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Lung cancer is the leading cause of cancer-related death worldwide due to late  
diagnoses and limited treatment interventions. Recently, comprehensive molecular 
profiles of lung cancer have been identified. These novel characteristics have enhanced 
the understanding of the molecular pathology of lung cancer. The identification of driver 
genetic alterations and potential molecular targets has resulted in molecular-targeted 
therapies for an increasing number of lung cancer patients. Thus, the histopathological 
classification of lung cancer was modified in accordance with the increased understand-
ing of molecular profiles. This review focuses on recent developments in the molecular 
profiling of lung cancer and provides perspectives on updated diagnostic concepts 
in the new 2015 WHO classification. The WHO classification will require additional 
revisions to allow for reliable, clinically meaningful tumor diagnoses as we gain a better 
understanding of the molecular characteristics of lung cancer.
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inTRODUCTiOn

Lung cancer is the leading cause of cancer-related deaths worldwide in both men and women (1). 
It is categorized into two main histological groups: small cell lung carcinoma (SCLC, 15% of all lung 
cancers) and non-SCLC (NSCLC, 85% of all lung cancers). NSCLCs are generally subcategorized 
into adenocarcinoma, squamous cell carcinoma (SqCC), and large cell carcinoma. Accumulating 
evidence suggests that lung cancer represents a group of histologically and molecularly heterogene-
ous diseases even within the same histological subtype (2–26).

The histopathological classification of lung cancer has recently been revised and published as the 
2015 WHO classification (2). Several major revisions were made in this classification to reflect recent 
discoveries related to the molecular pathology of lung cancer.

Human comprehensive molecular characterization projects have resulted in the identification of 
novel molecular characteristics of lung cancer and the different subtypes at levels of DNA alteration, 
DNA methylation, mRNA expression, microRNA expression, and protein expression. This review 
introduces and briefly summarizes recent studies on the molecular pathology of lung cancer with a 
focus on the association between molecular profiles and morphology (2).

THe 2015 wHO CLASSiFiCATiOn

The WHO classification was updated based on newly identified molecular profiles and targetable 
genetic alterations in lung cancer. For lung adenocarcinoma, the 2011 International Association 
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TAbLe 1 | WHO classification of tumors of the lung (epithelial tumors) (2).

Adenocarcinoma Large cell carcinoma
Lepidic adenocarcinoma Adenosquamous carcinoma
Acinar adenocarcinoma Pleomorphic carcinoma
Papillary adenocarcinoma Spindle cell carcinoma
Micropapillary adenocarcinoma Giant cell carcinoma
Solid adenocarcinoma Carcinosarcoma
Variants of adenocarcinoma Pulmonary blastoma
Invasive mucinous adenocarcinoma Other and unclassified carcinomas
Mixed invasive mucinous and  
non-mucinous adenocarcinoma

Lymphoepithelioma-like carcinoma

Colloid adenocarcinoma NUT carcinoma
Fetal adenocarcinoma Salivary gland-type tumors
Enteric adenocarcinoma Mucoepidermoid carcinoma
Minimally invasive adenocarcinoma Adenoid cystic carcinoma
Non-mucinous Epithelial–myoepithelial carcinoma
Mucinous Pleomorphic adenoma
Preinvasive lesions Papillomas
Atypical adenomatous hyperplasia Squamous cell papilloma
Adenocarcinoma in situ Exophytic
Non-mucinous Inverted
Mucinous Glandular papilloma

Squamous cell carcinoma (SqCC) Mixed squamous cell and glandular 
papilloma

Keratinizing SqCC Adenomas
Non-keratinizing SqCC Sclerosing pneumocytoma
Basaloid SqCC Alveolar adenoma
Preinvasive lesion Papillary adenoma
SqCC in situ Mucinous cystadenoma

Neuroendocrine tumors Mucous gland adenoma
Small cell carcinoma
Combined small cell carcinoma
Large cell neuroendocrine 
carcinoma (LCNEC)
Combined LCNEC
Carcinoid tumors
Typical carcinoid
Atypical carcinoid
Preinvasive lesion
Diffuse idiopathic pulmonary 
neuroendocrine cell
Hyperplasia
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for the Study of Lung Cancer, American Thoracic Society, and 
European Respiratory Society classification (27) was mostly 
adopted in the 2015 WHO classification. Table 1 shows the WHO 
classification of lung tumors (epithelial tumors) (2). The major 
revisions to the WHO classification are described below.

