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Conditional deletion of Pip5k1c in sensory
ganglia and effects on nociception and
inflammatory sensitization

Lipin Loo1 and Mark J Zylka1

Abstract

Phosphatidylinositol 4-phosphate 5-kinase type 1 gamma (Pip5k1c) generates phosphatidylinositol 4,5-bisphosphate, also

known as PI(4,5)P2 or PIP2. Many pronociceptive signaling pathways and receptor tyrosine kinases signal via PIP2 hydrolysis.

Previously, we found that pain signaling and pain sensitization were reduced in Pip5k1cþ/� global heterozygous knockout

mice. Here, we sought to evaluate the extent to which dorsal root ganglia selective deletion of Pip5k1c affected nociception

in mice. Initially, we crossed sensory neuron-selective Advillin-Cre mice with a conditional Pip5k1c knockout (cKO) allele

(Pip5k1cfl/fl). However, these mice displayed an early onset proprioceptive deficit. To bypass this early onset phenotype,

we used two different tamoxifen-inducible Cre lines (Brn3a-Cre-ERT2 and Advillin-Cre-ERT2) to conditionally delete Pip5k1c in

adults. Tamoxifen induced high efficiency deletion of PIP5K1C in dorsal root ganglia and slightly reduced PIP5K1C in spinal

cord and brain in Brn3a-Cre-ERT2
� Pip5k1cfl/fl (Brn3a cKO) mice while PIP5K1C was selectively deleted in dorsal root ganglia

with no changes in spinal cord or brain in Advillin-Cre-ERT2
� Pip5k1cfl/fl (Advil cKO) mice. Acute thermosensation and

mechanosensation were not altered in either line relative to wild-type mice. However, thermal hypersensitivity and mech-

anical allodynia recovered more rapidly in Brn3a cKO mice, but not Advil cKO mice, following hind paw inflammation.

These data collectively suggest that PIP5K1C regulates nociceptive sensitization in more regions of the nervous system

than dorsal root ganglia alone.
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Introduction

Nociceptive or physiological pain alerts an individual of
potential threats such as injury or disease. However,
acute pain can transform into pathophysiological stimu-
lus-uncoupled chronic pain. Current pain management
involves the use of opioids and nonsteroidal anti-inflam-
matory drugs, but chronic administration of these drugs
have serious side effects, highlighting a major unmet
medical need for new pain treatments.

Nociceptor sensitization contributes to chronic pain.1

Pronociceptive factors in the inflammatory soup activate
receptors such as G-protein-coupled receptors and recep-
tor tyrosine kinases (RTKs). Downstream signaling
cascades potentiate the activity and expression of a
variety of ion channels and receptors, driving the
increase in neuronal excitability. Inhibiting individual
pronociceptive receptors and kinases have worked in

animal models but have shown modest to no effects in
humans.2–5 An alternative to these strategies is to target
signaling molecules immediately downstream of multiple
pronociceptive receptors.

Phosphatidylinositol 4,5-bisphosphate, also known as
PI(4,5)P2 or PIP2, has important roles in cell signaling
and is immediately downstream of many pronociceptive
signaling pathways, despite only accounting for 0.5% to
1% of the phospholipid molecules in cells.6,7 Type 1
phosphotidylinositol 4-phosphate 5-kinases (PIP5KIs)
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synthesize PIP2 by phosphorylating the large pools of
phosphatidylinositol 4-phosphate in cells. There are
three Pip5k1 genes, two of which are ubiquitously
expressed (Pip5k1a and Pip5k1b), while the third (phos-
phatidylinositol 4-phosphate 5-kinase type 1 gamma,
Pip5k1c) is expressed predominantly in neuronal tis-
sues.6,8,9 We previously found that global heterozygous
deletion of Pip5k1c reduced PIP2 in dorsal root ganglia
(DRG) and reduced pain signaling and inflammatory
sensitization.10 While these studies suggested that it
might be possible to reduce pronociceptive signaling by
selectively inhibiting a lipid kinase that generates PIP2

in DRG neurons, whether the decrease observed in
pain behavior was due to a reduction in the enzyme
expression specifically in sensory neurons or globally
throughout the nervous system was unresolved.
Here, we sought to evaluate the extent to which sensory
neuron-selective deletion of Pip5k1c reduced acute and
chronic pain sensitivity.

