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Chickens selected for feather 
pecking can inhibit prepotent 
motor responses in a Go/No-Go 
task
Jennifer Heinsius1, Nienke van Staaveren1, Isabelle Young Kwon1, Angeli Li1, Joergen B. Kjaer2 
& Alexandra Harlander-Matauschek1*

Repetitive feather pecking (FP) where birds peck and pull out feathers of conspecifics could reflect 
motor impulsivity through a lack of behavioural inhibition. We assessed motor impulsivity in female 
chickens (n = 20) during a Go/No-Go task where birds had to peck (Go) or inhibit pecks (No-Go) 
appropriately to obtain a food reward, depending on visual cues in an operant chamber. Birds were 
selected to show divergent FP performance based on their genotype (high predisposition for FP 
or unselected control line) and phenotype (peckers or non-peckers). Genotype, phenotype, and its 
interaction did not affect the number of pre-cue responses, percentage of responses during No-Go 
cues (false alarms), or efficiency (number of rewards over number of responses). We present the first 
documentation of a Go/No-Go task to measure the ability of birds genetically and phenotypically 
selected for FP activity to inhibit a prepotent motor response. Results indicate that the repetitive motor 
action of FP does not reflect impulsivity and is not genetically linked to a lack of behavioural inhibition 
as measured in a Go/No-Go task.

Chickens use pecking as their main action for manipulation of objects, which include e.g., the handling of food, 
foraging, and exploring or moving items1. A similar pattern is seen in feather pecking (FP) – a behaviour where 
a bird reaches out to peck at the feather of conspecifics, which may or may not result in plucking of feathers 
and occasionally the consumption of feathers2,3. This damages the feather cover of conspecifics which in some 
cases can lead to cannibalism and ultimately death of the victim3. FP is a common behaviour in birds kept for 
egg-laying with a reported prevalence ranging from 15% to 95% on commercial farms4–7. This disruptive behav-
iour can be induced by adverse, stressful environments8–10 and is associated with neurobiological changes, such 
as alterations within the monoaminergic system11. This potential link to permanent neurobiological alterations, 
together with its apparent heritability12,13, makes FP difficult to treat and often irreversible14. Theoretically, neu-
robiological alterations can reduce behavioural control, and would explain functionless pecking by birds that 
engage in this behaviour during operant tasks15–17. Given the repetitive nature of FP, FP may be more akin to sim-
ilarly described repetitive behaviour seen in human psychiatric disorders, such as attention-deficit hyperactivity 
disorder (ADHD)18.

Impulsivity is part of normal behaviour19. It is considered a favourable trait when decision making needs to 
be completed quickly, enabling the individual to seize fleeting opportunities, and when the outcomes of such 
decisions are positive. However, impulsivity can be detrimental when it is a persistent or a dominant trait (e.g., 
in people with psychological disorders such as ADHD)20. Impulsivity is a multifaceted construct that encom-
passes quick decision-making fuelled by a lack of forethought, decreased ability to pay attention, and decreased 
inhibitory control, among other traits21. Its complexity is evidenced by the multiple ways in which it is described 
in the literature and the different types of impulsivity that have been identified over the years21. One such sub-
type is motor impulsivity, which, on a cognitive level, is linked to an individual’s inability to suppress prepotent 
motor responses, otherwise known as response inhibition22. Responses are characterized as prepotent when an 
immediate positive or negative reinforcement is associated with it, and they are the dominant response to a 
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given stimulus23. Motor impulsivity can be tested through Go/No-Go tasks which are applied in humans and in 
rodent models20,24. These tasks evaluate the ability of inhibitory control mechanisms to suppress rapid, condi-
tioned motor responses (i.e., prepotent responses) allowing cognitive mechanisms to guide behaviour20,25. In this 
context, a Go cue would require the animal to perform a response, while a No-Go cue would require the animal 
to inhibit the same response. Highly impulsive animals are unable to accurately or fully execute action inhibitory 
control, and therefore, would be impaired in Go/No-Go task performance20,26.