Definition of Adenocarcinoma and SqCC
Pathologists are required to categorize lung cancer into adenocar-
cinoma and SqCC due to the targetable driver genetic alterations 
identified in lung adenocarcinoma and inappropriate drugs for 
SqCCs due to side effects in patients with SqCC. Before the 2015 
WHO classification, adenocarcinoma was defined as carcinoma 
with an acinar/tubular structure or mucin production, whereas 
SqCC was defined as carcinoma with keratinization or intercellu-
lar bridges. If poorly differentiated carcinoma lacking light micro-
scopic evidence of glandular differentiation (Figure 1A) is proven 
by immunohistochemistry to express “adenocarcinoma markers,” 
such as TTF-1 (Figure 1B) and/or Napsin A (Figure 1C), it is 
diagnosed as a solid adenocarcinoma. If poorly differentiated 

carcinoma lacking light microscopic evidence of squamous dif-
ferentiation (Figure 1D) is proven by immunohistochemistry to 
express “SqCC markers,” (28) such as p40 (Figure  1E), CK5/6 
(Figure 1F), and p63, it is diagnosed as non-keratinizing SqCC. 
Because of this classification, the proportion of large cell carci-
noma has been markedly reduced.

Adenocarcinoma
Classification according to the Extent of 
Invasiveness
The 2015 WHO classification divides adenocarcinomas into 
adenocarcinoma in situ (AIS, preinvasive lesion), minimally inva-
sive adenocarcinoma (MIA), or (overt) invasive adenocarcinoma 
based on the extent of invasiveness. The disease-free survival rate 
of AIS and MIA when completely resected is 100% (29).

Adenocarcinoma in  situ is defined as an adenocarcinoma 
comprising a lepidic pattern with a diameter of ≤3  cm. If the 
tumor diameter exceeds 3 cm, it is defined as “lepidic predomi-
nant adenocarcinoma, suspect AIS” because these tumors are rare 
and lack adequate characterization.

Minimally invasive adenocarcinoma is defined as an adeno-
carcinoma with a diameter of ≤3  cm and an invasion size of 
≤5  mm. Even if the tumor size and invasion size comply with 
the definition of MIA, the presence of lymphovascular invasion, 
pleural invasion, or tumor necrosis can be an exclusion factor 
for an MIA diagnosis. If the tumor size exceeds 3  cm with an 
invasion size of ≤5  mm, it is defined as “lepidic predominant 
adenocarcinoma, suspect MIA” because these tumors are rare and 
lack adequate characterization.

The term “invasive adenocarcinoma, mixed subtype” for inva-
sive adenocarcinoma is no longer used. Invasive adenocarcinoma 
is now classified using five predominant patterns: lepidic, papil-
lary, acinar, micropapillary, and solid adenocarcinoma.

Variants of Invasive Adenocarcinoma
The term “mucinous bronchioloalveolar carcinoma (BAC)” is 
no longer used because most mucinous BACs included invasive 
components. Therefore, the term “invasive mucinous adenocar-
cinoma (IMA)” replaced mucinous BAC. IMA and mucinous 
AIS are accurately classified based on invasiveness. Besides IMA, 
variants of invasive adenocarcinoma comprise enteric, colloid, 
and fetal adenocarcinoma. Enteric adenocarcinoma is defined as 
adenocarcinoma with a predominant component that resembles 
adenocarcinoma arising in the colorectum and often shows 
CDX2 immunoreactivity (30).

Squamous Cell Carcinoma
In the 2015 WHO classification, SqCCs are classified into kerati-
nizing SqCC, non-keratinizing SqCC, and basaloid SqCC. Before 
this classification, basaloid SqCC was categorized as a variant of 
large cell carcinoma. However, basaloid SqCC immunohisto-
chemically shows “SqCC markers” (e.g., p40, CK5/6, and p63) 
and is therefore categorized as SqCC.