Materials and methods

Animals

All procedures involving vertebrate animals were
approved by the Institutional Animal Care and Use
Committee at the University of North Carolina at
Chapel Hill. Mice were raised on a 12:12 h light:dark
cycle, had ad libitum access to food and water, and
were tested during the light phase. Estrous cycle was
not monitored in females. Pip5k1cfl/fl mice11 were crossed
with Advillin-Cre mice,12 Brn3a-Cre-ERT2,13 and
Advillin-Cre-ERT2 mice14 to generate conditional knock-
outs. All mice were backcrossed to C57BL/6J mice for at
least eight generations.

Injections and behavioral assays

Tamoxifen was prepared fresh daily by dissolving in
10% ethanol and 90% corn oil and sonicated for half
an hour at room temperature. Intraperitoneal injections
of 120mg/kg tamoxifen were administered for seven con-
secutive days in mice aged six to eight weeks, and base-
line behavioral testings were performed 10 days after the
last injection. Mice were acclimated to the testing room,
equipment, and experimenter one to three days before
behavioral testing. Behavioral assays were performed
as described previously.15

Western blot analysis

Tissue lysates were prepared as described10 from wild-
type (WT) and conditional knockout (cKO) mice after
completion of all behavioral testing. Briefly, DRG,
spinal cord, and cerebral cortex were dissected and

sonicated in radioimmunoprecipitation assay buffer.
Protein concentration was determined via bicinchoninic
acid assay, and 50 mg protein are loaded onto gels, which
were subsequently transferred onto polyvinylidene
difluoride membranes. Primary antibodies (1:4000 for
PIP5K1C, generously provided by Hara et al.16 and
1:3000 for b-actin; Abcam, AB6276; served as loading
control) were prepared in Licor blocking buffer.
Secondary antibodies (1:10,000; Li-Cor IRDye 680 and
800) were prepared in Licor blocking buffer. Blots were
imaged on a LiCor gel imaging machine and analyzed
using ImageJ. PIP5K1C band intensities were normal-
ized to their respective b-actin controls.

Results

We first crossed Advillin-Cre (Advil-Cre) mice with
Pip5k1c floxed (Pip5k1cfl/fl) mice to selectively delete
Pip5k1c in the DRG.11,15,17 Advil-Cre is expressed in
trigeminal ganglia by embryonic day 16.5 and in
DRGs by postnatal day 1.12,17 Beginning around two
months of age, we observed hind limb clasping and
abnormal gait phenotypes in Advil-Cre�Pip5k1cfl/fl

mice (data not shown), suggestive of an early-onset pro-
prioceptive deficit.18–20 Hind limb clasping prevented us
from probing the hind paw using standard nociceptive
sensory assays.

To circumvent this early-onset proprioceptive pheno-
type, we crossed Brn3a-Cre-ERT2 mice with Pip5k1cfl/fl

mice (henceforth called Brn3a cKO mice) to condition-
ally delete Pip5k1c in sensory neurons of adult mice.13,21

Tamoxifen administration greatly reduced PIP5K1C
protein levels in the DRG of male and female Brn3a
cKO mice (Figure 1). Non-Cre recombinase-expressing
Pip5k1cfl/fl mice, also tamoxifen-treated, served as WT
controls. Although Brn3a-Cre-ERT2 mice were previ-
ously used to delete genes in DRG,13,21 we observed a
nonsignificant reduction of PIP5K1C in the spinal cord
(male, p¼ 0.1; female, p¼ 0.14) and a small but signifi-
cant reduction of PIP5K1C in the cerebral cortex (male,
p< 0.05; female, p< 0.005).

Tamoxifen-treated WT and Brn3a cKOmice were also
tested with the hotplate (55�C), tail immersion (�10�C,
46.5�C, 49�C), radiant hind paw heating (Hargreaves),
cold plantar,22 and electronic von Frey assays to probe
for differences in noxious thermal and mechanical sensi-
tivity. No significant differences relative to tamoxifen-
treated WT mice were observed in any of these assays
(Table 1). Tamoxifen-treated mice were then injected
with complete Freund’s adjuvant (CFA) to model
inflammatory pain. The contralateral paw served as
the control. No significant differences in thermal or
mechanical sensitivity were observed between WT and
Brn3a cKO mice at early time points post-CFA injection;
however, both male and female Brn3a cKO mice
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exhibited faster recovery to baseline withdrawal latencies
and thresholds (Figure 2).