To date, it is not clear whether motor impulsivity plays a role in FP behaviour in birds kept for egg laying. Our aim 
was to address this knowledge gap by investigating motor impulsivity in genetically- and phenotypically-selected 
FP hens. To this end, we compare motor impulsivity in a line of White Leghorns selected for high FP (HFP) to that 
of an unselected control line (CON) to determine the contribution of the respective genetic backgrounds27. While 
we hypothesize that the HFP line exhibits higher impulsivity in general, it has long been observed that FP behav-
iour does not occur in all individuals in a population with this genetic predisposition28,29. Consequently, the motor 
impulsivity between phenotypic peckers (P) and non-peckers (NP) within the HFP and CON lines was also evalu-
ated. We predict that birds with a FP phenotype or genotype will exhibit higher motor impulsivity as shown by a lack 
of behavioural inhibition in a Go/No-Go task compared to their low pecking counterparts.

Results
Task acquisition.  All hens used in the study were trained to peck upon receiving a Go cue and to abstain 
from pecking upon receiving a No-Go cue. This was achieved by shaping (phase 1–2) bird behaviour to the 
respective cues and encouraging the subjects to learn (phase 3–5) to perform the correct action with increasing 
speed (see also Methods, Fig. 3). Successfully performing either task awarded the bird a food reward and birds 
needed to earn at least 75% of the potential food rewards in two consecutive sessions to move through phases 3–5. 

Phenotype Genotype Number of Sessions

Phenotype

P 3.2 ± 0.50

NP 4.3 ± 0.57

Genotype

HFP 3.6 ± 0.50

CON 3.8 ± 0.58

Interaction

P HFP 3.1 ± 0.64

CON 3.2 ± 0.77

NP HFP 4.1 ± 0.78

CON 4.6 ± 0.85

Table 1.  The impact of phenotype and genotype on the learning ability of hens. The effect of feather pecking 
phenotype (P: pecker n = 11, NP: non-pecker n = 9), genotype (HFP: high feather pecking line n = 10, CON: 
unselected control line n = 10) and their interaction on the learning ability of hens during training of a Go/
No-Go task during task acquisition (phases 3-5) in a Go/No-Go task as measured by the average number of 
sessions (Least Square Means ± SE) required to advance to the next phase.

Figure 1.  Average number of sessions (Least Square Means ± SE) required by hens to advance to the 
subsequent phase during acquisition of a Go/No-Go task (phase 3-5). Learning criterion to proceed to the next 
phase was set at 75% of rewards obtained over two consecutive sessions. Different letters indicate significant 
differences (P < 0.05).
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In this task acquisition phase, pecking was transformed into a prepotent response where individual birds varied 
in the number of sessions they required to achieve this threshold (Table 1). On average, hens required 4.0 ± 0.47 
sessions to move on to the next phase, with a minimum of 2 and maximum of 22 sessions. The average number of 
sessions required to learn the task was not impacted by the birds’ genotype (F1,16 = 0.13, P = 0.7203), phenotype 
(F1,16 = 2.44, P = 0.1381), or genotype-phenotype interaction (F1,16 = 0.02, P = 0.8997) (Table 1).

All birds needed a significantly higher number of sessions (F2,32 = 4.77, P = 0.0154, Fig. 1) to pass the learning 
criterion in phase 3 compared to phase 4 (t32 = 2.12, P = 0.102) and phase 5 (t32 = 2.86, P = 0.0195), respectively. 
There was no difference in the number of sessions needed to proceed to the next phase in phase 4 and 5 (t32 = 0.81, 
P = 0.6974). Overall, this pattern demonstrates that the birds learned the task at hand over time, but that the FP 
behaviour did not impact task acquisition.

Behavioural inhibition.  To test motor impulsivity (phase 6) after birds had learned the task, the number 
of pre-cue responses and the percentage of false alarms were assessed. Pecking during the pre-cue period was 
considered an impulsive action as it indicates that the bird engaged their prepotent response in anticipation prior 
to receiving the appropriate stimulus. False alarms are defined as pecks in response to the No-Go cue, which indi-
cates the inability of the animal to inhibit their prepotent response via response inhibition.

