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Vesicular stomatitis virus (VSV), a negative-strand RNA virus of the Vesiculovirus genus,
has demonstrated encouraging anti-neoplastic activity across multiple human cancer
types. VSV is particularly attractive as an oncolytic agent because of its broad tropism, fast
replication kinetics, and amenability to genetic manipulations. Furthermore, VSV-induced
oncolysis can elicit a potent antitumor cytotoxic T-cell response to viral proteins and
tumor-associated antigens, resulting in a long-lasting antitumor effect. Because of this
multifaceted immunomodulatory property, VSV was investigated extensively as an
immunovirotherapy alone or combined with other anticancer modalities, such as
immune checkpoint blockade. Despite these recent opportunities to delineate
synergistic and additive antitumor effects with existing anticancer therapies, FDA
approval for the use of oncolytic VSV in humans has not yet been granted. This mini-
review discusses factors that have prompted the use of VSV as an immunovirotherapy in
human cancers and provides insights into future perspectives and research areas to
improve VSV-based oncotherapy.
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INTRODUCTION

Vesicular stomatitis virus (VSV) is non-pathogenic, enveloped, negative-strand RNA Rhabdovirus
with potent vaccine and oncolytic potential (1–6). VSV can infect nearly all cell types but cannot
initiate a productive infection in healthy cells due to an antiviral response mediated by type-I
interferons (IFNs).11 However, defects in IFN signaling often coincide with tumorigenesis (7, 8).
Thus, VSV is capable of infecting and selectively destroying cancer cells with minimal damage to
normal cells, making it an attractive therapeutic agent. Furthermore, VSV is particularly appealing
as an oncolytic vector (OV) and vaccine agent due to low anti-VSV immunity in the general
population (pre-existing immunity to OVs limits their intratumoral spread) and fast replication
kinetics in cancer cells (9).

The nonsegmented VSV genome is typical of viruses in the Vesiculovirus genus. The
approximately 11-kb genome encodes five structural proteins, including the nucleocapsid protein
(N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and the large polymerase
protein (L) (10–12). VSV genome encapsidation is facilitated by specific interactions between the
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N and P proteins (12). The N protein is essential for suppressing
the transcription-termination signal during viral replication (13).
The P and L proteins function as co-factors of the RNA-
dependent RNA polymerase (RdRp); they exert indispensable
and versatile functions, including regulating the initiation,
elongation, and encapsidation of viral RNAs (14, 15).
Specifically, the RdRp binds the encapsidated viral genome at
the leader region, then sequentially transcribes each gene (16).

The M protein is involved in virus assembly and budding
(17). It has also been shown to inhibit innate antiviral responses
and alter host transcriptional machinery, ultimately coercing
tumor cells to undergo apoptosis (18). Therefore, viruses with
mutant M proteins were developed to restrict viral replication to
tumor cells with an altered type-I IFN signaling axis (19).

The G protein forms spike-like structures on the viral particle
surface and plays an essential role in the initial stages of infection
(20). In the Indiana strain, the G protein was shown to mediate
viral attachment via interaction with the low-density lipoprotein
receptor (LDL-R) and its family members (21). The VSV-G
protein is capable of binding LDL-R via the cysteine-rich LDL-R
domains CR2 and CR3, resulting in clathrin-dependent
endocytosis and intracellular uptake of the VSV genome (22,
23). However, several other reports showed that isogenic pairs of
wild type LDL-R and LDL-R–knockout (-/-) (24, 25) cell lines
can be infected efficiently by VSV and other closely related family
members, highlighting the potential role of other surface proteins
or cell-intrinsic mechanisms in viral entry (22). The broad
cellular tropism of VSV is attributable to its G protein; thus, it
is often replaced with entry proteins from other viruses to
improve the safety and selectivity of VSV-based oncolytic
vectors (26).

Numerous studies have shed light on the fundamental
mechanisms of VSV–host cell interactions, the dynamics of
viral gene expression, and the pathogenesis of viral infection
(26). These findings have greatly expanded our understanding of
the biology and structure of VSV, informing the design of
recombinant VSV (rVSV) vectors with improved safety and
selectivity towards a broad range of cancer cells. Despite this
progress, VSV-based immunovirotherapy has not lived up to its
expectations, and FDA approval has not yet been granted. Thus,
we eagerly await the published outcomes of various completed,
recruiting, or active cancer treatment trials (clinicaltrials.gov) in
the United States using rVSV as an immunovirotherapy
platform. In the meantime, it is equally important to review
the past and recent developments of VSV vectors in cancer
therapy to derive insights into ways to refine and improve the
antitumor efficacy of such vectors.
DEVELOPMENT OF VSV AS A
VACCINE PLATFORM

