progenitor cells. To localize myofiber
implants, Rivière et al. magnetically labeled the implants, allowing monitoring for up to 1
month in a female pig model [593].

The use of external magnetic fields can significantly enhance the regenerative effect of
IONP-loaded cells. A study by Sadahide et al. demonstrated improved repair of resected
bladder tissue in rabbit models with damaged bladder by injection of IONPs-loaded MSCs
and the presence of a directed external magnetic force than without a magnetic field or
when using unlabeled MSCs [594]. A potential therapeutic method for the treatment of
SUI was developed by Wang et al. [595]. Targeted magnetic accumulation of IONP-labeled
ASCs improved the retention rate of transplanted cells and restored sphincter structure
and function in a rat SUI model.

Biocomposites may also be utilized for tissue engineering of bladder and urethral
tissues. In one study, a minimally invasive approach was developed to treat SUI using an
injectable bulking agent composed of ECM fragments of ASC sheets [596]. The fragments
fully integrated into the surrounding tissue within 1 week, and after 4 weeks, host cells
had regenerated around the fragments. In addition, new smooth muscle tissue had formed
around the fragments. A potential approach for bladder tissue engineering was described
in the study by Yudintceva et al. [597]. Herein, a bilayer scaffold of PLA/silk fibroin was
generated and seeded with IONP-labeled and thus MRI-traceable allogeneic BM-MSCs.
After transplantation into a rabbit model of partial bladder wall cystectomy, biointegra-
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tion of the scaffold seeded with allogeneic BMSCs was shown to improve bladder tissue
regeneration and function compared with unseeded scaffolds. In another study, the same
group used bilayer PLA/PCL scaffolds seeded with IONP-loaded MSC to reconstruct the
urethra in a rabbit model. The scaffolds integrated with the surrounding urethra tissue, and
exhibited less fibrosis and inflammatory cell infiltration than conventional urethroplasty
using an autologous buccal mucosa graft [598]. In another work, a three-dimensional
bladder patch was developed that was composed of a porous polyglycolic acid scaffold
and multilayers of ultra-small IONP-labeled ASC [599]. The bladder patches could be
monitored by MRI in a rat model, and the enhancement of urothelial, smooth muscle,
neuronal and blood vessel regeneration was confirmed by immunofluorescence analysis.
Further urodynamic tests showed that bladder function could be restored with increased ca-
pacity. Ultra-small IONP-labeled bladder patches thus represent a promising image-guided
therapeutic strategy for bladder regeneration. A study by Zhou et al. demonstrated the
construction of a tissue engineered bionic urethra using cell layer technology [600]. After
isolating stem cells from adipose tissue, epithelial cells of the oral mucosa and fibroblasts
of the oral mucosa and labeling them with IONPs, they first produced individual cell
layers. Hierarchically tubularized, three-layered urethras were generated by wrapping a
silicone tube in an orderly fashion. After subcutaneous grafting to promote revasculariza-
tion and biomechanical strength, a small area of the penile urethra was replaced with the
tissue-engineered urethras in the canine model. At 3 months after transplantation, MRI still
showed the three-layered structure. In addition, the density of the blood vessels was almost
restored. The study shows that functional tissue engineering of structurally complicated
structures such as urethras is possible. Finally, Ito et al. fabricated a scaffold-free cell
tube by creating a cell sheet from IONP-loaded urothelial cells. After rolling a cylindrical
magnet onto the cell sheet and magnetically attracting the cells, a tube was formed from
which the magnet was subsequently removed [601].

6.6. Tissue Glue, Wound Regeneration and Skin Engineering

The main causes of the penetration of dangerous pathogens, bleeding or postoperative
wound complications are injuries or insufficient wound healing of the barrier function of
affected surfaces, tissues or organs.