We report that the birds’ phenotype, genotype, or the interactions thereof, did not affect the average num-
ber of pre-cue responses (Fig. 2A, genotype: F1,16 = 1.5, P = 0.2377, phenotype: F1,16 = 0.05, P = 0.8309, genotype 
x phenotype interaction: F1,16 = 0.02, P = 0.8985) or the average percentage of false alarms (Fig. 2B, genotype: 
F1,16 = 0.01, P = 0.9163, phenotype: F1,16 = 1.71, P = 0.2100, genotype x phenotype interaction: F1,16 = 1.19, 
P = 0.2924) when tested in phase 6. Additionally, phenotype, genotype, and their interaction did not influence 
the average number of correct pecks during Go cues (genotype: F1,16 = 2.09, P = 0.1675, phenotype: F1,16 = 0.35, 
P = 0.5604, genotype x phenotype interaction: F1,16 = 1.94, P = 0.1828) or correct withholds during No-Go 
cues (genotype: F1,16 = 0.01, P = 0.9163, phenotype: F1,16 = 1.71, P = 0.2100, genotype x phenotype interac-
tion: F1,16 = 1.19, P = 0.2924). Finally, the response efficiency, defined as the number of rewards per number of 
responses, was not dependent on the birds’ genetic background, the FP behaviour or any potential interaction 
between these two factors (genotype: F1,16 = 0.02, P = 0.9038, phenotype: F1,16 = 0.25, P = 0.6209, genotype x phe-
notype interaction: F1,16 = 0.21, P = 0.6544).

Discussion
We investigated the association between repetitive FP and motor impulsivity in birds that were selected for high 
FP behaviour (HFP birds) and those from a control line (CON birds). Prior to this study, a Go/No-Go task 
that can quantify impulsive behaviour had not been used in laying hens to assess the relationship between FP 
and motor impulsivity before. We hypothesized that FP is an impulse-driven behaviour that may be caused by 

Figure 2.  The average number of pre-cue responses (A) and false alarms (B) (Least Square Means ± SE) of hens 
with different feather pecking phenotypes (P: pecker n = 11, NP: non-pecker n = 9) and genotypes (HFP: high 
feather pecking line n = 10, CON: unselected control line n = 10) during a Go/No-Go task (phase 6).
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neurobiological dysfunction with a genetic component11, and that it is similar to human psychiatric disorders that 
display repetitive behaviour (e.g., ADHD). This theory is supported by bird lines that are bred for high FP activity 
which is accompanied by high general locomotor activity18. We predicted that the genetic background that is 
associated with high FP behaviour will also contribute to impulsive behaviour involving motor actions in general. 
Consequently, birds that were genetically or phenotypically categorized as birds that perform FP would score dif-
ferently on measures of impulsivity (higher number of pre-cue responses and false alarms, lower efficiency) in a 
Go/No-Go task relative to control birds. Against our predictions, we did not find an increase in motor impulsivity 
in domestic chickens that were genetically (HFP) and phenotypically (P) more inclined to feather peck as meas-
ured by the number of pre-cue responses, false alarms or the efficiency of each group to obtain the food reward.

The results of our study showed that HFP and CON birds were similarly able to inhibit pecking behaviour 
towards a visual cue in the operant chamber, suggesting that the genetic make-up of birds did not affect motor 
impulsivity. Interestingly, HFP birds exhibit higher general locomotor activity levels18, higher pecking activity at 
inanimate stimuli on a computer screen30, and at a pecking key16 than unselected CON lines. Theoretically, these 
repetitive behaviours could be associated with a lack of response inhibition. Alternatively, FP is thought to be a 
sustained response to the unnatural and stressful environments in which laying hens are kept31. It is, therefore, 
possible that FP is an inappropriate repetitive response in the absence of a stimulus or to an incorrect stimulus, 
also known as perseveration, which has close ties to impulsivity32. Kjaer et al.33 tested the frequency of recurrent 
perseveration in birds divergently selected for FP and a control line. Interestingly and contrary to their initial 
hypothesis, the authors reported that divergently selected birds were not associated with increased recurrent 
perseveration responses33. In fact, HFP birds showed a lower tendency for unnecessary repetitive responses than 
CON birds and a similar latency to repeat the same response in a two-choice guessing task as their CON coun-
terparts33. It is noteworthy that while we recorded a lower number of pre-cue responses in HFP compared to 
CON birds, suggesting that HFP birds performed marginally better than CON birds, this observation was not 
statistically significant. It is possible that the relatively small sample size may hide significant effects. Nevertheless, 
the results reported are relatively similar across conditions to those reported by Kjaer et al.33. Given that the latter 
used a larger sample size, the observations presented in this study may be considered robust.

