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ABSTRACT

The replicative immortality of human cancer cells is
achieved by activation of a telomere maintenance
mechanism (TMM). To achieve this, cancer cells
utilise either the enzyme telomerase, or the Alterna-
tive Lengthening of Telomeres (ALT) pathway. These
distinct molecular pathways are incompletely under-
stood with respect to activation and propagation, as
well as their associations with clinical outcomes. We
have identified significant differences in the telomere
repeat composition of tumours that use ALT com-
pared to tumours that do not. We then employed a
machine learning approach to stratify tumours ac-
cording to telomere repeat content with an accuracy
of 91.6%. Importantly, this classification approach
is applicable across all tumour types. Analysis of
pathway mutations that were under-represented in
ALT tumours, across 1,075 tumour samples, revealed
that the autophagy, cell cycle control of chromoso-
mal replication, and transcriptional regulatory net-
work in embryonic stem cells pathways are involved
in the survival of ALT tumours. Overall, our approach
demonstrates that telomere sequence content can

be used to stratify ALT activity in cancers, and be-
gin to define the molecular pathways involved in ALT
activation.

INTRODUCTION

Telomeres are nucleoprotein structures at the ends of linear
chromosomes that consist almost exclusively of the repeat
sequence TTAGGG, bound by the shelterin protein com-
plex, which comprises TRF1, TRF2, TIN2, TPP1, POT1,
and RAP1 (1). The proximal 2 kb region of human telom-
eres is rich in variant telomere repeats, which are defined
as any repeat that differs by a single nucleotide from the
canonical TTAGGG repeat, such as TCAGGG, TGAGGG
and TTGGGG (2,3). The proportion and distribution of
variant telomere repeats is chromosome end-specific, sub-
ject to linkage disequilibrium and Mendelian inheritance,
and highly variable, indicative of a high underlying muta-
tion rate (3,4). In contrast, the distal ends of human telom-
eres contain predominantly canonical telomere repeats by
virtue of the fidelity of telomerase (5), which extends telom-
eres in the germline, during embryogenesis, and in stem cell
populations (6).

Telomere attrition accompanies normal somatic cell di-
vision, and functions to restrict cellular replicative capac-

*To whom correspondence should be addressed. Tel: +612 8865 2928; Email: hpickett@cmri.org.au

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com



4904 Nucleic Acids Research, 2018, Vol. 46, No. 10

ity (7). This gradual attrition erodes distal canonical se-
quences, eventually exposing the proximal variant repeat-
dense regions and compromising telomere capping func-
tion. One of the hallmarks of cancer is replicative immor-
tality through the activation of a TMM (8). Currently,
there are two known TMMs: telomerase, a ribonucleo-
protein complex that extends telomeres via reverse tran-
scription using an intrinsic RNA template region (9), and
ALT, a recombination-dependent replication pathway of
telomere extension (10). ALT-mediated telomere templat-
ing can occur in the proximal telomeric regions, resulting
in interspersion of variant repeats throughout the telom-
eres (11,12). Whilst telomerase is activated more frequently,
ALT is prevalent in tumours of mesenchymal origin such as
those arising from bone and soft tissues, and from neuroen-
docrine systems (13,14), with leiomyosarcomas and Pancre-
atic Neuroendocrine Tumours (PanNETs) having a >50%
incidence of ALT (13). The mechanism underlying the acti-
vation of one TMM over the other remains unclear.

In recent years, sequencing has been applied on a small
scale to identify genetic markers that are associated with
telomerase or ALT. Specifically, TERT promoter mutations
have been identified that generate transcription factor bind-
ing motifs and increase hTERT transcription in cancers
(15,16), while ATRX and DAXX mutations have been found
to correlate with ALT activation in both tumours and cell
lines (17–19). Nevertheless, the genetic landscape of can-
cer is highly complex and variable. For instance, loss of
ATRX has been found to correlate tightly with ALT sta-
tus in glioblastoma, and mutations in ATRX and the TERT
promoter were mutually exclusive (20). Paradoxically, nine
out of ten melanomas with predicted loss-of-function mu-
tations in ATRX were also found to have TERT promoter
mutations (21). It has become clear that complete under-
standing of the genetic changes involved in the activation
of each TMM requires larger scale studies spanning a vast
array of tumour types.

Cancer genome sequencing projects, such as The Cancer
Genome Atlas (TCGA) (22) and the International Cancer
Genome Consortium (ICGC) (23), have been established
to identify the genetic characteristics of a wide range of
tumour types. Recently, these initiatives have been com-
bined with whole genome sequencing (WGS)-based telom-
ere length estimation tools to investigate telomere length
both within and across tumour types (21,24–26). A re-
cent study provided a comprehensive analysis of TERT-
activating and loss-of-function ATRX mutations across a
large panel of the TCGA tumour dataset using WGS,
whole exome sequencing (WXS) and RNA-seq, finding that
TERT promoter mutations correlated with increased TERT
expression and shorter telomere length, and ATRX dele-
tions correlated with increased telomere length (26). How-
ever, none of the samples used in this study were experimen-
tally validated for TMM, and currently there is no way to
determine TMM from WGS data.

Here, we identify significant differences in telomere vari-
ant repeat content that exist between tumours that use
the ALT pathway of telomere maintenance, and those that
do not. We describe a WGS-based machine learning ap-

proach to determine the TMM of a tumour using telom-
ere sequence content, and demonstrate the utility of this
approach in identifying the molecular signatures associated
with activation of ALT in widescale tumour datasets. Us-
ing two experimentally validated WGS datasets, we demon-
strate that the genome itself can provide sufficient informa-
tion to predict the presence of ALT in a tumour. Impor-
tantly, our classifier performs robustly across multiple tu-
mour types. Our findings demonstrate a novel way to iden-
tify ALT tumours from WGS, opening new avenues in un-
derstanding the genetic basis of ALT activation.

MATERIALS AND METHODS

Synthetic telomere sequencing control

Synthetic telomere substrates were generated by anneal-
ing complementary telomere oligos with a T/A overhang,
followed by repeated rounds of ligation to generate prod-
ucts with mean lengths of 300 bp required for sequencing.
In brief, the following oligos were ordered for the canon-
ical substrate, G1: 5′-AGGGTTAGGGTTA-3′, C1: 5′-A
ACCCTAACCC-3′, G2: 5′-GGGTTAGGGTT-3′ and C2:
5′-TAACCCTAACCCT-3′, and were annealed in pairs,
G1+C1 and G2+C2. The annealed pairs were then mixed
in equimolar proportions and ligated using New England
Biolabs Blunt/TA ligase (Catalog #M0367S) at 16◦C for 14
h followed by ethanol precipitation. Two variant repeat sub-
strates were created using oligos of TCAGGG or TTAGCG
repeats.

Analysis of telomere sequencing control

The synthetic telomere substrate was sequenced on the Il-
lumina HiSeq2500 platform using 150 bp paired end reads.
The sequencing error rate was estimated using a combina-
tion of existing bioinformatics tools and custom in-house
scripts. In brief, the sequencing data in fastq format were
trimmed using Trimmomatic (v0.36) (http://www.usadellab.
org/cms/?page=trimmomatic) to remove low quality bases
and adaptor sequences, then reads were sorted, based on
their sequence content, into the following groups: G-strand
([TTAGGG]n), and C-strand ([CCCTAA]n). The frequency
of single nucleotide mutations in the TTAGGG or CC-
CTAA repeat unit was calculated for each of the strand
groups, with this value representing the sequencing error
rate.