neuroendocrine Tumors
In the 2015 WHO classification, a new category of “neuroendo-
crine tumors” was established. Invasive neuroendocrine tumors 
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FigURe 1 | Solid adenocarcinoma (A–C) and non-keratinizing squamous cell carcinoma (SqCC) (D–F). Solid adenocarcinoma [(A) HE staining] is 
immunohistochemically positive for TTF-1 (b) and Napsin A (C). Non-keratinizing SqCC [(D) HE staining] is immunohistochemically positive for p40 (e) and 
CK5/6 (F).
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comprise three subtypes: SCLC, large cell neuroendocrine 
carcinoma (LCNEC), and carcinoid tumor (typical/atypical). 
Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia is 
extremely rare and non-invasive; therefore, its clinical importance 
is low. On the other hand, the distinction between a high-grade 
neuroendocrine tumor (HGNET), comprising SCLC and LCNEC, 
and a carcinoid tumor is very important in both pathological and 
clinical practice. HGNET is one of the most aggressive subtypes 
and characterized by a history of heavy smoking in the patient, 
whereas carcinoid tumors usually carry a benign prognosis and 
frequently occur in patients with no history of smoking.

COMPReHenSive MOLeCULAR 
PROFiLing

With the emergence of high-throughput sequencing techniques, 
detailed molecular profiles of lung cancer have been identified. 
The Cancer Genome Atlas (TCGA) research network identified 
genomic and other molecular alterations among a number of 
different types of cancer, including lung cancer. In this section, 
the comprehensive molecular profiles of lung cancer, mainly 
determined by TCGA, are introduced.

Adenocarcinoma
The comprehensive molecular profiling of 230 lung adenocarci-
noma by TCGA was published in 2014 (3). The authors reported 
high rates of somatic mutations (mean: 8.9 mutations per 
megabase) and identified 18 statistically significant genetic muta-
tions: TP53 (46%), KRAS (33%), KEAP1 (17%), STK11 (17%), 
EGFR (14%), NF1 (11%), BRAF (10%), SETD2 (9%), RBM10 (8%), 
MGA (8%), MET (7%), ARID1A (7%), PIK3CA (7%), SMARCA4 
(6%), RB1 (4%), CDKN2A (4%), U2AF1 (3%), and RIT1 (2%).

Furthermore, approximately 75% of the lung adenocarcinomas 
examined harbored genetic alterations that promote the RTK/
RAS/RAF signaling pathway. Of all the cases, 62% showed driver 
genetic alterations that promote the RTK/RAS/RAF pathway. 

Among them, mutations in KRAS, EGFR, and BRAF comprised 
32, 11, and 7.0%, respectively. Other genetic alterations that 
promote the RTK/RAS/RAF pathway included MET exon 14 
skipping (4.3%), ERBB2 (or HER2) mutation (1.7%), ROS1 
fusion (1.7%), ALK fusion (1.3%), MAP2K1 mutation (0.9%), 
RET fusion (0.9%), NRAS mutation (0.4%), and HRAS mutation 
(0.4%). An examination of the DNA copy number of the remain-
ing 38% cases without driver genetic alterations that promote 
the RTK/RAS/RAF pathway revealed amplification of oncogenes 
in the RTK/RAS/RAF pathway: ERBB2 amplification (0.9%) 
and MET amplification (2.2%). The authors also identified new 
genetic alterations in this pathway: mutations in NF1 and RIT1. 
NF1 is a tumor suppressor gene that regulates the RTK/RAS/RAF 
pathway, and the frequency of NF1 mutations was 8.3%. Similarly, 
RIT1 constitutes a part of the RTK/RAS/RAF pathway, and the 
frequency of RIT1 mutations was 2.2%. Consequently, 75% of 
lung adenocarcinomas have genetic alterations that promote 
the RTK/RAS/RAF pathway. This study on the comprehensive 
molecular characterization of lung adenocarcinoma widened the 
potential therapeutic targets of lung adenocarcinoma.

This study conducted mRNA profiling and provided new 
transcriptional subtypes: i.e., the terminal respiratory unit (TRU, 
formerly bronchioid), the proximal-inflammatory (PI, formerly 
squamoid), and the proximal-proliferative (PP, formerly mag-
noid) mRNA subtypes. The TRU subtype was enriched for EGFR 
mutation and kinase fusions. The PI subtype was characterized 
by solid morphology and co-mutation of NF1 and TP53. The PP 
subtype was enriched for KRAS mutation and STK11 inactivation.