Tissue adhesives represent one possibility for non-invasive wound closure [602]. In the
course of the last decades, a large number of different natural, synthetic, semisynthetic and
biomimetic pressure-sensitive adhesives have been developed [603]. Further improvements
in product properties could be made possible by the use of nanotechnology, for instance
through the principle of particle nanobridging, i.e., adhesion through aqueous nanoparticle
solutions [604]. Through nanobridging, Meddahi-Pellé achieved closure of deep wounds
in rat skin and liver using Stöber silica and iron oxide nanoparticles [604]. To date, there
are several other studies investigating different tissue adhesives and wound dressings
for wound healing and restoration of barrier integrity [605,606]. Matter et al. prepared
bioactive tissue adhesives with different nanoparticles by flame spray pyrolysis [607].
The biocompatibility and adhesive properties of six different metal oxide particles were
tested in an ex vivo porcine small intestinal lap joint model. In particular, the ceramic
bioglass greatly promoted coagulation and exhibited remarkable adhesive properties.
Wang et al. prepared a magnetic adhesive from steel microparticles and a cyanoacrylate
adhesive (Loctite 4014) [608]. Intraluminal injection of the magnetic adhesive into ex vivo
porcine colonic segments and a magnet at the injection site resulted in polymerization of an
intraluminal, mucosally adherent coagulum that allows adequate retraction of the bowel
with little tissue trauma during minimally invasive surgery. Another study demonstrated
the preparation of a composite thin film of PCL-IONPs, which exhibited both antimicrobial
properties and good cytocompatibility with NIH 3T3 mouse fibroblasts [609].

Grumezescu et al. demonstrated the development, characterization and evaluation
of an absorbable and antimicrobial wound dressing based on anionic polymers (sodium
alginate, carboxymethylcellulose) and Fe3O4 nanoparticles loaded with usnic acid [610].
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The results showed low cytotoxicity to human progenitor cells with good antimicrobial
activity, suggesting potential applications in tissue regeneration. Bunea et al. developed
a promising wound dressing based on a silk fibroin-IONP scaffold that exhibited good
cytocompatibility on human ASCs [611]. Anghel et al. modified a textile wound dressing
by coating with a nanofluid containing IONPs and natural microbicidal compounds, such
as vegetal eugenol and limonene [612]. The hybrid phyto-nanostructured coating exhibited
significant anti-adherence and anti-biofilm properties against two of the most important
bacterial pathogens implicated in wound infections, P. aeruginosa and S. aureus.

The magnetic properties of IONPs can also be exploited to achieve accelerated wound
healing. Accelerated wound repair using IONPs functionalized with fibroblast growth
factor bFGF and an external magnetic field (eMF) was shown by Wu et al. [613] The
particles exhibited sustained release of bFGF, increased cell proliferation and promoted
macrophage polarization toward an anti-inflammatory (pro-healing) M2 phenotype espe-
cially in presence of eMF. In a rat model of laser-induced skin injury, administration of
IONP-loaded MSCs and their magnetically enhanced migration to the injury site improved
skin regeneration and enhanced anti-inflammatory effects and angiogenesis, compared
with MSC injection alone [614]. Improved wound healing through accelerated wound
closure, reduced scar width, and enhanced angiogenesis was also achieved with exosomes
derived from BMSCs preconditioned with IONPs and a static magnetic field compared
with IONPs-free exosomes in a rat wound healing model [615]. Heun et al. have devel-
oped a novel wound healing strategy for pathophysiological conditions with impaired
wound healing using a site-specific gene transfer technique based on magnetic targeting
of IONP-lentivirus complexes that ultimately controls hypoxia inducible factor 1α (HIF-
1α)-dependent wound healing angiogenesis via modulation of the tyrosine phosphatase
activity of SHP-2 [616].

In addition to a wide variety of approaches to skin regeneration, there are also ef-
forts toward skin tissue engineering [617]. Zhang et al. fabricated three-dimensional
fibrous composite membranes from the tri-block copolymer PCL-PEG-PCL with embed-
ded IONPs [618]. In vitro cell culture with murine NIH 3T3 fibroblasts showed that the
composite fibers not only exhibited low cytotoxicity, but also provided a suitable scaffold
for cell adhesion and may potentially be used for skin tissue engineering. Paun et al.
demonstrated a proof of concept of magnetically driven 2D cell organization on superpara-
magnetic micromagnets fabricated by laser direct writing by two-photon polymerization
of a photopolymerizable superparamagnetic composite [619]. Under a static magnetic
field, fibroblasts adhered exclusively to the micromagnets, resulting in precise 2D cell
organization on the chessboard-like microarray, suggesting a potential suitability skin
tissue engineering. In another in vitro study, electrospun nanofibers composed of PVA
and IONPs showed good biocompatibility against human skin fibroblast cells and could
potentially be used as biomaterials for tissue engineering scaffolds [620].