Tumour WGS datasets

PanNET and melanoma datasets were sourced from pre-
viously published data (21,25). The PanNET dataset con-
sisted of 86 tumours for which ALT activity had been de-
termined using the C-circle assay (27), and was used as a
validated dataset. For the melanoma samples, DNA was
available from 81 tumours, allowing for ALT activity to be
determined by the C-circle assay, providing a second vali-
dated dataset (Mela val). The remaining 87 melanoma tu-
mours for which DNA was not available were grouped into
a non-validated set (Mela non-val).

http://www.usadellab.org/cms/?page=trimmomatic


Nucleic Acids Research, 2018, Vol. 46, No. 10 4905

Table 1. List of tumour types and abbreviations for datasets analysed from
TCGA

Tumour type Abbreviation

Bladder urothelial carcinoma BLCA
Brain lower grade glioma LGG
Breast invasive carcinoma BRCA
Cervical squamous cell carcinoma and
endocervical adenocarcinoma

CESC

Colon adenocarcinoma COAD
Esophageal carcinoma ESCA
Glioblastoma multiforme (adult) GBM
Head and neck squamous cell carcinoma HNSC
Kidney chromophobe KICH
Kidney renal clear cell carcinoma KIRC
Kidney renal papillary cell carcinoma KIRP
Liver hepatocellular carcinoma LICH
Lung adenocarcinoma LUAD
Lung squamous cell carcinoma LUSC
Ovarian serous cystadenocarcinoma OV
Prostate adenocarcinoma PRAD
Sarcoma SARC
Skin cutaneous melanoma SKCM
Stomach adenocarcinoma STAD
Thyroid carcinoma (Papillary Thyroid
Carcinoma)

THCA

Uterine corpus endometrial carcinoma UCEC

A further 821 high quality (>800 million reads, and con-
taining <20% normal cells by tissue image) WGS datasets
across 21 tumour types were available from TCGA (22). The
TCGA datasets used in this study consisted of the following
tumour types: BLCA, LGG, BRCA, CESC, COAD, ESCA,
GBM, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC,
OV, PRAD, SARC, SKCM, STAD, THCA and UCEC (Ta-
ble 1).

C-circle assay

The C-circle assay was performed as previously published
(27). In brief, rolling circle amplification was applied to ex-
tracted genomic DNA, followed by detection using telom-
ere qPCR. The presence of C-circles was used to stratify
tumours into ALT positive (+ve) and ALT negative (–ve)
groups based on the presence or absence of C-circles, re-
spectively.

Telomere analysis of WGS data

Telomere reads were extracted from WGS data that had
been aligned using Burrows-Wheeler Aligner (BWA) to
human reference genome hg19, using the tool qMotif (v1.0)
(https://sourceforge.net/p/adamajava/wiki/qMotif/) with
the extraction criterion four TTAGGG repeats in a 100 bp
read. Telomere reads were then trimmed using a sliding
window with threshold of >30 Phred base quality score,
followed by quantification of variant repeats using a custom
Perl script and pattern matching. The number of variant
repeats was normalised to the total amount of telomeric
repeats and base-line corrected using the sequencing error
rate determined previously from the synthetic sequencing
control. Statistical analyses were performed using the
two-tailed t-test. Analysis of TCGA data was performed
on the Cancer Genomics Cloud hosted by Seven Bridges
Genomics (http://www.cancergenomicscloud.org/).

Generation of TMM classifier

The randomForest package version 4.6–12 in R version
3.3.3 was used to generate classifiers using the calculated
proportion of variant repeats and relative telomere con-
tent (rel.TC), calculated as log2(tumour/normal), as fea-
tures, with samples classed as ALT +ve or ALT –ve de-
termined by the C-circle assay. The classifier was gener-
ated using the following line of code, randomForest(class
∼., data = <data.frame>, replace = TRUE, mtry = 5,
ntree = 500, proximity = TRUE, localImp = TRUE), where
<data.frame> is a dataframe consisting of the proportion
of each telomere variant repeat and rel.TC for each vali-
dated tumour in the training set. The generated classifier
was validated using out-of-bag (OOB) votes for the training
set (generated during the training of the classifier), and us-
ing the predict() function built into the randomForest pack-
age for the testing set.

Somatic coding mutations and pathway mapping

Somatic coding single nucleotide variant (SNV) and
insertion/deletion (indel) mutation data for the PanNET
and melanoma cohorts ((25), Supplementary Table, Ta-
ble S5 somatic maf; (21), Supplementary Table S2) were
classified using the Ensembl Variant Effect Predictor
(VEP) (release 89) using the GRch37 reference genome
and default settings (28). A total of 821 TCGA cases were
analysed by our classifier, with only 769 having WXS
primary tumour MuTect2 Annotation VCF files available
for use in gene and pathway analysis. WXS primary
tumour MuTect2 annotation VCF files were acquired from
https://portal.gdc.cancer.gov (Data Release 4.0). Each
impacted gene was mapped to its corresponding Ingenuity
Pathway (IPA Spring Release, March 2017) for each
case (https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis/). TERT promoter mutations
were called from the WGS data.

Dataset comparisons

For each of the ten datasets, impacted mutations were
counted for each gene for both ALT +ve and ALT –ve tu-
mour groups, followed by a Fisher’s Exact test, generating
P-values and odds ratios. Multiple impacts over the same
gene for a given case were considered as 1 count. Multi-
ple testing corrections were applied to each dataset using
the false discovery rate (FDR) method. Similarly, impacted
pathways were counted for both ALT +ve and ALT –ve tu-
mour groups with a Fisher’s Exact test, for each tumour
dataset.

Enrichment of mutations in genes or pathways with
adjusted P-values <0.05 following FDR correction and
fold difference >2 in either direction were identified for a
dataset consisting of all tumour samples (PAN-CANCER)
as well as each of the following individual tumour datasets:
PanNET, Mela val, Mela non-val, BRCA, GBM, KICH,
LIHC, OV and SARC datasets.

All-cause survival analysis

Clinical data in xml format was downloaded (data release
version 4.0) from NCI Genomic Data Commons (GDC)

https://sourceforge.net/p/adamajava/wiki/qMotif/
http://www.cancergenomicscloud.org/
https://portal.gdc.cancer.gov
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
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data portal (https://portal.gdc.cancer.gov). Age in years
was derived, in order of preference, from: days to birth or
age at initial pathologic diagnosis; survival state was de-
rived from vital status and follow up vital status; stage
of disease was derived from clinical stage and patho-
logic stage, and grouped into I/II and III/IV; and histo-
logical grade was derived from neoplasm histologic grade,
and grouped into G1, G2 and G3/G4 levels. Cancer-specific
survival was not able to be performed due to substantial
missing ‘patient death reason’ values. Therefore, all gener-
ated hazard ratios (HR) are based on all-cause survival.
Time to event values in years were derived from, in or-
der of preference, days to death, follow up days to death,
days to last known alive and days to last followup. Cox’s
regression survival analysis was undertaken using the R
package, survival 2.41.3 and R version 3.3.3. Three Cox’s
models were generated: (i) a basic model, which was lim-
ited to one independent factor, the TMM status (ALT +ve,
ALT –ve); (ii) age and gender adjusted; and (iii) a multivari-
ate model adjusted for age, histologic grade, stage of disease,
with cancer type and gender stratified to correct for propor-
tional hazards assumption.

A total cohort of 907 (TCGA = 821 and PanNET = 86),
of which 903 had near complete to complete clinical data,
were used in the analysis. Multivariate survival analysis lim-
ited the study to 386 patients (517 observations had one or
more missing values in the following fields: gender, initial
histologic grade or initial disease stage).

RESULTS

Telomeres are subject to strand-specific sequencing errors

Telomeres are long repetitive DNA sequences at chromo-
some termini that are intrinsically prone to high sequencing
error rates, and are virtually impossible to assemble using
short read sequencing technologies. In addition, next gen-
eration sequencing (NGS) technologies are known to be im-
perfect, resulting in false positive variant calls that are nor-
mally overcome by performing high depth sequencing fol-
lowed by the alignment of reads to a reference genome. Due
to the inability to map and assemble telomeres, it is not pos-
sible to use standard approaches for eliminating false posi-
tive variant calls in telomere repeats.