DNA methylation profiling divided lung adenocarcinomas 
into three subtypes: i.e., CpG island methylator phenotype 
(CIMP)-high, CIMP-intermediate, and CIMP-low subtypes. 
CIMP-high tumors often showed DNA hypermethylation of 
CDKN2A, GATA2, GATA5, HIC1, HOXA9, HOXD13, RASSF1, 
SFRP1, SOX17, and WIF1. The CIMP-high subtype was enriched 
for MYC overexpression as well as for DNA hypermethylation of 
genes in WNT pathway.
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Protein profiling divided lung adenocarcinomas into six 
subtypes. The top 50 differentially expressed proteins among the 
6 subtypes included Cyclin D1, Smad4, p-mTOR, Rad50, beta-
Catenin, and HER2. The six subtypes partially overlapped with 
the mRNA three subtypes.

Squamous Cell Carcinoma
The comprehensive molecular profiling of 178 cases of SqCC by 
TCGA was published in 2012 (4). As can be expected from the 
history of heavy smoking in SqCC patients, SqCCs are character-
ized by complex genomic alterations. The authors indeed detected 
a mean of 360 exonic mutations, 165 genomic rearrangements, 
and 323 segments of copy number alteration per tumor. They 
identified 11 statistically significant genetic mutations: TP53, 
CDKN2A, PTEN, PIK3CA, KEAP1, MLL2, HLA-A, NFE2L2, 
NOTCH1, RB1, and PDYN. The frequency of TP53 mutations 
was 90%. The authors identified novel loss-of-function mutations 
in the HLA-A class I major histocompatibility gene. They also 
conducted pathway analyses and identified pathways related to 
oxidative damage, including KEAP1 and NFE2L2 in 34% of cases, 
squamous cell differentiation pathway, including overexpression 
of SOX2 and TP63 in 44% of cases, PI3K/AKT pathway in 47% of 
cases, and inactivation of CDKN2A in 72% of SqCC cases. These 
results provided us multiple potential targets for the treatment of 
lung SqCC.

The mRNA profiling divided SqCCs into four subtypes: i.e., 
classical, basal, secretory, and primitive subtypes. The classical 
subtype was characterized by pronounced hypermethylation, 
chromosomal instability, and alterations in KEAP1, NFE2L2, and 
PTEN. The basal subtype showed NF1 alterations. The primitive 
subtype was enriched for RB1 and PTEN alterations.

MicroRNA profiling divided SqCCs into four subtypes. 
These four subtypes roughly overlapped with the mRNA four 
subtypes. DNA methylation profiling also divided SqCCs into 
four subtypes (methylation clusters 1–4). Methylation cluster 4 
showed little DNA hypermethylation and included most of the 
primitive mRNA subtype. Cluster 3 was predominantly made 
up of the classical mRNA subtype and enriched for NFE2L2 
mutations. Cluster 3 and Cluster 2 showed the highest levels of 
DNA hypermethylation. Cluster 1 showed intermediate DNA 
hypermethylation levels.

Small Cell Lung Carcinoma
In 2012, comprehensive genomic analyses were reported by two 
groups. Rudin et  al. identified SOX2 as a frequently amplified 
gene in SCLC (6). In vitro suppression of SOX2 blocked the pro-
liferation of SOX2-amplified SCLC cell lines. Furthermore, they 
identified a recurrent RLF–MYCL1 fusion in SCLC with RNA 
sequencing. In vitro silencing of MYCL1 in SCLC cell lines with 
an RLF–MYCL1 fusion decreased cell proliferation. On the other 
hand, Peifer et  al. reported recurrent mutations in genes that 
encode histone modifiers, including CREBBP, EP300, and MLL, 
suggesting histone modification as a major feature of SCLC (7).

In 2015, George et al. sequenced the genome of 110 SCLCs 
and found comprehensive genomic profiles (5). SCLC is char-
acterized by highly complex genomic alterations, and C:G>A:T 
transversions were found in 28% of all mutations on average, 

which is a characteristic pattern of heavy smoking. Almost all 
examined SCLCs showed bi-allelic inactivation of TP53 and 
RB1. Genomic alterations of tumor suppressor gene TP73 was 
observed in 13% of SCLCs. Among TP73 genomic alterations, 
genomic rearrangement of TP73Δex2/3 was identified. Because 
TP73Δex2/3 promotes carcinogenesis, TP73Δex2/3-targeted 
strategy is a promising treatment for SCLC. The authors also 
observed inactivating mutations of NOTCH family genes (31), 
which suppressed neuroendocrine differentiation via the regula-
tion of ASCL1 expression in 25% of SCLCs.