6.7. Muscle and Adipose Tissue

Skeletal muscle repair requires tissue engineering strategies that incorporate scaffolds
of biomaterials and cells capable of successfully restoring physiologically relevant func-
tions [621]. In addition, non-invasive imaging techniques help to evaluate and monitor the
therapy. For example, high-resolution images of mesoangioblasts could be made indirectly
by their IONP loading in skeletal and cardiac muscle in a mouse model of muscular dystro-
phy to monitor the progress of stem cell-mediated repair of muscle tissue [622]. Similarly,
IONP-labeled ASCs could be reliably observed for up to 8 weeks after intramuscular
injection into the ischemic leg in a mouse model of hind limb ischemia [623].

The in vivo distribution and migration of MSCs containing very small IONPs could
be reliably observed by MRI after transplantation into the soleus muscle of rat model of
open crush injury [624]. In another work on muscle tissue regeneration, it was shown that
intra-arterially injected stem cells migrate specifically into the damaged muscle tissue after
several rounds of recirculation [625]. Current treatments for anal incontinence, a condition
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that affects 11–15% of the adult population, are often ineffective. Potential therapies for
the treatment of anal sphincter injuries is cellular therapy with stem cells and progenitor
cells [626]. Labeling of muscle progenitor cells with ultra-small IONPs allowed serial
MRI monitoring of transplanted cells in an experimental rabbit model of anal sphincter
repair [627].

Fabrication of well-organized structures remains a challenge in tissue engineering.
In the study by Lee et al., a three-dimensional (3D) cell-dense tissue was fabricated from
fiber bundles consisting of composite fibers of PLGA/IONPs using an electrospinning
technique and then seeded with C2C12 myoblasts that differentiated into multinucleated
myotubes [628]. An applied external magnetic field caused the cell rods to assemble
into a 3D tissue with a highly ordered architecture similar to those in native skeletal
muscle tissues. Another study used IONP-loaded C2C12 myoblast that differentiated
into myogenin-positive multinucleated myotubes in differentiation medium to produce a
very dense and oriented skeletal muscle tissue of ring-shaped multilayered cell sheets by
magnetic tissue engineering [629].

In regenerative medicine, there are efforts to restore defective adipose tissue. In one
work, hyaluronic-based magnetic nanospheres were prepared with covalently immobilized
dexamethasone (Dex) as an adipogenic factor to induce adipogenesis for adipose regen-
eration [630]. The delivery of Dex could be easily controlled by external magnetic field
and demonstrated a high efficiency to promote the viability of ASCs, indicating a potential
usage for soft tissue engineering approaches.

One of the most common complications in spine surgery is epidural fibrosis, which
results from destruction of epidural adipose tissue after laminectomy. ASC isolated from
subcutaneous fat and a porous PLGA scaffold were used to form an engineered adipose
tissue, which successfully led to the regeneration of epidural fat and prevented the forma-
tion of an epidural scar in a rabbit model of dorsal laminectomy [631]. In addition, the
NP-labeled ASCs could be used for MRI visualization for up to four weeks.

White adipose tissue (WAT) is of great interest for tissue engineering and cell-based
therapies because it is a rich source of differentiated adipocytes, stromal mesenchymal
progenitors/ASCs, and ECs and infiltrating leukocytes. Tseng et al. and Daquinag et al.
developed and used a three-dimensional (3D) levitation tissue culture system based on
magnetic nanoparticles [632,633]. They demonstrated that 3D intercellular signaling reca-
pitulates WAT organogenesis and relative cell positioning in organoids called adipospheres
better than 2D cultures. The 3D technique could thus support potential WAT-based cell
therapies in the future.

6.8. Lung Tissue

Stem cells have been extensively studied in the field of regenerative medicine and
can be effectively delivered to the target site by magnetic targeting to increase the number
of cells and their retention and improve the effect of the delivered cells [413]. Silva et al.
administered 2,3-DMSA-functionalized IONP into a mouse model of silicosis via the jugular
vein and used magnetic targeting with fixed magnets in the thoracic region to improve
retention of the particles in the injured lung [634].