To accurately identify canonical versus variant telomere
repeats from WGS data, we assembled a synthetic telomere
substrate consisting of pure tandem repeats of the canoni-
cal TTAGGG sequence, and performed NGS using the Il-
lumina HiSeq2500 platform (Figure 1A). As the differences
in sequence content between the complementary strands
of telomeric DNA can affect the sequencing error rate,
the reads were sorted into G-strand (containing predom-
inantly TTAGGG repeats) and C-strand (containing pre-
dominantly CCCTAA repeats). The false positive rate for
calling variants was calculated for each strand indepen-
dently as well as combined, with the number of variants de-
tected representing the number of false positives generated
by sequencing error.

In the first instance, we analysed the sequencing error rate
across the combined G- and C-strands and observed that it
was not equal across each base position in the hexameric
TTAGGG repeat sequence when using the least stringent

base quality score filtering of Phred > 10. Specifically, the
first position had a much higher observed error rate (1.3%)
than positions 4–6 (∼0.3%) (Figure 1B). It has been hy-
pothesised that repetitive sequences, such as telomeres, are
susceptible to increased error rates due to phasing. Phasing
occurs in NGS platforms utilising sequencing-by-synthesis
combined with cluster generation, where molecules in the
cluster lose synchronisation and fall behind due to im-
proper removal of terminating nucleotides or fluorophores.
Pre-phasing is the opposite, whereby molecules improperly
move ahead in the cluster. Together, both phasing and pre-
phasing create noise in the cluster signal that accumulates
over the length of the read. This noise has been hypothe-
sised to create high quality sequencing errors in repetitive
sequences containing homopolymers.

As the telomeric hexamer contains three consecutive gua-
nine nucleotides, we analysed the sequencing error rate
across the length of the read for the first base in the hexam-
eric repeat to directly determine whether telomere sequence
reads are subject to phasing (Figure 1C). We found that
the sequencing error rate increased across the read, ranging
from as low as 0.22% at the start of the read to 5.17% at the
end (Figure 1C), indicative of substantial phasing effects.
When we compared this to the other five base positions
(Supplementary Figure S1A–E), we found that the third po-
sition was also substantially affected by phasing, consistent
with it also being adjacent to the three consecutive guanine
nucleotides, while the other positions had much lower error
rates towards the end of the read. Therefore, to minimise the
effects of phasing, we increased the stringency of quality fil-
tering for trimming reads by using a 6 bp sliding window
average. Using this approach, we observed that a base qual-
ity score filter of Phred > 30 reduced the error rate to less
than 0.2% across all base positions (Figure 1B), as well as
maintaining a constant error rate across the length of the
read (Figure 1C).

We then determined the sequencing error rate for each
possible nucleotide substitution across each position in the
TTAGGG repeat following trimming using base quality
score filter of Phred > 30, analysing each of the strand types
separately (Figure 1D) (Supplementary Table S1). We ob-
served that the sequencing error varied depending on the
base substitution, base position in the TTAGGG repeat,
and the strand type (G- or C-strand).

Finally, we measured the sequencing error rate in
two variant repeat synthetic substrates, comprising either
TCAGGG or TTAGCG repeats, in order to measure the
false negative rate for calling variants in telomeres (Sup-
plementary Figure S2). We observed a G-strand error rate
of 1.2% and 0.8% for TCAGGG and TTAGCG variants,
respectively, and a C-strand error rate of 1.2% and 0.8%.
These error rates were similar to those of the canonical
TTAGGG control, which had a G-strand error rate of 0.8%
and a C-strand error rate of 0.7%. When considered as a
proportion of total variant repeats, the false negative rate is
negligible.

Our analysis of the synthetic telomere substrate provided
a measure of the sequencing error rate for telomeric DNA
on the Illumina HiSeq2500 NGS platform. This enabled us
to implement a stringent trimming filter to reduce the se-
quencing error rate to below 0.2%. Overall, this approach

https://portal.gdc.cancer.gov
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Figure 1. Estimation of sequencing error rate in telomere repeats using a synthetic substrate. (A) Schematic outlining the experimental design and analysis
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demonstrates the need to separate telomere reads into G-
and C-strands to correct for telomere sequencing errors,
and accurately call variant repeats in telomere sequence
reads.

Differences in telomere sequence content exist between ALT
+ve and ALT –ve tumours

To determine whether differences in telomere sequence con-
tent exist between ALT +ve and ALT –ve tumours, and
whether these differences are sufficient to stratify these
groups, we analysed WGS data from a panel of PanNETs
(25) and a panel of melanoma samples (21). C-circles are a
robust and reliable marker of ALT activity (29,30), and their
presence was used to experimentally validate ALT activity
(27) in both tumour sets. The PanNET dataset consisted of
32 C-circle +ve (ALT +ve) and 54 C-circle –ve (ALT –ve) tu-
mours, while the melanoma dataset consisted of 11 C-circle
+ve (ALT +ve) and 70 C-circle –ve (ALT –ve) tumours (Fig-
ure 2A). Additional sample material for detection of telom-
erase activity was not available. Consequently, we extrapo-
lated that the ALT –ve tumours group consists primarily of
telomerase +ve tumours, as well as the potential inclusion
of rare TMM negative tumours (31,32).

Telomere reads were extracted from WGS datasets using
qMotif (24,25), with the criterion four TTAGGG repeats
(4xTTAGGG), encompassing both consecutive and non-
consecutive repeat configurations, in a 100 bp read (Figure
2B). This criterion was selected as it was found to have a
high correlation with qPCR (R2 = 0.8112) when measuring
rel.TC, comparable with 4xTTAGGG consecutive (R2 =
0.8038) and 9xTTAGGG consecutive (R2 = 0.7794) (Sup-
plementary Figure S3A), whilst also allowing for increased
detection of variant repeats (Supplementary Figure S3B).
By utilising the sequencing error rates previously calculated
from the synthetic telomere control, we quantified the pro-
portion of variant repeats correcting for the strand-specific
baseline sequencing error rate (Supplementary Table S2).

In the PanNETs, comparisons between ALT +ve and
ALT –ve tumour telomeres revealed significant differ-
ences in variant repeat content across all but one variant
(TTCGGG) (Figure 2C). Mutations in the first three base
positions of the TTAGGG repeat were found to occur more
frequently than mutations in the final three base positions,
consistent with previously published results (12). The pro-
portion of variant repeats in telomeres varied substantially
across the tumour samples with one tumour containing
4.5% of the TTCGGG variant, the highest proportion of a
single variant type. Overall, ALT –ve tumours contained a
higher proportion of variant repeats compared to ALT +ve
tumours. This reflects a higher representation of the variant
repeat-dense proximal regions as a proportion of the total
telomere in ALT –ve cells, which typically display substan-
tially shorter telomeres compared to ALT +ve cells. This is
demonstrated by the observation that the overall propor-
tion of variant repeats in telomeres is negatively correlated
(R2 = 0.6231) with rel.TC measured by qMotif (Supplemen-
tary Figure S4A). Correlations between the proportion of
individual variant repeats and rel.TC range from strong to
weak, indicating that rel.TC is not entirely accountable for
the proportion of variant repeats in telomeres (Supplemen-

tary Figure S4B). The biological basis for this observation
is unclear.

In the melanoma dataset, we observed a significant differ-
ence in variant repeat content between ALT +ve and ALT
–ve tumours for the majority of variants, with the excep-
tion of TCAGGG, TTCGGG, TTAGCG, TTAGGA and
TTAGGT (Figure 2D). Overall, the proportion of variant
repeats in ALT –ve tumours was lower in the melanoma
dataset than in the PanNET dataset. This can be explained
by the observation that ALT –ve melanoma tumours had
higher rel.TC than ALT –ve PanNETs (Figure 2E), re-
sulting in a diluted proportion of proximal variants in
melanoma telomeres.