This is in contrast with findings on stereotypic behaviour in parrots where researchers found a positive associ-
ation between stereotypic behaviour (including self-plucking of feathers) and recurrent perseveration34. The same 
study reported that rapid repetition of responses were observed in birds with a higher incidence of stereotypic 
behaviour34. As such, the present study and literature suggest that repetitive FP movements may not accompany 
motor impulsivity, or related cognitive problems and that they are not stereotypic in HFP birds.

Our results also suggest that phenotypic FP is not associated with motor impulsivity. Neither P nor NP birds 
differed in their responses during the Go/No-Go task showing the same amount of pre-cue responses, false 
alarms, and the same efficiency during the task (phase 6). Indeed, this shows that P birds were not impaired in 
task performance, as they were able to wait periods of unpredictable time (pre-cue period) without pecking a 
key, and they were able to suppress a prepotent motor response to the No-Go stimulus (false alarms, efficiency) 
similarly to NP birds. This mirrors the conclusions of a self-control study conducted in laying hens where birds 
anticipated future consequences by displaying high temporal cognitive abilities35. It is important to highlight that 
the present study was conducted solely in adult birds as FP behaviour is more mainly reported and observed in 
adult birds7,14,36,37. As such, there exists the possibility that P birds may indeed have impaired impulse control 
at a young age; however, they may develop coping strategies that diminish or mask this deficiency over time, 
thereby allowing P birds to perform Go/No-Go tasks similarly to their NP counterparts as adults. According to 
this train of thought, the lack of inhibition would be detectable in young birds, but not necessarily in adult birds. 
This hypothesis requires further study to be validated. It also noteworthy that P birds approached a tendency to 
learn the task at hand faster than the NP birds. Given this observation and the previous study by Kjaer et al.33, 
it is possible that a larger study cohort may unveil that P birds have better response inhibition capabilities than 
NP birds. Finally, FP may be assumed to be a goal/reward-oriented behaviour, where the goal is plucking and 
eating feathers. Consumption of feathers could potentially have beneficial effects on the gastrointestinal tract in 
birds2,38,39. Nevertheless, goal-directed behaviour in mammals is not associated with motor impulsivity40, which 
supports the observations within the current study.

Figure 3.  Description of the six different phases used throughout the Go/No-Go experiment.
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While the data presented in this study do not support a correlation between FP with motor impulsivity, cer-
tain limitations of the study should be acknowledged. It is possible that the sensitivity of the Go/No-Go task 
procedure was not adequate to capture the genetic or phenotypic differences. For instance, although the pro-
cedure is well-established in mammals26, and settings were determined in pilot studies, it is possible that other 
pre-cue timings, cue light lengths, or food reward periods would have elicited genetic or phenotypic differences 
in the observed responses. Additionally, manipulation of the prepotent response by increasing the number of 
Go cues relative to the number of No-Go cues within a session could potentially negatively impact the No-Go 
performance.

As outlined earlier, the relatively small sample sizes used in this study may have impacted the results. To miti-
gate this, we employed an alternative strategy that uses population extremes relative to a larger random sample of 
birds, which is expected to yield the largest genotypic and phenotypic differences27. Consequently, we identified P 
and NP birds in the HFP and CON lines. This, in turn, is expected to yield valid inferences regarding the relative 
ranking of the different group41. Additionally, one can argue that selecting the highest peckers (P) in a population 
of HFP birds constitutes a continuation of selection29, as the selection of extreme phenotypes is a common breed-
ing tool. It is also possible that the FP levels in the tested population were too low to make a significant association 
to motor impulsivity; however, it should be noted that FP levels are difficult to control and distinct FP groups 
may be formed and re-formed even after the birds are categorized into their FP groups, as the phenotypes may 
evolve over time42. Finally, all hens in the current study learned to successfully perform the required motor task, 
though there was variability between individual birds in the number of sessions required to reach the learning 
criterion. Homogeneity in task acquisition across phases 3–5 may be used as a sign of similar cognitive function-
ing between birds of different groups, regardless of FP status. In humans, some forms of intelligence can have a 
protective effect on self-regulatory behaviour43, however, whether certain cognitive abilities in hens impact motor 
impulsivity needs further investigation.