The use of reverse genetics enabled researchers to rescue infectious
negative-strand RNA viruses from viral genomic cDNAs, leading
to significant improvement in our ability to manipulate and study
RNA viruses for vaccine development and cancer therapy
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applications (27, 28). Owing to their ability to prime robust
humoral and cellular immunity, VSV vectors have also been
used as vaccine agents to generate protective immunity against
infections with highly lethal human viruses, including Ebola, HIV,
Marburg, Lassa, Zika, and SARS-COV-2 viruses (29–40). Other
vaccine candidates using attenuatedVSVvectorswere evaluated in
preclinical models to prevent illnesses due to influenza (41),
hepatitis B virus (42), different strains of coronavirus causing
respiratory diseases (43, 44), Yersinia pestis (bubonic plague)
(45), respiratory syncytial virus (RSV) (46), herpes simplex virus
2 (HSV2) (47), Dengue virus (48), Chikungunya virus (49), Nipah
virus (50), and human papillomavirus (HPV) (51).

However, despite abundant evidence of therapeutic efficacy,
only one VSV-based vaccine is FDA approved (52). This is
mainly due to concerns related to the promiscuous nature of
the VSV entry glycoprotein (VSV-G), allowing the virus to
infect neurons and induce encephalitis in mice (7, 53, 54).
Thereby, questions were raised regarding the potential
neurotoxicity of VSV in humans following systemic delivery,
limiting its widespread clinical deployment as a vaccine vector
in humans. To address this critical concern, several groups have
engineered VSV vectors with mutated G proteins or harboring
G proteins from other non-neurotropic viruses to ablate
interactions with LDL-R, which is highly expressed in
neurons (49, 55–57). Many VSV-derived vectors that have
progressed to preclinical and clinical testing as vaccine agents
also displayed lytic potency and elicited a strong, durable
cytotoxic T-cell response in permissive tumors (58, 59).
While most oncolytic viruses such as VSV induce robust
tumor-cell killing in vitro, recent clinical reports strongly
suggest that, in vivo, OVs turn “cold” tumors into hot tumors
(60), as discussed below.
RATIONALE FOR DEVELOPING VSV AS
AN ONCOLYTIC AGENT

Wild type VSV causes mild disease in cattle, horses, and swine,
causing vesicles (blisters) around the mouth (61). The few
reported cases of human VSV infections were limited to
agricultural and laboratory workers, characterized by an
incubation period between 8 to 48 hours, with mild flu-like
symptoms (26, 62, 63). VSV is a highly cytopathic virus that
infects nearly all cell types, but its infection and replication are
enhanced in tumor cells with a defective IFN signaling pathway
(64). This feature makes it an ideal oncolytic virus therapy agent.
In addition, VSV has a fast kinetic cycle, does not integrate into
the host genome (65), and is a potent inducer of apoptosis in the
infected cancer cells—a critical feature of viral therapeutics (66,
67). The VSV genome is also relatively small and can
accommodate the insertion of one or more foreign, functional
genes (68). Importantly, VSV has demonstrated anticancer
activity in a vast array of cancer cells, including osteosarcoma
(69), cervical cancer (70), breast cancer (71), melanoma (72),
hepatocellular carcinoma (73), pancreatic cancer (57), and
glioblastoma (74).
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Although VSV-based oncolytic vectors have shown efficacy in
mouse models and led to multiple human studies (Table 1),
barriers to FDA approval and clinical application remain. These
barriers include variability in the efficiency by which VSV kills
cancer cells, even among cancers from the same tissue of origin,4

and reports of VSV-induced encephalitis in laboratory animals
and humans (87, 88). Furthermore, the heterogeneous
therapeutic responses in solid cancers (e.g., pancreatic cancer)
are attributed to factors such as a fibrotic and dense extracellular
matrix, hypoxia, high interstitial tumor pressure, and low pH in
the tumor microenvironment, limiting viral spread and
immunogenic cell death in response to oncolytic therapy.13

The fact that VSV is cleared rapidly by the immune system
(e.g., via neutralizing antibodies and complement molecules) has
further dampened enthusiasm for this vector (7, 53, 54). These
obstacles have severely limited the anticancer efficacy of VSV—
particularly the inability to administer multiple doses to achieve
tumor shrinkage and, most importantly, the inability to bypass
the immune system and infect neoplastic cells.