We then addressed whether rel.TC alone, in the absence
of variant repeat data, could be used to distinguish be-
tween ALT +ve and ALT –ve tumours. To do this, we
measured rel.TC by qMotif in the PanNET and melanoma
WGS datasets. We observed minimal overlap between ALT
+ve and ALT –ve tumours within each tumour type, but
this separation was not as apparent across the two tumour
types (Figure 2E). The classification ability of rel.TC in de-
termining TMM was assessed by creating a receiver op-
erating characteristic (ROC) curve, and found that rel.TC
performed better than random, with area under the curve
(AUC) of 0.8417 (Figure 2F). We assigned a rel.TC cut-off
of 0.33, as it gave the optimal balance between ALT +ve
and ALT –ve accuracy across both tumour datasets, and
used this to calculate the accuracy across each of the tu-
mour types (Figure 2G). While the overall class accuracy for
both tumour types combined was balanced, at 79.07% for
ALT +ve tumours and 82.26% for ALT –ve tumours, rel.TC
predicted ALT –ve tumours more accurately than ALT +ve
tumours in PanNETs (96.30% and 75.00%, respectively),
and ALT +ve tumours more accurately than ALT –ve tu-
mours in the melanomas (90.91% and 71.43%, respectively).
These experiments demonstrate that rel.TC alone provides
limited accuracy in stratifying ALT +ve and ALT –ve tu-
mours across different tumour types, but that significant
differences in the variant repeat content of telomeres exist
between ALT +ve and ALT –ve tumours across both Pan-
NET and melanoma datasets that could improve upon this.

Telomere sequence content can accurately detect the presence
of ALT in tumours

To improve on the utility of rel.TC, we employed a ran-
dom forest (RF) machine learning approach to generate an
ALT classifier, using the proportion of each telomere vari-
ant repeat type and rel.TC as features. For each sample, the
RF classifier produced a probability, representing the pro-
portion of votes for ALT +ve, classifying tumours as ALT
+ve (>0.5) or ALT –ve (<0.5). To test the robustness of the
classifier across different tumour types we generated multi-
ple classifiers using different combinations of the PanNET
and melanoma datasets for training and testing. Each clas-
sifier was tested using the training set via the use of OOB
error estimation, a feature of the RF approach whereby
samples in the training set are used to validate the decision
trees they were not used to train; and using the indepen-
dent testing set, where available. First, we used the PanNET
dataset as the training set, and then performed testing using
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the melanoma dataset (Figure 3A). The classifier performed
well on the PanNET training set, achieving a class accuracy
of 87.50% for predicting ALT +ve tumours, 90.74% for pre-
dicting ALT –ve tumours, and had an AUC of 0.9375 us-
ing OOB error estimations. The classifier performed slightly
worse on the independent melanoma test set, having class
accuracies of 90.91% and 75.71% for ALT +ve and ALT –
ve, respectively (Figure 3A).

Second, we used the melanomas as the training set, and
the PanNETs as the testing set (Figure 3B). This classifier
had an AUC of 0.9052, with class accuracies of 81.82% for
ALT +ve and 97.14% for ALT –ve. The reduction in perfor-
mance compared to the previous classifier can be attributed
to the proportion of ALT samples in the melanoma dataset
being only 13.6%, causing the classifier to be skewed to-
wards an ALT –ve prediction (Figure 3B). This bias towards
ALT –ve classification was reflected in the predictions for
the independent PanNET test set, with class accuracies of
62.50% and 94.44% for ALT +ve and ALT –ve, respectively
(Figure 3B).

Finally, we generated a RF classifier using both Pan-
NETs and melanomas for the training set, to determine
whether this approach would produce a more balanced clas-
sifier capable of predicting ALT +ve and ALT –ve tumours
with comparable confidence (Figure 3C). The classifier per-
formed well with an AUC of 0.9434 and overall accuracy
of 91.6%, and class accuracies in PanNETs of 92.59% and
81.25%, and in melanomas of 81.82% and 97.14%, for ALT
+ve and ALT –ve, respectively. As expected, this classifier
performed well at predicting ALT activity in both PanNETs
and melanomas, having been trained on both datasets, and
out-performed rel.TC alone in determining the TMM of a
tumour.

By examining the importance of each feature used in the
final classifier, we observed that the top three most impor-
tant features were the variant repeats TTTGGG, TAAGGG
and TTAGAG (Figure 3D). Interestingly, rel.TC ranked
10th in terms of importance, showing that variant repeat
content has more predictive power for detecting ALT than
rel.TC. We conclude that by utilising the proportion of in-
dividual variant repeats within telomeres, in combination
with rel.TC, we can generate a classifier of ALT that can be
applied across different tumour types.

Classification of ALT +ve and ALT –ve varies across tumour
types

Having established a robust classifier of TMM, trained on
both PanNETs and melanomas, we applied our classifier to
87 previously published melanoma samples that had not
been validated by the C-circle assay (21) (Mela non-val),
as well as 821 high quality (>800 million reads from sam-
ples containing <20% normal cells by tissue image) WGS
datasets across 21 tumour types available from TCGA (Ta-
ble 1), with the aim to probe the genetic signatures associ-
ated with ALT activation across multiple tumour types.

Of the tumour types tested, 15 had at least one sample
predicted to be ALT +ve, with SARC, LGG and SKCM
having the highest prevalence of ALT at 26%, 25% and 25%,
respectively, while the remaining tumour types had a less
than 10% frequency of ALT (Supplementary Table S3). Our

predictions are consistent with previous reports in the litera-
ture indicating that ALT is common in SARC and LGG (33)
(Supplementary Table S3). Clear delineation between ALT
+ve and ALT –ve tumours was observed in LGG in terms
of proportion of votes, with ALT +ve tumours having >0.7
and the ALT –ve tumours having < 0.3 (Figure 4A). PRAD,
STAD and THCA had all samples confidently (>0.7 major-
ity of votes) called as ALT –ve. A number of tumour types
such as KICH, were difficult to delineate, with votes clus-
tering at ∼50%. The predicted TMM for each TCGA and
Mela non-val sample is provided in Supplementary Table
S4.

Rel.TC varied between each of the different tumour
types, with ALT +ve tumours tending to have higher rel.TC
than ALT –ve tumours (Figure 4B). Overall, ALT +ve tu-
mours were found to have significantly higher rel.TC than
ALT –ve tumours (Figure 4C), but consistent with our ob-
servations in validated datasets (PanNET and melanoma),
some predicted ALT –ve tumours had longer telomeres than
predicted ALT +ve tumours, and vice versa. Overall, the
consistency of our predicted prevalences of ALT across tu-
mour types with previous reports provides support that
telomere sequence content can be used to stratify ALT +ve
and ALT –ve tumours across tumour types.

The presence of ATRX, DAXX and TERT promoter muta-
tions varies across tumour types

We then investigated the prevalence of mutations in ATRX,
DAXX and the TERT locus across the 22 predicted and two
validated datasets. Annotated mutation data were unavail-
able for 52 of the 821 TCGA samples. These samples were
excluded from the analysis. Of the 1023 tumours investi-
gated, only 37 had a predicted loss-of-function (high im-
pact) mutation in ATRX or DAXX, with 22/37 (59%) be-
ing classified as ALT +ve (Figure 5A). Interestingly, 2/37
of these tumours were validated to be ALT –ve by the C-
circle assay, indicating that loss of ATRX or DAXX is
not sufficient to confer ALT activity. High impact muta-
tions in DAXX were found to be most prevalent in Pan-
NETs, occurring in 15.1% of tumours, with COAD being
the only other investigated tumour type found to contain
DAXX mutations (in 2.6%). An additional 37 tumours were
found to contain moderate impact mutations, mostly mis-
sense, in ATRX or DAXX; however, only six were classified
as ALT +ve, indicating that moderate impact mutations in
ATRX and DAXX are not robustly associated with ALT
activity. Loss-of-function coding mutations in the TERT
gene were also investigated, with only one TERT mutation
(chr5:1264708 splice acceptor variant) being identified in
the 1023 tumours. This mutation was found in a melanoma,
which was classified as ALT –ve.