The mRNA profiling divided SCLCs into two groups (5). Most 
of SCLCs (83%) were categorized into group 2, which was charac-
terized by higher expressions of CHGA, GRP, ASCL1, and DLK1. 
Group 1, comprising 17% of SCLCs, showed lower expressions of 
these four genes.

HiSTOLOgY AnD geneTiC PROFiLeS

Close associations exist between histology/morphology and 
genetic profiles. In this section, several of these associations are 
introduced.

Driver genetic Alterations and Histology 
of Lung Adenocarcinoma
EGFR mutation is one of the most common driver mutations 
in lung adenocarcinoma, and EGFR-mutated adenocarcinoma 
is characterized by East-Asian ethnicity, female gender, and 
non/light-smoking history (32). Pathologically, EGFR-mutated 
lung adenocarcinomas typically show nuclear TTF-1 (NKX2-1) 
immunostaining and a hobnail cell type. Adenocarcinomas with 
a micropapillary pattern have a higher frequency of EGFR muta-
tions than adenocarcinomas without this pattern (33, 34).

Fusion genes were recently identified as oncogenic drivers. In 
lung adenocarcinoma, rearranged genes, including ALK, ROS1, 
RET, NTRK1, and NRG1, have been reported. ALK-rearranged 
adenocarcinoma comprises 4–5% of adenocarcinomas (35). 
ROS1- and RET-rearranged adenocarcinoma each comprises 
approximately 1% (35, 36). These rearranged adenocarcinomas 
show a good clinical response to molecular-targeted drugs. ALK-
rearranged adenocarcinoma is characterized by a TTF-1 cell 
lineage, an acinar structure with mucin/signet-ring cell pattern, 
non-/light-smoking history, and young onset (37–39). ROS1- and 
RET-rearranged adenocarcinomas have a similar histology to 
ALK-rearranged adenocarcinoma, such as mucinous cribriform 
pattern or solid signet-ring cell pattern (35, 40, 41).

NTRK1 fusion in lung adenocarcinoma was identified by 
Vaishnavi et  al. (42) A NTRK1-rearranged adenocarcinoma 
identified by Shim et al. belonged to IMA subtype (43). NTRK1 is 
a TRKA kinase; thus, TRKA kinase inhibitors have the potential 
to be used in the treatments of NTRK1-rearranged adenocarci-
nomas. NRG1-rearranged adenocarcinoma is also characterized 
by IMA (44, 45). IMAs are frequently KRAS-mutated; therefore, 
Nakaoku et al. examined 34 IMA cases without KRAS mutations, 
partly by whole-transcriptome sequencing (45). They identified 
five oncogenic fusions: CD74–NRG1, SLC3A2–NRG1, EZR–
ERBB4, TRIM24–BRAF, and KIAA1468–RET. These fusion genes 
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were mutually exclusive from KRAS mutations. NRG1 fusions 
were present in 17.6% (6/34) of KRAS-wild-type IMAs. Because 
fusions of NRG1, ERBB4, BRAF, and RET are potential molecular 
targets, their clinical applications are promising.

Driver genetic alterations in lung adenocarcinomas differ 
between Caucasians and Asians, and between smokers and non-
smokers. For example, KRAS mutations are frequently detected 
in lung adenocarcinomas in smokers, whereas genetic alterations 
in EGFR, ALK, ROS1, and RET are frequently detected in lung 
adenocarcinomas in non-smokers. The frequencies of driver 
genetic alterations in Caucasians were determined in TCGA study 
(3), whereas lung adenocarcinoma in Asians is characterized by a 
high frequency of EGFR mutations (approximately 50%) and low 
frequency of KRAS mutations (approximately 10%).