A decade ago, the first VSV trial in human cancers was posted
to clinicaltrials.gov; however, no trial results have been
disseminated (Table 1). This lack of information raises
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pertinent questions about whether we can achieve the desired
therapeutic outcomes with current VSV vectors. Although it is
not clear when these results will be available, the eagerly awaited
outcomes of these studies will undoubtedly guide the future
development of VSV-based oncotherapy for clinical translation.
Nonetheless, several groups developing and testing oncolytic
vesiculoviruses have proposed ingenious viral engineering
strategies (65, 89, 90) to improve patient safety and
vector potency.
STRATEGIES DESIGNED TO ENHANCE
VSV ONCOLYTIC ABILITY

Each genetic modification approach attempted to improve the
antitumor activity of rVSV and its safety profile. Although rapid
progress in nanotechnologies has enabled the improvement of
delivery, pharmacokinetics, bioavailability in the tumor of rVSV
vectors, many of these studies are in the early preclinical stages (91).
Thus, this section will focus on vector engineering strategies to
enhance safety, immunogenic apoptosis, and immune clearance.
TABLE 1 | Reported VSV-based vaccine and cancer treatment clinical trials (http://clinicaltrial.gov/).

Vector Purpose Clinical Trial Identification Phase Status

VSV-IFNb-NIS Cancer
treatment

Systemic VSV-IFNb-NIS and Pembrolizumab in Refractory NSCLC and NEC NCT03647163 I/II Recruiting**

VSV-IFNb Cancer
treatment

Administration of VSV-IFNb-NIS Monotherapy and in Combination With Avelumab in
Pts With Refractory Solid Tumors

NCT02923466 I Active not
recruiting**

VSV-IFNbetaTYRP1 Cancer
treatment

Modified Virus VSV-IFNbetaTYRP1 in Treating Patients With Stage III-IV Melanoma NCT03865212 I Recruiting**

VSV-GP Cancer
treatment

Phase 1b Study to Evaluate ATP128, VSV-GP128 and BI 754091 in Patients With
Stage IV Colorectal Cancer

NCT04046445 I Recruiting**

VSV-IFNb-NIS Cancer
treatment

Intratumoral Administration of Recombinant VSV in Patients With Refractory Solid
Tumors

NCT02923466 I Recruiting**

VSV-IFNb-NIS Cancer
treatment

VSV-IFNb-NIS With or Without Ruxolitinib Phosphate in Treating Patients With
Stage IV or Recurrent Endometrial Cancer

NCT03120624 I Recruiting**

VSV-IFNb-NIS Cancer
treatment

VSV-hIFNbeta-NIS in Treating Relapsed or Refractory Multiple Myeloma, Acute
Myeloid Leukemia, or T-cell Lymphoma

NCT03017820 I Recruiting**

rVSVDG-ZEBOV-GP Vaccine Placebo-Controlled, Dose Response, Safety and Immunogenicity Study of Vesicular
Stomatitis Virus (VSV) Ebola Vaccine in Healthy Adults (V920-004)

NCT02314923 I Completed
(75)

VSVDG-ZEBOV Vaccine Safety and Immunogenicity of Prime-Boost Vesicular Stomatitis Virus (VSV) Ebola
Vaccine in Healthy Adults (V920-002)

NCT02280408 I Completed
(76)

VSV-EBOV Vaccine Immune Durability After VSV-EBOV Vaccination NCT02933931 I Completed
(77)

VSV-ZEBOV Vaccine VSV-ZEBOV Geneva Vaccine Trial NCT02287480 II Completed
(78, 79)

VSV-Indiana (one type of VSV
vector) HIV gag vaccine

Vaccine Evaluating the Safety of and Immune Response to the VSV-Indiana HIV Vaccine in
Healthy, HIV-Uninfected Adults

NCT01438606 I Completed
(80)

rVSVD-ZEBOV-GP Vaccine Phase I Trial of an Ebola Virus Vaccine (rVSVDG-ZEBOV-GP) NCT02283099 I Completed
(52, 78, 81)

rVSVDG-ZEBOV Vaccine STRIVE (Sierra Leone Trial to Introduce a Vaccine Against Ebola) NCT02378753 III Completed
(82–84)