TERT promoter mutations, specifically C228T and
C250T, have been shown to create an ETS binding mo-
tif, which results in increased transcription of the gene
(15,16,34). We identified 157 tumours that contained one
of these mutations, with 149 (94.9%) classified as ALT –
ve (Figure 5B). This indicates that TERT promoter muta-
tions are important in ALT –ve tumours, consistent with
their role in promoting TERT expression. TERT promoter
mutations were most prevalent (approximately 50%) in
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melanomas, BLCA, GBM and LGG, consistent with pre-
vious reports (35). One of the tumours (a melanoma) with
TERT promoter mutations was validated to be ALT +ve by
the C-circle assay, suggesting the potential presence of both
TMMs in the sample. Another seven tumours with TERT
promoter mutations that were classified as ALT +ve may
similarly have both TMMs active, or may have been mis-
classified. Interestingly, one melanoma tumour was found
to have both a loss-of-function ATRX mutation as well as
a TERT promoter mutation, potentially facilitating activa-
tion of both TMMs in the tumour. Unfortunately, DNA for
this sample was not available to verify this. These results
are consistent with previous reports that mutations in the
TERT promoter alone are not sufficient to cause activation
of telomerase (36). Our results show that the use of genetic
markers to classify TMM in tumours is limited due to vari-
ability in their prevalence across tumour types, and overall
low occurrence rate.

Identification of pathways associated with ALT activation

Next, we investigated genes or pathways that were associ-
ated with the activation of ALT. Ten cancer datasets were
constructed: PanNETs, Mela val, Mela non-val, TCGA
tumour types predicted to have representation of ALT
(BRCA, GBM, KICH, LIHC, OV, SARC), and finally a
group consisting of all tumour types (PAN-CANCER). So-
matic coding SNVs and indels were identified for each of the
samples, and their impact determined using VEP. Only the
high and moderate impact variants were used in the anal-
ysis for over-representation of mutations in either the ALT

+ve or ALT –ve tumour group across each of the ten cancer
datasets, using a criterion of >2-fold over-representation
and an FDR of 5%.

When considering both high and moderate impact mu-
tations, DAXX and MEN1 were identified as signifi-
cantly over-represented in ALT +ve tumours in the PAN-
CANCER dataset, affecting 18.09% and 19.15% of ALT
+ve tumours, respectively (Figure 6A). When looking at the
individual tumour type datasets, only DAXX was identified
as significantly over-represented in ALT +ve tumours in the
PanNET tumour type, affecting 50% of ALT +ve tumours
(Supplementary Table S5). Performing the same analysis us-
ing high impact mutations only, DAXX was identified as
over-represented in the PAN-CANCER dataset, affecting
12.77% of ALT +ve tumours (Supplementary Table S5).
ATRX was observed to have an over-representation of mu-
tations in ALT +ve tumours, affecting 10.64%; however, this
was not significant (adjusted P-value 0.07), presumably due
to an overall low prevalence of ATRX mutations across the
tumour types tested in this study. Analysis of individual tu-
mour types considering only high impact mutations, again
revealed DAXX as the only significantly mutated gene in the
PanNET dataset, affecting 37.50% of ALT +ve tumours.

Next, we mapped each of the impacted genes to corre-
sponding molecular pathways to identify whether dysregu-
lation in any molecular pathways was associated with ac-
tivation of ALT. Analysis of both high and moderate im-
pact mutations in the PAN-CANCER dataset revealed two
pathways that were significantly over-represented, and 12
pathways that were significantly under-represented in ALT
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Figure 6. Genes and pathways associated with TMM across nine tumour datasets. (A) Genes and (B) pathways identified as containing a significant over-
or under-representation of mutations (adjusted P-value < 0.05, FDR of 5%, and >2-fold difference) in ALT +ve tumours compared to ALT –ve tumours
across all tumour types combined (PAN-CANCER dataset). Graphs plot the proportion of all ALT +ve and ALT –ve tumours that contain a high or
moderate impact mutation in the affected gene or pathway.

+ve tumours (Figure 6B) (Supplementary Table S6). The
affected genes for each of these pathways are listed in Sup-
plementary Table S7. Interestingly, 3 of the 12 pathways
under-represented in ALT +ve tumours (the autophagy, cell
cycle control of chromosomal replication, and transcrip-
tional regulatory network in embryonic stem cells path-
ways) were found to have a very low representation in ALT
+ve tumours (2%, 2% and 3%, respectively), suggesting that
ALT activity is incompatible with disruptions to these path-
ways. When looking for pathways enriched in individual
tumour type datasets, five pathways involving DAXX were
identified as enriched in ALT +ve tumours found only in
the PanNET dataset (Supplementary Table S6). Perform-
ing the same pathway analysis considering only high impact
mutations uncovered no over-represented pathways in the
PAN-CANCER dataset, and one additional pathway over-
represented in ALT +ve tumours in the PanNET dataset
(Supplementary Table S6).

Our results reveal that, while some genes and pathways
were identified as involved in the survival or activation of
ALT across all tumour types, their prevalence varied across
specific tumour types. The use of genetic markers to strat-
ify ALT +ve and ALT –ve tumours is limited due to genetic
heterogeneity between tumour types. Studies into the genes
and pathways involved in the activation and survival of ALT
+ve tumours requires investigation within each specific tu-
mour type.

Patient survival for ALT +ve and ALT –ve tumours

Finally, we investigated whether activation of ALT in tu-
mours had an impact on patient survival. Previous stud-
ies of glioblastomas have shown that the presence of ALT
in the tumour was associated with longer patient survival
times (37,38). Investigations to determine associations be-
tween TMM status (ALT +ve and ALT –ve) and the over-
all survival of the combined TCGA and PanNET cohort
of patients (total of 903 with near complete to complete
clinical data) were conducted using Cox’s proportional haz-
ards regression models. No statistically significant findings
(P < 0.05) were observed after accounting for known con-
founders (age, gender, initial histological grade, initial stag-
ing of disease and cancer type). All models were checked
and corrected to ensure proportional hazard assumptions
were not violated. Unsurprisingly, staging of the disease was
detected as being the most significant contributor to sur-
vivability, with patients presenting with stage III or IV tu-
mours being at a 2.5 times higher risk of mortality, com-
pared to stage I or II tumours (Hazard risk ratio of 2.5,
95% CI: 1.4–4.4, P-value < 0.0025, total numbers at risk
= 386 and number of deaths = 108, using the multivariate
model equation). Additionally, no significant associations
were observed when separate survival models were imple-
mented for PanNET, BRCA, GBM, KICH, LIHC, OV and
SARC cancer types; however, these data are inconclusive
and analysis using larger sample sizes is required.
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DISCUSSION

The application of sequencing strategies to telomeres allows
for the study of telomere sequence content and its associa-
tion with disease. Sequencing telomeres is technically chal-
lenging due to their repetitive nature, and problems asso-
ciated with phasing and pre-phasing, resulting in frequent
false positives when attempting to quantitate variant re-
peats within telomere reads. We, therefore, developed a syn-
thetic telomere sequencing control and applied a high strin-
gency filter to minimise false positive calls within telom-
ere reads, allowing accurate quantitation of variant repeats.
This strategy will benefit future analysis of telomere se-
quence content and variability, as well as mapping of in-
terstitial telomere repeats.