Since tamoxifen-treated Brn3a cKO mice showed a
small but significant reduction of PIP5K1C in cerebral
cortex, we sought to more selectively delete Pip5k1c in
sensory ganglia of adults. To accomplish this, we crossed

Pip5k1cfl/fl mice with Advil-Cre-ERT2 mice (Advil cKO
mice).14 Tamoxifen administration significantly reduced
PIP5K1C protein levels in the DRG of male and female
Advil cKO mice but did not alter levels of PIP5K1C in
spinal cord or cerebral cortex (Figure 3). The Advil cKO
line thus more selectively deleted PIP5K1C in adult

Figure 1. Deletion of PIP5K1C in DRG and partial deletion in the cerebral cortex using Brn3a-Cre-ERT2 line. (a)–(c), PIP5K1C protein

levels in the indicated tissues of male mice and (d) Western blot quantification relative to b-actin. Tissue harvested 18 to 20 days post

tamoxifen injections. n¼ 10 WT and 14 cKO male mice. (e)–(g) PIP5K1C protein levels in the indicated tissues of female mice and (h)

Western blot quantification relative to b-actin. Tissue harvested 18 to 20 days post tamoxifen injections. n¼ 14 WT and 15 cKO female

mice. All data are mean� SEM. Asterisks indicate significant difference between WT and cKO mice by t test. *p< 0.05, **p< 0.001, and

***p< 0.0005.

Table 1. Noxious heat, mechanical, and cold behavioral assays with Brn3a cKO mice.

Male Female

Assay/genotype WT Brn3a cKO p value WT Brn3a cKO p value

Hot plate (55�C) 21.7� 1.5 s 18.7� 1.7 s 0.17 19.5� 0.6 s 21.3� 1.2 s 0.21

Tail immersion (46.5�C) 4.2� 0.6 s 4.1� 0.4 s 0.89 4.0� 0.4 s 4.2� 0.3 s 0.75

Tail immersion (49�C) 2.1� 0.2 s 2.3� 0.3 s 0.48 2.5� 0.2 s 2.6� 0.4 s 0.66

Tail immersion (�10�C) 15.5� 2.3 s 14.6� 2.5 s 0.79 18.7� 2.6 s 15.7� 1.5 s 0.15

Hargreaves (radiant heat) 10.0� 0.6 s 10.7� 0.5 s 0.26 9.8� 0.3 s 10� 0.4 s 0.63

Cold plantar 13.5� 0.7 s 14� 0.6 s 0.59 12� 0.6 s 12.6� 0.4 s 0.38

von Frey (mechanical) 5.3� 0.3 g 5.4� 0.3 g 0.71 4.1� 0.2 g 4.0� 0.2 g 0.55

WT: wild type. Male and female Brn3a� Pip5k1c cKO mice display no significant changes in noxious thermal or mechanical sensitivity relative to WT mice, as

determined by t test. n¼ 7 to 10 mice per group. All data are mean� SEM.
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DRG than the Brn3a cKO line. No significant differences
were observed between tamoxifen-treated WT mice and
tamoxifen-treated Advil cKO mice in assays of noxious
thermal or mechanical sensitivity (Table 2), nor were sig-
nificant differences observed following CFA-inflamma-
tion (Figure 4). The discrepancy between Advil cKO
and Brn3a cKO mice in the CFA inflammatory pain
model could relate to less complete deletion of
PIP5K1C in DRG of Advil cKO mice and/or partial
deletion of PIP5K1C in cerebral cortex of Brn3a cKO
mice (compare Figures 1 and 3).