To our knowledge, this is the first study investigating a potential relationship between FP and motor impul-
sivity. Bird lines selectively bred for FP performed similarly to an unselected control line when tested for motor 
impulsivity using a Go/No-Go task. Similarly, we observed no difference between phenotypic peckers and 
non-peckers. This implies that birds that are identified as peckers by their genetic background or phenotypi-
cally were capable of inhibiting prepotent responses to the same extent as control birds or non-pecker birds, 
respectively. Our results suggest that FP is not associated with motor impulsivity as tested in a Go/No-Go task. 
Nevertheless, further investigations are required to determine the contribution of other types of impulsiveness to 
FP and other cognitive or non-cognitive abilities correlated with FP (e.g., motivation for FP) that can be used to 
differentiate peckers from non-peckers.

Methods
This study was approved by the University of Guelph Animal Care Committee (Animal Utilization Protocol 
Number 3206). The study was carried out in accordance with relevant guidelines and regulations.

Animals and housing.  Birds with a high FP activity were part of a flock of 132 White Leghorn hens (64 
weeks of age) that consisted of 84 high feather pecking (HFP) and 48 unselected control (CON) birds. Both lines 
originated from a selection experiment in which birds of the HFP line were identified based on the highest FP 
behaviour within that group27.

Birds were housed in 12 groups of 11 ± 1.5 birds (6 ± 0.9 HFP, 5 ± 1.1 CON) per pen under natural daylight 
and darkness for the duration of the experiment at the University of Guelph, Guelph, Canada. They were housed 
in identical enriched floor pens (118 L × 118 W × 365 H cm) containing two elevated perches (100 and 110 cm 
long) which were mounted at approx. 60 and 30 cm heights, wood shavings (5 cm depth) as a litter substrate, and 
equipped with one nest box, bell drinker, and feed trough. Commercial laying hen feed and water were provided 
ad libitum.

All birds were individually wing-tagged and identified by numbered soft silicone plates fastened to the backs 
of the birds using elastic straps around their wings for individual identification. One camera (Samsung SNO-
5080R, IR, Samsung Techwin CO., Gyeongi-do, Korea) was mounted at the top of each pen to record the birds’ 
FP behaviour for 20 min/day on three consecutive days by a blinded observer. A FP event was characterized 
as forceful pecking, plucking and pulling on the feather cover of other birds. Although HFP birds showed a 
higher FP activity (1.4 ± 0.13 FP bouts) than CON birds (1.0 ± 0.16 FP bouts, F1,102 = 5.03, P = 0.0271), there was 
overlap among birds of the two lines. Therefore, we chose to compare a total of 20 birds that expressed extreme 
phenotypes in terms of FP behaviour41, where peckers (P) performed a minimum of 5 pecks/hour compared 
to non-peckers (NP) which performed less than 2.5 pecks/hour. This selection resulted in four distinct groups 
(HFP/P n = 6; HFP/NP n = 4; CON/P n = 5; CON/NP n = 5).

Test equipment.  A custom-made non-transparent polycarbonate operant conditioning chamber (60 L 
× 37 W × 60 H cm) was used to test impulsive responses (Med Associates, St. Albans, VT, USA). An LED 
house-light (yellow) was installed in the top of the chamber17. A pecking key was located 40 cm above the floor of 
the chamber and was programmed to illuminate either red or green. Additionally, it could be paired with a high 
frequency sound (3,035 Hz). Reinforcements were delivered via a feed trough (13.5 L × 4.5 H cm) located at the 
centre of the test panel, below the lighted pecking key and 25 cm above the floor. Access to the food reward was 
withheld and blocked off by a metal barrier manually until the pecking key was successfully pecked (Go cue) or 
not pecked (No-Go cue). The number of pecks and light cues delivered were automatically recorded through the 
Trans IV computer program (Med Associates, St. Albans, VT, USA). These recordings were validated through 
video recordings made of each session using a camera (JVC GC-PX100BU HD Everio) remotely connected via an 
iPad (Apple, Inc.) to allow the experimenter to observe each bird without visually distracting them.
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Testing protocol.  The Go/No-Go testing protocol consisted of six phases and followed a similar procedure 
as used in mice and described by Wilhelm et al.44.

Task acquisition.  Birds were individually acclimated to the operant conditioning chamber before testing by 
providing a luxury food reward (i.e., mixture of corn kernels, dead mealworms, and honey) within the chamber 
for five minutes once a day for 7 days. Learning to operate the pecking key was conducted through shaping and 
training (phase 1–5; Fig. 3). Once testing commenced, birds were not food-deprived and were tested five days per 
week. Each hen was only tested once per day for a total of 5 minutes.