Application of this pipeline allowed us to identify signifi-
cant differences in variant repeat sequence content between
telomeres derived from ALT +ve and ALT –ve tumours.
These differences can be in-part attributed to the mecha-
nistic differences in telomere repeat synthesis between ALT
and telomerase. We have previously reported variant repeat
interspersion in ALT telomeres, through homology directed
repair that can involve the variant repeat-dense proximal re-
gions (11,12). Our present results are consistent with these
findings, but are also indicative of a substantial overall in-
crease in canonical telomere repeat content in ALT cells.
We observed a greater proportion of variant repeats in the
telomeres of ALT –ve tumours, attributed to the higher pro-
portion of proximal variant repeats when overall telomere
lengths are shorter. One exception was the TTCGGG vari-
ant repeat, which was found to occur at a similar proportion
in both the ALT +ve and ALT –ve tumour groups in the
PanNETs, indicating that it is being propagated outside of
the proximal region in longer telomeres. As telomere length
alone was found to be a poor classifier of TMM, there are
likely to be other biological explanations that we are cur-
rently unaware of that may account for the differences in
telomere variant repeat content between ALT +ve and ALT
–ve telomeres.

Our investigations showed that rel.TC performs poorly
in stratifying ALT +ve and ALT –ve tumours due to high
amounts of variability between tumour types. However, by
combining the proportion of variant repeats with telomere
content, we created a robust classifier capable of stratify-
ing ALT +ve and ALT –ve tumours, with 91.6% accuracy,
that can be applied across multiple tumour types to begin
to elucidate the molecular signatures associated with the ac-
tivation of ALT. Nevertheless, further development of the
classifier, by expanding the training and test datasets to in-
clude more experimentally validated tumour types, will in-
crease its specificity and sensitivity. This will involve ad-
ditional sample collection and experimentation using lab-
based ALT and telomerase activity assays.

A number of limitations of the classifier must be con-
sidered. First, our classifier can determine whether ALT is
present in a tumour, but is unable to determine if telom-
erase has been activated. There exists the possibility that
both TMMs could co-exist in the same tumour sample, or
a tumour may switch or fluctuate between TMMs. Second,
we have built our classifier on experimental validation using
C-circle activity as indicative of ALT. This was due to the

availability of DNA suitable for C-circle analysis. Unequiv-
ocal identification of ALT requires an exhaustive array of
experimental analyses (10), for which cellular material was
not available on this scale. Finally, our classifier has been
trained on WGS datasets that were generated from the same
sequencing centre using the same machines. As a result, we
have not been able to test whether differences in sequencing
centres and machines affect classification.

The application of our classifier to a range of tumour
types produced estimates for the prevalence of ALT in line
with previous reports in the literature, with the exceptions
of LGG and STAD, for which our predictions were much
lower than previously reported. Differences between our
classifier prediction and previous reports can be attributed
to the use of different experimental techniques, varying pro-
portions of sub-types of tumours studied, small sample
sizes, differing amounts of tumour content, and potential
misclassification. Overall, the concordance between our es-
timated prevalence of ALT across tumour types with the lit-
erature provides support that our classifier is tumour type
independent.

It has recently been reported that loss-of-function mu-
tations in ATRX/DAXX can be used to determine ALT
activation (19,26,39), and that activating mutations in
the TERT promoter are indicative of telomerase expres-
sion (35,40–42). Our investigation found that, while loss-
of-function mutations in ATRX/DAXX and TERT pro-
moter mutations correlated with their respective associated
TMMs, they were not exclusive to a single TMM, nor mu-
tually exclusive to each other. This is consistent with pub-
lished work showing empirically that loss of ATRX can co-
exist with telomere maintenance by telomerase (43), and
that TERT promoter mutations are not enough to cause
activation of telomerase (36). The prevalence of these mu-
tations was also found to be tumour type dependent, and
overall very low (19.5%), consistent with a previous study
of TCGA tumours (26).

ALT cancers are highly correlated with mutations in
ATRX, exemplified by previous studies of cancers of the
central nervous system, GBM, oligodendrogliomas, and
medulloblastomas (17). In our investigation, mutations in
ATRX were not significantly associated with ALT activity
across all tumour types. This can be explained by a low
representation of tumour types with common ATRX mu-
tations in our extensive dataset. Low sample numbers also
precluded conclusions regarding the frequency of ATRX
mutations in particular tumour types, and limited our abil-
ity to elucidate tumour type specific genetic signatures as-
sociated with ALT activation. Our investigations into iden-
tifying novel TMM associated genes only identified MEN1
as significantly over-represented in ALT +ve tumours, but
again, it was not found exclusively in ALT +ve tumours
and its prevalence was tumour type dependent. Overall, this
demonstrates the limited utility of current genetic markers
in TMM classification, due to their low prevalence and tu-
mour type dependence.

Our analysis of pathways under-represented in ALT +ve
tumours revealed three pathways (the autophagy, cell cy-
cle control of chromosomal replication, and transcriptional
regulatory network in embryonic stem cells pathways) that
were found to have almost no mutations in ALT +ve tu-
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mours. Autophagy has been shown to act as a tumour-
suppressor, with deficiencies leading to induction of oxida-
tive stress, DNA damage and chromatin instability through
the accumulation of damaged macromolecules and or-
ganelles (44,45), while also promoting cell survival in es-
tablished cancer cells (46–48). Autophagy may be required
to remove excessive amounts of extrachromosomal telom-
eric repeats (ECTR), which are a common feature of ALT
cells (49). The cell cycle control of chromosomal replication
pathway is responsible for the proper formation and licens-
ing of origins of replication. ALT tumours may be more sen-
sitive to disruption of this pathway as a sufficient number
of replication origins may be required for the repair of col-
lapsed replication forks (50), caused by high levels of repli-
cation stress at ALT telomeres (44). The transcriptional reg-
ulatory network in embryonic stem cells pathway has pre-
viously been associated with tumorigenesis (51); however,
its potential importance to the activation of ALT is unclear.
These pathways will require further functional investigation
to fully elucidate their roles in ALT.

Our investigation into individual tumour types was some-
what restricted by the limited number of samples for which
high quality WGS data were available for each tumour
type, particularly with the prevalence of ALT being an
even smaller subset. Further expansion of these analyses to
encompass larger datasets, including additional validated
datasets, and in combination with clinical outcome data,
will be of future interest.

In conclusion, we have developed a WGS analysis
pipeline to accurately quantitate telomere variant repeats.
We have identified significant differences in telomere vari-
ant repeat composition between ALT +ve and ALT –ve tu-
mours. We have demonstrated that a machine learning ap-
proach can be used to stratify ALT +ve and ALT –ve tu-
mours, using telomere variant repeat content, with an ac-
curacy of 91.6%, and that this classifier can be applied to
large scale cancer datasets to elucidate the molecular mech-
anisms involved in ALT activation. Our approach is a direct
improvement over other approaches, such as classification
based on rel.TC alone or by the use of other genetic mark-
ers, such as loss of ATRX/DAXX and TERT promoter mu-
tations, as it is tumour type independent. Our classifier has
the potential to be applied to much larger datasets to study
the tumour type specific mechanisms involved in ALT ac-
tivation. The potential also exists for this approach to be
applied to datasets retrospectively, in order to study the ef-
ficacy of drug treatments on tumours based on TMM, and
to guide TMM-targeted cancer therapeutics.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors acknowledge Professor Rosemary Balleine,
Cancer Pathology Research Group, CMRI, for the valuable
discussions on cancer disease staging and histological classi-
fications. We acknowledge the support of colleagues at Chil-
dren’s Medical Research Institute, Melanoma Institute Aus-
tralia, Royal Prince Alfred Hospital, NSW Health Pathol-