Discussion

Our study is the first to suggest that sensory-neuron
selective loss of Pip5k1c causes an early-onset proprio-
ceptive deficit in mice. Global loss of PIP5K1C in
humans causes lethal congenital contractural syndrome
type 3,23 a syndrome featuring severe arthrogryposis
(joint contractures) and death shortly before or immedi-
ately after birth. Joint contractures are seen in other
human disorders that impair proprioception,24 including

biallelic loss of PIEZO2.25–27 The proprioceptive deficits
that we observed in Advil-Cre�Pip5k1cfl/fl mice might
relate to developmental loss of Pip5k1c in DRG, deple-
tion of PIP2, and/or impaired neurotrophin-mediated
neurite outgrowth. Neurotrophin-mediated RTK signal-
ing regulates many aspects of neurodevelopment.28 One
of the kinases involved downstream of RTK signaling is
phosphoinositide-3 kinase (PI3K). PI3K phosphorylates
PIP2 to generate PIP3 to allow for the binding of Akt
(protein kinase B). This leads to disinhibition of mTOR
(mammalian target of Rapamycin), and this signaling
axis regulates formation of axonal filopodia and den-
dritic arborization.29–31 Furthermore, PIP5K1C regu-
lates adhesion junction formation and neuronal cell
migration.32 Future studies will be needed to resolve
whether early loss of PIP5K1C impairs proprioceptive
neuron development and/or maintenance.

The primary focus of our research was to evaluate
how sensory neuron selective loss of PIP5K1C affects
nociception. Thus, to bypass this early-onset propriocep-
tive phenotype, we conditionally deleted Pip5k1c in adult
sensory ganglia using two different tamoxifen-inducible

Figure 2. Early recovery of inflammation-induced thermal and mechanical hypersensitivity in Brn3a cKO mice. One hind paw of male (a

and b) and female (c and d) mice was injected with the inflammatory agent CFA. The uninjected paw served as a control. (a) and (c)

Thermal sensitivity measured before and several days after injection using the Hargreaves assay. (b) and (d) Mechanical sensitivity measured

using an electronic von Frey apparatus. n¼ 10 WT and 14 cKO for males. n¼ 14 WT and 15 cKO for females. All data are mean� SEM.

Asterisks indicate significant difference between WT inflamed and cKO inflamed by two-way ANOVA, Dunnett’s post hoc test. *p< 0.05,

**p< 0.005, and ***p< 0.0005.
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Cre lines. We generated tamoxifen-inducible Brn3a cKO
and Advil cKO mice, neither of which displayed evidence
of motor impairment or hind limb clasping over the
course of our studies (data not shown).

We initially evaluated nociceptive phenotypes in
tamoxifen-treated WT and Brn3a cKO mice. Brn3a
cKO mice exhibited no difference in thermal or mechan-
ical hypersensitivity following CFA inflammation but
showed a faster recovery to baseline levels. We cannot

conclude that this more rapid recovery was exclusively
caused by the deletion of Pip5k1c in sensory neurons, as
these Brn3a cKO mice also showed a significant reduc-
tion of PIP5K1C in the cerebral cortex. Initially, we tried
a tamoxifen regiment (1mg of intraperitoneal injections
for five consecutive days) as reported in a previous
Brn3a-Cre-ERT2 study,21 but observed very low deletion
efficiency (10%–50% deletion in DRG, data not shown).
To further increase the deletion efficiency in DRG, we

Figure 3. Deletion of PIP5K1C in DRG but not in the spinal cord or cerebral cortex using Advil-Cre-ERT2 line. (a)–(c) PIP5K1C protein

levels in the indicated tissues of male mice and (d) Western blot quantification relative to b-actin. Tissue harvested 18 to 20 days post

tamoxifen injections. n¼ 13 WT and 13 cKO male mice. (e)–(g) PIP5K1C protein levels in the indicated tissues of female mice and (h)

Western blot quantification relative to b-actin. Tissue harvested 18 to 20 days post tamoxifen injections. n¼ 12 WTand 9 cKO female mice.

All data are mean� SEM. Asterisks indicates significant difference between WT and cKO mice by t test. ***p< 0.0005.

Table 2. Noxious heat, mechanical, and cold behavioral assays with Advil cKO mice.