Other pulmonary diseases, such as cystic fibrosis (CF) and tuberculosis (TB), can also
benefit from NP-based diagnostic and treatments [635–638]. For instance, in CF, conjugation
of IONPs with appropriate antibiotics could enhance drug delivery through the mucus
and biofilm to bacterial infections, which commonly occurs in CF [639]. Further studies
demonstrated the possibility of magnetic targeting of aerosols, in which drugs of choice can
be enriched with dose accuracy into diseased lung regions, thereby reducing undesirable
side effects [640].

There are only limited reports about lung tissue engineering. In the study by Dza-
mukova et al., adenocarcinomic human alveolar epithelial cells (A549) and human skin
fibroblasts were labeled with (poly)allyl amine-coated IONPs [641]. A magnetic force
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enabled the formation of a two-layered scaffold-free lung-mimicking tissue, showing the
characteristic porous alveoli mimicking native morphologies.

7. Conclusions and Discussion

In recent years, many advances in the development and use of nanomaterials for med-
ical applications have been reported. The use of NPs is favored by their high modifiability,
where the properties of the particles can be tailored exactly to the specific application by the
selected manufacturing method, coating or/and functionalization. Besides the possibility
of IONP-based visualization of scaffolds in the field of tissue engineering, IONPs can be
adapted to any specific application where cellular effects are controlled by loading and
delivery of bioactive agents. Especially in the field of cell therapy, there are countless
possibilities to beneficially influence the therapeutic outcome, be it through non-invasive
monitoring of IONP-labeled cells or through a positive effect of NPs on the differentiation
and regeneration capacity of the administered cells. Thus, IONPs offer a wide range of
potential applications.

However, there are many challenges for successful translation to the clinic [642].
Firstly, the formation and composition of the protein corona, which forms within seconds
of application into the body and interacts strongly with the biological system, is not yet
fully understood and may cause unexpected results in clinical application [643]. Extensive
reliable toxicological studies are another essential prerequisite for successful translation
into clinical applications. In particular, the interference of nanoparticles with numerous
classical toxicological detection methods forces the use of alternative methods such as
real-time label-free analyses, multiparameter staining for flow cytometry and fluorescence
microscopy [644–646]. Moreover, the use of 2D cell culture is not sufficient for in vitro
evaluation of particles, but should be extended with 3D cell culture and flow models before
promising NPs can be evaluated in animal models [647]. The body’s immune response is
an additional significant problem that can result in graft rejection. Side effects of adminis-
tered immunosuppressants towards transplanted cells could be mitigated, for example,
by slow release from hydrogels, immunoisolation of transplanted cells in semipermeable
microcapsules or magnetically controlled local release [648–650]. Finally, magnetically
controlled targeting of IONPs or IONP-labeled cells requires a sufficiently strong external
magnetic field and IONPs with high saturation magnetization. However, most commer-
cially available magnets only provide a reasonable high magnetic force for distances of
a few millimeters, and many IONP exhibit insufficient magnetizability, which could be
optimized by precisely adjusting various parameters such as size, composition size dis-
tribution, and structural and magnetic properties [26,651]. Therefore, the development
of optimized synthesis methods, innovative magnetic field configurations and/or new
stronger magnets is necessary to enable targeted and efficient delivery to deeper regions of
the body [652,653].

Thus, to achieve translation to the clinic, the complete workflow from nanoparticle
synthesis according to the current good manufacturing practice standards with accurate
physicochemical characterization, to comprehensive in vitro and in vivo toxicological stud-
ies including biodistribution and efficacy studies must be performed [654]. Hence, there
are only few IONPs that have successfully completed the translation to the clinics thus
far. Despite this fact, the successful use of IONPs in many areas of nano-medical research
raises hopes about further IONP formulations to be approved for clinical applications in a
not-so-distant future.
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computed tomography
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GFP green fluorescent protein SS stainless steel
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hAECs human aortic endothelial cells TEVGs tissue-engineered vascular grafts
HDL high-density lipoproteins TGF transforming growth factor
hESCs human embryonic stem cells tPA tissue plasminogen activator
hVEGF human vascular endothelial growth factor UK urokinase
IBMIR instant blood-mediated inflammatory responses VCAM-1 endothelial vascular adhesion
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IONPs iron oxide nanoparticles VEGF vascular endothelial growth factor
LIFU low intensity focused ultrasound irradiation VEGFR-2 vascular endothelial growth factor
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