VSVDG-ZEBOV Vaccine Vaccine Treatment for Ebola Virus in Healthy Adults (V920-001) NCT02269423 I Completed
(76)

rVSV-HIV1gag Vaccine Therapeutic Vaccine for HIV NCT01859325 I Completed
(85)

rVSVN4CT1-EBOVGP1 Vaccine Ebola Zaire Vaccine NCT02718469 I Completed
(86)
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Optimizing rVSV Design to Enhance
Immunogenic Apoptosis and
Reduce Neurotoxicity
Studies have shown that mechanistically, VSV-induced oncolysis
results in the release of a series of molecules, including tumor-
associated antigens (TAAs), pathogen-associatedmolecular patterns
(PAMPs), and damage-associated molecular patterns (DAMPs)
(92–94). The build-up of TAAS in the tumor microenvironment
elicits the recruitment and activation of tumor-specific cytotoxic
(CD8+) T cells (92–94). PAMPS and DAMPS promote infiltration
of neutrophils, natural killer (NK) cells, and dendritic cells (DC)
into tumor sites. This simultaneous activation of innate and
adaptive immunity is essential for priming a robust and durable
antitumor immune response. These earlier works on the ability of
rVSV to induce immunogenic cell death or apoptosis have
influenced the field in many ways. For example, Wu and
colleagues demonstrated that rVSV expressing murine
gammaherpesvirus M3 protein (rVSV[M-D51]-M3) induced
enhanced tumor necrosis and prolonged survival substantially in
an animal model compared to parental VSV (19). M3 is a secreted
chemokine-binding protein that binds to a broad range of
mammalian chemokines with high affinity (19). In addition to
decreasing neurotoxicity, delivery of exogenous M3 enhanced rVSV
(M-D51)-M3 oncolytic activity by curtailing the activation of host
innate immunity against oncolytic VSV in the tumor. Similar to the
mutant M protein vectors, VSVs harboring mutations in G (95), P,
or L proteins (96) with improved oncoselectivity and potency were
also developed and evaluated preclinically. Although rVSVs with
mutated viral proteins have enabled some safety improvements, as
evidenced by no apparent neurovirulence and no visible
pathogenesis in animal models, these vectors are often highly
attenuated (i.e., reduce viral replication capacity) and thus are not
appropriate for clinical deployment. Therefore, Russell and
colleagues have adopted a different approach by incorporating
microRNA target sequences (e.g., for miR-125) into the viral
genome to decrease the ability of the virus to replicate in
neurons (97).

Generation of rVSV Vectors With Improved
Immunostimulatory Activity
Multiple studies have also attempted to increase VSV safety and
oncolytic properties by inserting into the viral genome genes
encoding immunostimulatory proteins, chemoattractant
molecules, or effectors that induce apoptosis in tumor cells (26,
59). One example is a VSV vector carrying the full-length p53
gene. Tumor protein p53 is a potent activator of apoptosis, and it
is the most frequently mutated gene in human tumors (98).
Indeed, the reactivation of p53 has been shown to potentiate
antitumor immune activity (99). In an animal model, the vector
VSV-M(D51)-p53, expressing p53, improved antitumor activity
and enhanced CD49b+ NK and tumor-specific CD8+ T-cell
responses (99, 100).

Immunostimulatory cytokines function in a synergistic or
cascade fashion to modulate immune responses. Consequently,
combining cytokines (101) with oncolytic viruses was seen as
worth investigating for possible additive or synergistic long-term
Frontiers in Immunology | www.frontiersin.org 4
responses in clinical settings. Granulocyte–macrophage colony-
stimulating factor (GM-CSF) is a potent immunostimulatory
cytokine involved in the maturation and migration of
macrophages and dendritic cells, which activate cytotoxic T
cells (102). Hence, GM-CSF–expressing VSV (VSV-GM-CSF)
vectors were developed, in which the transgene was inserted
upstream of the VSV N gene or between the M and G genes
(103–105). These vectors were attenuated and well-tolerated in
vivo, and they triggered strong cellular and humoral antitumor
immune responses (103–105). This work with VSV vectors
expressing immunomodulatory cytokines demonstrated that
tumor stage and type; immune mechanisms; and timing,
dosage, and route of administration are crucial for obtaining
the desired therapeutic effect with oncolytic viruses (106).