Male Female

Assay/genotype WT Advil cKO p value WT Advil cKO p value

Hot plate (55�C) 24.4� 1.1 s 22.9� 1.0 s 0.31 18.9� 1.2 s 21.6� 0.7 s 0.06

Tail immersion (46.5�C) 4.9� 0.3 s 5.0� 0.5 s 0.91 5.1� 0.3 s 5.4� 0.3 s 0.54

Tail immersion (49�C) 3.4� 0.2 s 3.2� 0.4 s 0.75 2.6� 0.1 s 2.9� 0.2 s 0.33

Tail immersion (�10�C) 13.1� 1.4 s 14.1� 1.9 s 0.68 16.0� 1.6 s 16.2� 1.4 s 0.96

Hargreaves (radiant heat) 10.3� 0.7 s 9.7� 0.5 s 0.44 9.5� 0.4 s 9.64� 0.4 s 0.86

Cold plantar 14.7� 1.2 s 14.0� 0.9 s 0.63 16.3� 1.0 s 15.2� 1.2 s 0.46

von Frey (mechanical) 4.5� 0.2 g 4.3� 0.2 g 0.70 4.3� 0.2 g 3.7� 0.2 g 0.08

WT: wild type. Male and female Advil cKO mice display no significant changes in noxious thermal or mechanical sensitivity relative to WT mice, as determined

by t test. n¼ 9 to 13 mice per group. All data are mean� SEM.
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tried a higher tamoxifen dose (120 mg/g body weight,
which is approximately 3mg for a 25 g mouse, for
seven consecutive days). However, this dosing schedule
led to deletion of PIP5K1C in the spinal cord and cere-
bral cortex.

Brn3a is expressed in the dorsal horn of the spinal
cord.33 Additionally, conditional reporter gene targeting
revealed Brn3a-positive neuronal projections from the
superior colliculus into the cerebral cortex but no expres-
sion within the cerebral cortex.34,35 The slight decrease in
PIP5K1C observed in our cortical Western blots may
reflect low-level recombination in the cerebral cortex
or, less likely, unintentional sampling of the superior col-
liculus, which is located just below the cerebral cortex.
Interestingly, a LacZ reporter study showed laminar
expression of Brn3a in the superior colliculus and mes-
encephalic central gray, also known as the periaqueduc-
tal gray (PAG).35 The PAG is known to regulate
ascending and descending pain pathways.36–38 It is there-
fore possible that PIP5K1C was also deleted in the PAG
of Brn3a cKO mice. The more rapid recovery of Brn3a
cKO mice following CFA-induced inflammation might
thus relate to a loss of Pip5k1c in more regions of the
nervous system than DRG alone. In support of this pos-
sibility, Advil cKO mice showed a more selective loss of

PIP5K1C in DRG but did not show a more rapid recov-
ery following CFA-induced inflammation. Homozygous
Pip5k1c knockout mice (Pip5k1c�/�) showed major
reduction of PIP2 (�50%) in the brain, and Pip5k1c�/�

cortical neurons have impaired synaptic transmission,
although these animals die at birth.39 It was thus not
possible to study how global loss of Pip5k1c affected
nociceptive behaviors in adults.

Collectively, our findings suggest that many of the
nociceptive sensory phenotypes that we identified in
Pip5k1cþ/� mice are likely due to PIP5K1C haploinsuf-
ficiency in more regions of the body and nervous system
than DRG alone. Support for this conclusion comes
from our observation that Advil cKO mice show a
>50% loss of PIP5K1C protein in DRG (which is
greater than the �50% loss we reported in Pip5k1cþ/�

mice) but showed no sensory phenotypes. Moreover,
Brn3a cKO mice showed faster recovery following
CFA-induced inflammation, mirroring one of the pheno-
types we identified in Pip5k1cþ/� mice, but PIP5K1C
was reduced in other regions of the nervous system
besides DRG. Our study highlights the importance of
evaluating multiple mutant lines (global, conditional,
and adult-specific conditional) before drawing strong
conclusions as to whether a gene regulates nociception

Figure 4. Inflammation-induced thermal and mechanical hypersensitivity in Advil cKO mice is equivalent to WT mice. (a) and (b) One hind

paw of male and (c) and (d) female mice was injected with the inflammatory agent CFA. The uninjected paw served as a control. (a) and (c)

Thermal sensitivity measured before and several days after injection using the Hargreaves assay. (b) and (d) Mechanical sensitivity measured

using an electronic von Frey apparatus. n¼ 13 WT and 13 cKO for males. n¼ 12 WT and 9 cKO for females. All data are mean� SEM. No

significant difference between WT inflamed and cKO inflamed by two-way ANOVA, Dunnett’s post hoc test.
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exclusively via effects in sensory ganglia or via effects in
other parts of the nervous system. Moreover, future
work with additional Cre driver lines, such as spinal
cord and/or brain specific, could be used to further val-
idate the findings in this study.
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