The birds’ behaviour was shaped in response to Go and No-Go cues in phases 1 and 2 (Fig. 3). In phase 1, birds 
learned to peck the pecking key when its light (red or green) was illuminated in exchange for the food reward. 
Ten hens were trained to peck in response to a green light, and ten hens were trained to peck in response to a red 
light as the Go cue. Birds had to peck within 10 seconds after the Go cue was illuminated in order to terminate 
the lighted cue and receive 3 seconds of food reward access. In phase 2, birds were exposed to 3 seconds of the 
No-Go cues paired with a continuous 3.035 Hz tone, so that both light and sound stimuli were associated with 
the No-Go cue as described in Wilhelm et al.44. Birds had to withhold their pecking during this period in order 
to receive access to the food award. Key illumination was followed by a 5-second inter-trial interval (ITI), where 
the house light was switched off. This was followed by a variable pre-cue period (5-10 sec) where the house light 
was switched on. Pre-cue pecking was recorded and was neither rewarded or punished; however, pre-cue pecking 
during the final 3 seconds resulted in re-setting of the pre-cue period. Sessions ended when 5 minutes had passed. 
Birds were transferred to the next phase when they reached the learning criterion of accessing 75% of the poten-
tial food rewards in two consecutive sessions.

In phases 3, 4, and 5, Go and No-Go cues were interspersed throughout a session (approx. 8 Go-cues and 8 
No-Go cues) in order to train hens and increase their response time, thereby stabilizing their responses to reflect 
their learning ability (Fig. 3). Each hen received an average of 8 Go cues and 8 No-Go cues per session. When 
no pecking occurred for 5 minutes, testing was ended. The No-Go cue duration was always 3 seconds, and ITI 
remained consistently 5 sec. The Go cue duration gradually reduced from 10 seconds in phase 3, to 7 seconds in 
phase 4, and 5 seconds in phase 5. The learning criterion to move to the next phase was the same as during phase 
1 and 2 (at least 75% of rewards obtained in two consecutive sessions), however now 75% of food rewards was 
obtained by either pecking during Go cues or withholding pecking behaviour during No-Go cues.

Behavioural inhibition.  Once all birds had completed phase 3–5 and their pecking responses were stable, 
birds’ motor impulsivity was assessed in phase 6. In phase 6, Go and No-Go cues were similarly interspersed 
throughout a session, but the Go cue duration was reduced to 3 seconds, while the No-Go cue remained at 3 sec-
onds with a 5 second ITI (Fig. 3). Hens received an average of 9 Go cues and 9 No-Go cues per session (min: 6, 
max: 13 for each cue).

Phase 1 and 2 were used to shape hen behaviour to associate the Go cue and No-Go cue with their assigned 
colour of the pecking key. A food reward was offered for correctly pecking or withholding from pecking in 
response to the appropriate cue. No-Go cues were paired with a high frequency sound. Each trial was preceded by 
a pre-cue period and the chamber was darkened in between each trial (inter-trial interval).

Data analysis.  All data were analysed using SAS Studio (SAS Inst. Inc., Cary, NC). The assumptions of nor-
mally distributed residuals and homogeneity of variance were examined graphically with the use of QQ plots. 
Statistical significance was considered at P < 0.05 and tendencies are reported at 0.05 ≤ P ≤ 0.1. Values are pre-
sented as LS means ± SE, unless stated otherwise.

Phase 1 and 2 were excluded as these were shaping phases before actual training started in phase 3 to 5. A 
mixed model ANOVA was used to investigate effects of phase (3, 4, 5), phenotype (NP, P), genotype (CON, HFP), 
and their interactions on the number of sessions needed to pass to the next phase. A random statement was 
included to account for hens as a repeated measurement.

To assess the ability of the birds to inhibit prepotent responses, the average number of pre-cue responses 
(pecks during the pre-cue period) and number of false alarms (incorrect responses during the No-Go cue) were 
calculated44. Additionally, the average number of correct pecks during the Go cue, and the average number of 
correct withholds of responses during the No-Go cue were determined. Furthermore, the average efficiency for 
the Go/No-Go task was defined as the average number of food rewards/average number of pecks and was used to 
assess the birds’ ability to peck or withhold pecking appropriately. Data were analysed using an ANOVA model 
accounting for the phenotype (NP, P), genotype (CON, HFP), and their interaction.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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