While IL-15 preferentially stimulates the proliferation of NK
and memory CD8+ T cells and increases their antitumor activity
(107), IL-12 functions as a “bridging” cytokine, providing an
essential regulatory link between innate and adaptive immunity
(108). Additionally, IL-23 has been shown to establish stable
gene expression for activation of TH17 cells, but it is also crucial
to activate innate immune cells, which are scattered across non-
lymphoid organs (109). Thus, rVSV expressing IL-15, IL-12, or
IL-23 (rVSV-IL-15, rVSV-IL-12, rVSV-IL-23) were generated
and considerably improved synergistic antitumor efficacy
compared to parental rVSV (110–112). Along the same line,
IL-4 (113), thymidine kinase (113), IL-28 (114), Fms-like
tyrosine kinase 3 ligand (115), and IFN-b (116) were expressed
in VSV vectors, and their oncolytic activities have been
documented across various cancer types. Based on encouraging
preclinical studies, rVSV expressing human type-I IFN-b and a
reporter known as sodium iodide symporter (VSV-IFNb-NIS)
has advanced through early to late phases of clinical testing
(Table 1). Although VSV-based cytokine expression promotes
superior oncolytic activity, it is essential to note that it can also
potentiate viral clearance and impact the overall antitumor
efficacy of the vectors.

Addressing Issues With Rapid Immune
Clearance, Dense Stroma While Promoting
Strong Apoptotic Activity
A plethora of viral engineering strategies has been proposed to
enhance the oncolytic ability of VSV. Chimeric VSV displaying
fusion (F) and hemagglutinin (H) proteins from Newcastle
disease virus or measles virus was shown to abolish VSV-
associated neurotoxicity and the effect of virus-neutralization
antibody (NAbs) on the bioavailability of viral vectors through
the formation of syncytia-like structures (7, 57). The molecular
mechanisms by which wild-type VSV and recombinant rVSV
vectors induce intrinsic, extrinsic, or endoplasmic reticulum
stress-mediated apoptosis have been elucidated in numerous
studies (64, 65). This has prompted several authors to employ
vectors such as VSV-vCKBPs (117), VSV-UL141 (118),, and
rVSV-FAST (119), capable of exerting robust oncolytic activity
while resisting rapid viral clearance. It is reasonable to speculate
that many viruses in tumor sites could infect tumor cells and
induce enough oncolysis to eradicate the tumors on their own.
June 2022 | Volume 13 | Article 898631
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However, virus-mediated oncolysis also provides conditions for
priming antitumor immunity by activating tumor-specific
cytotoxic T cells (120–131). The most critical aspect of rVSVs
in cancer vaccines’ context is their ability to efficiently modulate
anti-tumor immune responses. Consequently, current oncolytic
viruses, such as rVSV and rVSV-derived vectors, may be
applicable to cancer patients with functional immune systems.
In addition, the tumor microenvironment is complex,
characterized by a sophisticated interplay between tumor cells
and many components, including immune cells, extracellular
matrix, fibroblasts, and various molecules, such as enzymes.
This harsh environment is a known barrier to therapy,
including immunotherapy and oncolytic virus therapy.15 It is
now evident that rVSV vectors alone have limited long-term
antitumor activity and may achieve only a partially curative
effect. Combining rVSVs with other therapies, including
radiotherapy, T-cell therapies, and immune checkpoint
blockades, could serve to unleash their full oncolytic potential
(132–138). We enthusiastically await the results of VSV clinical
trials and expect novel combinations of VSV vectors with other
cancer treatments to emerge in the coming years.
CHALLENGES AND FUTURE DIRECTIONS

Despite evidence of the therapeutic benefits of rVSV-based
oncotherapy, most investigations remain in the preclinical
stage due to numerous challenges. These limitations include
neurotoxicity (e.g., due to the promiscuous nature of the VSV
entry glycoprotein [VSV-G]), rapid clearance by the immune
system (e.g., via pre-existing VSV antibodies), and hepatotoxicity
(e.g., viral interaction with Kupffer cells) (139, 140). Several
strategies were proposed to address these obstacles, including
modifying the VSV-G protein to achieve optimal therapeutic
benefits (7, 53, 54, 141). Moreover, the lack of biomarkers that
could be used to select patients who would benefit from oncolytic
virus therapy represents a significant hurdle that we must
seriously consider in future designs and clinical testing. Despite
Frontiers in Immunology | www.frontiersin.org 5
these challenges, the therapeutic potential of rVSV in cancer
treatments is indisputable; indeed, VSV-IFN-b has advanced
into late-phase clinical testing, renewing enthusiasm for
oncolytic VSV.
DISCUSSION

Early research into the biology of VSV, including genomic
structure, immunogenic properties, and pan-tropism, paved
the way for developing this promising oncolytic agent and
vaccine vector. However, the seamless clinical translation of
VSV oncotherapy still faces significant challenges, and VSV
has not yet been utilized to its full potential as an oncolytic
vector. As the mechanisms of tumor resistance to molecular
therapy continue to be elucidated, we fully expect new VSV
vectors with enhanced potency and selectivity to be
evaluated soon.
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