ogy, Westmead Institute for Medical Research, Peter Mac-
Callum Cancer Centre and Olivia Newton-John Cancer Re-
search Institute. The results published here are in whole or
part based upon data generated by The Cancer Genome At-
las managed by the NCI and NHGRI. Information about
TCGA can be found at http://cancergenome.nih.gov.
Authors Contributions: M.L. generated the synthetic telom-
ere substrate and was involved in all aspects of data analysis.
R.A.D. and L.M.S.L. performed C-circle assays on all tu-
mours samples. E.T.T. performed gene and pathway anal-
yses. C.E.N. was involved in the gene and pathway anal-
yses. O.H., K.N., A.P, N.W., J.V.P. and S.M.G. analysed
whole-genome sequencing data for the pancreatic neuroen-
docrine tumours. O.H., N.W., J.V.P., N.K.H., P.A.J., G.J.M.,
R.A.S. and J.S.W. collected samples and analysed whole-
genome sequencing data for the melanoma tumours. J.H.L.
was involved in collating reports of the prevalence of ALT
across tumour types in the literature. M.L., R.R.R. and
H.A.P. conceived the study. M.L. and H.A.P. wrote the pa-
per. H.A.P. and J.W.A. supervised the study.

FUNDING

Melanoma Institute Australia; Bioplatforms Australia;
New South Wales Ministry of Health; Australian Can-
cer Research Foundation; National Collaborative Research
Infrastructure Strategy; Cancer Council NSW [RG 14-16
and RG 16-09 to H.A.P.]; National Health and Medi-
cal Research Council of Australia [1051897 to H.A.P. and
R.R.R.; 1093017 to G.J.M., N.K.H. and R.A.S.; fellow-
ships to L.M.S.L., N.K.H., N.W., R.A.S. and J.S.W.]; Can-
cer Institute NSW [fellowships to H.A.P. and L.M.S.L.];
Kids Cancer Alliance [top-up scholarships to R.A.D. and
M.L.]; Harry Banks Sutherland Rotary PhD scholarship to
R.A.D.; Australia Postgraduate Award to M.L. Funding for
open access charge: Children’s Medical Research Institute.
Conflict of interest statement. None declared.

REFERENCES
1. Liu,D., O’Connor,M.S., Qin,J. and Songyang,Z. (2004) Telosome, a

mammalian telomere-associated complex formed by multiple
telomeric proteins. J. Biol. Chem, 279, 51338–51342.

2. Allshire,R.C., Dempster,M. and Hastie,N.D. (1989) Human
telomeres contain at least three types of G-rich repeat distributed
non-randomly. Nucleic Acids Res., 17, 4611–4627.

3. Baird,D.M., Jeffreys,A.J. and Royle,N.J. (1995) Mechanisms
underlying telomere repeat turnover, revealed by hypervariable
variant repeat distribution patterns in the human Xp/Yp telomere.
EMBO J., 14, 5433–5443.

4. Baird,D.M., Coleman,J., Rosser,Z.H. and Royle,N.J. (2000) High
levels of sequence polymorphism and linkage disequilibrium at the
telomere of 12q: implications for telomere biology and human
evolution. Am. J. Hum. Genet., 66, 235–250.

5. Kreiter,M., Irion,V., Ward,J. and Morin,G. (1995) The fidelity of
human telomerase. Nucleic Acids Symp. Ser., 33, 137–139.

6. Hiyama,E. and Hiyama,K. (2007) Telomere and telomerase in stem
cells. Br. J. Cancer, 96, 1020–1024.

7. Harley,C.B., Futcher,A.B. and Greider,C.W. (1990) Telomeres
shorten during ageing of human fibroblasts. Nature, 345, 458–460.

8. Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer.
Cell, 100, 57–70.

9. Schmidt,J.C. and Cech,T.R. (2015) Human telomerase: biogenesis,
trafficking, recruitment, and activation. Genes Dev., 29, 1095–1105.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gky297#supplementary-data
http://cancergenome.nih.gov


Nucleic Acids Research, 2018, Vol. 46, No. 10 4917

10. Sobinoff,A.P. and Pickett,H.A. (2017) Alternative lengthening of
telomeres: DNA repair pathways converge. Trends Genet., 33,
921–932.

11. Varley,H., Pickett,H.A., Foxon,J.L., Reddel,R.R. and Royle,N.J.
(2002) Molecular characterization of inter-telomere and
intra-telomere mutations in human ALT cells. Nat. Genet., 30,
301–305.

12. Lee,M., Hills,M., Conomos,D., Stutz,M.D., Dagg,R.A., Lau,L.M.,
Reddel,R.R. and Pickett,H.A. (2014) Telomere extension by
telomerase and ALT generates variant repeats by mechanistically
distinct processes. Nucleic Acids Res., 42, 1733–1736.

13. Heaphy,C.M., Subhawong,A.P., Hong,S.M., Goggins,M.G.,
Montgomery,E.A., Gabrielson,E., Netto,G.J., Epstein,J.I.,
Lotan,T.L., Westra,W.H. et al. (2011) Prevalence of the alternative
lengthening of telomeres telomere maintenance mechanism in human
cancer subtypes. Am. J. Pathol., 179, 1608–1615.

14. Dilley,R.L. and Greenberg,R.A. (2015) ALTernative telomere
maintenance and cancer. Trends Cancer, 1, 145–156.

15. Huang,F.W., Hodis,E., Xu,M.J., Kryukov,G.V., Chin,L. and
Garraway,L.A. (2013) Highly recurrent TERT promoter mutations in
human melanoma. Science, 339, 957–959.

16. Horn,S., Figl,A., Rachakonda,P.S., Fischer,C., Sucker,A., Gast,A.,
Kadel,S., Moll,I., Nagore,E., Hemminki,K. et al. (2013) TERT
promoter mutations in familial and sporadic melanoma. Science, 339,
959–961.

17. Heaphy,C.M., de Wilde,R.F., Jiao,Y., Klein,A.P., Edil,B.H., Shi,C.,
Bettegowda,C., Rodriguez,F.J., Eberhart,C.G., Hebbar,S. et al. (2011)
Altered telomeres in tumors with ATRX and DAXX mutations.
Science, 333, 425.

18. Lovejoy,C.A., Li,W., Reisenweber,S., Thongthip,S., Bruno,J., de
Lange,T., De,S., Petrini,J.H., Sung,P.A., Jasin,M. et al. (2012) Loss of
ATRX, genome instability, and an altered DNA damage response are
hallmarks of the Alternative Lengthening of Telomeres pathway.
PLoS Genet., 8, e1002772.

19. Kim,J.Y., Brosnan-Cashman,J.A., An,S., Kim,S.J., Song,K.B.,
Kim,M.S., Kim,M.J., Hwang,D.W., Meeker,A.K., Yu,E. et al. (2017)
Alternative lengthening of telomeres in primary pancreatic
neuroendocrine tumors is associated with aggressive clinical behavior
and poor survival. Clin. Cancer Res., 23, 1598–1606.

20. Wiestler,B., Capper,D., Holland-Letz,T., Korshunov,A., von
Deimling,A., Pfister,S.M., Platten,M., Weller,M. and Wick,W. (2013)
ATRX loss refines the classification of anaplastic gliomas and
identifies a subgroup of IDH mutant astrocytic tumors with better
prognosis. Acta Neuropathol., 126, 443–451.

21. Hayward,N.K., Wilmott,J.S., Waddell,N., Johansson,P.A.,
Field,M.A., Nones,K., Patch,A.M., Kakavand,H., Alexandrov,L.B.,
Burke,H. et al. (2017) Whole-genome landscapes of major melanoma
subtypes. Nature, 545, 175–180.