MicroRnAs and Histological Subtypes of 
Lung Adenocarcinoma
MicroRNAs are small single-stranded non-coding RNAs (19–22 
nucleotides in length) that play important regulatory roles, 
including lung carcinogenesis (46–50). Nadal et  al. performed 
microRNA profiling of adenocarcinomas subclassified by the 2015 
WHO classification (51). They demonstrated that different histo-
logical subtypes of lung adenocarcinoma have distinct microRNA 
expression profiles. Unsupervised hierarchical clustering divided 
adenocarcinomas into three major clusters, which correlated with 
the histological subtypes of the 2015 WHO classification. Cluster 
1 included fewer acinar and solid adenocarcinomas, and nearly all 
the tumors in cluster 1 were categorized as lepidic adenocarcino-
mas or IMAs. In contrast, clusters 2 and 3 included more acinar 
and solid adenocarcinomas and fewer lepidic adenocarcinomas 
and IMAs. Solid adenocarcinoma was characterized by the over-
expression of miR-27a, miR-212, and miR-132 (51).

Enteric adenocarcinoma is one of the new variants of lung 
adenocarcinoma in the 2015 WHO classification. It is defined 
as an adenocarcinoma with a predominant component that 
shows enteric differentiation (30). Garajová et  al. found that 
the microRNA signature of enteric adenocarcinomas shows 
similarities with NSCLCs and pancreatic adenocarcinomas, but 
not with colorectal adenocarcinomas. Enteric adenocarcinomas 
share oncogenic microRNAs (miR-31*, miR-126*, miR-506, miR-
508-3p, and miR-514) with pancreatic adenocarcinomas (52).

MicroRnAs and SCLC
Small cell lung carcinoma, which is categorized into neuroendo-
crine tumor, shows high expression of ASCL1, which is a tran-
scription factor that promotes neuroendocrine differentiation. A 
study reported that miR-375 expression was promoted by ASCL1 
in lung neuroendocrine carcinoma (53). This study suggested that 
miR-375 might reduce the YAP1-associated proliferative arrest 
by inhibiting YAP1. Another study examined microRNAs from 
50 SCLC patients and 30 healthy individuals, and suggested that 
level of miR-92a-2 in plasma could be a potential non-invasive 
method for the SCLC diagnosis (54). Recent evidence suggests 
that miR-21 expression may be higher in HGNET (i.e., SCLC and 
LCNEC) than in typical/atypical carcinoid, and that high expres-
sion of miR-34a may be associated with atypical carcinoids (55).

MOLeCULAR ALTeRATiOnS AnD THeiR 
THeRAPeUTiC ReLevAnCe

Molecular alterations, which have been recently elucidated in 
lung cancer, are used in clinical practice or potentially useful 
therapeutic tools in the treatment of lung cancer.

In lung adenocarcinoma, fusions of ALK, RET, and ROS1 
have been shown to be targetable genetic alterations (35, 36). In 
IMA, new fusions of NTRK1, NRG1, ERBB4, BRAF, and RET 
were identified as targetable genetic alterations (43, 45). The 
comprehensive molecular profiling in lung adenocarcinoma by 
TCGA research network has shown that 75% of lung adenocar-
cinomas have genetic alterations that promote RTK/RAS/RAF 
pathway; these genetic alterations included newly identified 
NF1 and RIT1 mutations, both of which are potentially targ-
etable (3).

For lung SqCC, no effective targetable agents have been 
developed specifically. The comprehensive molecular profiling in 
lung SqCC by TCGA research network has identified a potential 
therapeutic target in the most lung SqCCs that they investigated 
(4). The alterations in targetable oncogenic pathways in lung 
SqCCs included RTK pathway (26%), RAS pathway (24%), and 
PI(3)K pathway (47%) (4). Targeting these pathways are potential 
ways of the treatment for lung SqCC.

Small cell lung carcinoma is the deadliest subtype of lung 
cancer, and no established molecular-targeted therapy for SCLC 
exists. For SCLC, recent studies discovered potentially targetable 
genetic alterations, including SOX2 amplification, RLF-MYCL1 
fusion, and TP73Δex2/3 (5, 6).

In the era that we have comprehensive genomic data of lung 
cancer, we should try to treat lung cancer thorough more effica-
cious targeted therapeutic interventions.

COnCLUSiOn AnD FUTURe DiReCTiOnS

This review focuses on newly identified molecular pathology and 
the 2015 WHO classification of lung cancer, which was revised 
based on the better understanding of the molecular pathology 
of lung cancer and recent advancements in newly developed 
molecular-targeted drugs. However, in an era of precision medi-
cine, these classification changes remain inadequate. In the near 
feature, the WHO classification will need to be further revised 
to allow for reliable, clinically meaningful tumor diagnoses that 
reflect our better understanding of the molecular characteristics 
of lung cancer.
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