22. Weinstein,J.N., Collisson,E.A., Mills,G.B., Shaw,K.R.,
Ozenberger,B.A., Ellrott,K., Shmulevich,I., Sander,C. and
Stuart,J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis
project. Nat. Genet., 45, 1113–1120.

23. Hudson,T.J., Anderson,W., Artez,A., Barker,A.D., Bell,C.,
Bernabe,R.R., Bhan,M.K., Calvo,F., Eerola,I., Gerhard,D.S. et al.
(2010) International network of cancer genome projects. Nature, 464,
993–998.

24. Lee,M., Napier,C.E., Yang,S.F., Arthur,J.W., Reddel,R.R. and
Pickett,H.A. (2017) Comparative analysis of whole genome
sequencing-based telomere length measurement techniques. Methods,
114, 4–15.

25. Scarpa,A., Chang,D.K., Nones,K., Corbo,V., Patch,A.M., Bailey,P.,
Lawlor,R.T., Johns,A.L., Miller,D.K., Mafficini,A. et al. (2017)
Whole-genome landscape of pancreatic neuroendocrine tumours.
Nature, 543, 65–71.

26. Barthel,F.P., Wei,W., Tang,M., Martinez-Ledesma,E., Hu,X.,
Amin,S.B., Akdemir,K.C., Seth,S., Song,X., Wang,Q. et al. (2017)
Systematic analysis of telomere length and somatic alterations in 31
cancer types. Nat. Genet., 49, 349–357.

27. Lau,L.M., Dagg,R.A., Henson,J.D., Au,A.Y., Royds,J.A. and
Reddel,R.R. (2013) Detection of alternative lengthening of telomeres
by telomere quantitative PCR. Nucleic Acids Res., 41, e34.

28. Yates,A., Akanni,W., Amode,M.R., Barrell,D., Billis,K.,
Carvalho-Silva,D., Cummins,C., Clapham,P., Fitzgerald,S., Gil,L.
et al. (2016) Ensembl 2016. Nucleic Acids Res., 44, D710–D716.

29. Henson,J.D., Cao,Y., Huschtscha,L.I., Chang,A.C., Au,A.Y.,
Pickett,H.A. and Reddel,R.R. (2009) DNA C-circles are specific and
quantifiable markers of alternative-lengthening-of-telomeres activity.
Nat. Biotechnol., 27, 1181–1185.

30. Sobinoff,A.P., Allen,J.A., Neumann,A.A., Yang,S.F., Walsh,M.E.,
Henson,J.D., Reddel,R.R. and Pickett,H.A. (2017) BLM and SLX4
play opposing roles in recombination-dependent replication at human
telomeres. EMBO J., 36, 2907–2919.

31. Dagg,R.A., Pickett,H.A., Neumann,A.A., Napier,C.E., Henson,J.D.,
Teber,E.T., Arthur,J.W., Reynolds,C.P., Murray,J., Haber,M. et al.
(2017) Extensive proliferation of human cancer cells with ever-shorter
telomeres. Cell Rep., 19, 2544–2556.

32. Viceconte,N., Dheur,M.S., Majerova,E., Pierreux,C.E., Baurain,J.F.,
van Baren,N. and Decottignies,A. (2017) Highly aggressive metastatic
melanoma cells unable to maintain telomere length. Cell Rep., 19,
2529–2543.

33. Henson,J.D., Hannay,J.A., McCarthy,S.W., Royds,J.A., Yeager,T.R.,
Robinson,R.A., Wharton,S.B., Jellinek,D.A., Arbuckle,S.M., Yoo,J.
et al. (2005) A robust assay for alternative lengthening of telomeres in
tumors shows the significance of alternative lengthening of telomeres
in sarcomas and astrocytomas. Clin. Cancer Res., 11, 217–225.

34. Bell,R.J., Rube,H.T., Kreig,A., Mancini,A., Fouse,S.D.,
Nagarajan,R.P., Choi,S., Hong,C., He,D., Pekmezci,M. et al. (2015)
Cancer. The transcription factor GABP selectively binds and activates
the mutant TERT promoter in cancer. Science, 348, 1036–1039.

35. Vinagre,J., Almeida,A., Populo,H., Batista,R., Lyra,J., Pinto,V.,
Coelho,R., Celestino,R., Prazeres,H., Lima,L. et al. (2013)
Frequency of TERT promoter mutations in human cancers. Nature
Commun., 4, 2185.

36. Chiba,K., Lorbeer,F.K., Shain,A.H., McSwiggen,D.T., Schruf,E.,
Oh,A., Ryu,J., Darzacq,X., Bastian,B.C. and Hockemeyer,D. (2017)
Mutations in the promoter of the telomerase gene TERT contribute
to tumorigenesis by a two-step mechanism. Science, 357, 1416–1420.

37. McDonald,K.L., McDonnell,J., Muntoni,A., Henson,J.D.,
Hegi,M.E., von Deimling,A., Wheeler,H.R., Cook,R.J., Biggs,M.T.,
Little,N.S. et al. (2010) Presence of alternative lengthening of
telomeres mechanism in patients with glioblastoma identifies a less
aggressive tumor type with longer survival. J. Neuropathol. Exp.
Neurol., 69, 729–736.

38. Hakin-Smith,V., Jellinek,D.A., Levy,D., Carroll,T., Teo,M.,
Timperley,W.R., McKay,M.J., Reddel,R.R. and Royds,J.A. (2003)
Alternative lengthening of telomeres and survival in patients with
glioblastoma multiforme. Lancet North Am. Ed., 361, 836–838.

39. Killela,P.J., Reitman,Z.J., Jiao,Y., Bettegowda,C., Agrawal,N.,
Diaz,L.A. Jr, Friedman,A.H., Friedman,H., Gallia,G.L.,
Giovanella,B.C. et al. (2013) TERT promoter mutations occur
frequently in gliomas and a subset of tumors derived from cells with
low rates of self-renewal. Proc. Natl. Acad. Sci. U.S.A, 110,
6021–6026.

40. Heidenreich,B., Rachakonda,P.S., Hemminki,K. and Kumar,R.
(2014) TERT promoter mutations in cancer development. Curr. Opin.
Genet. Dev., 24, 30–7.

41. Rachakonda,P.S., Hosen,I., de Verdier,P.J., Fallah,M.,
Heidenreich,B., Ryk,C., Wiklund,N.P., Steineck,G., Schadendorf,D.,
Hemminki,K. et al. (2013) TERT promoter mutations in bladder
cancer affect patient survival and disease recurrence through
modification by a common polymorphism. Proc. Natl. Acad. Sci.
U.S.A., 110, 17426–17431.

42. Borah,S., Xi,L., Zaug,A.J., Powell,N.M., Dancik,G.M., Cohen,S.B.,
Costello,J.C., Theodorescu,D., Cech,T.R. et al. (2015) TERT
promoter mutations and telomerase reactivation in urothelial cancer.
Science, 347, 1006–1010.

43. Napier,C.E., Huschtscha,L.I., Harvey,A., Bower,K., Noble,J.R.,
Hendrickson,E.A. and Reddel,R.R. (2015) ATRX represses
alternative lengthening of telomeres. Oncotarget, 6, 16543–16558.

44. Min,J., Wright,W.E. and Shay,J.W. (2017) Alternative lengthening of
telomeres mediated by mitotic DNA synthesis engages
Break-Induced replication processes. Mol. Cell. Biol., 37, e00226-17.

45. Chen,N. and Karantza,V. (2014) Autophagy as a therapeutic target in
cancer. Cancer Biol. Ther., 11, 157–168.

46. Rosenfeldt,M.T. and Ryan,K.M. (2009) The role of autophagy in
tumour development and cancer therapy. Expert Rev. Mol. Med., 11,
e36.



4918 Nucleic Acids Research, 2018, Vol. 46, No. 10

47. Jones,R.G. and Thompson,C.B. (2009) Tumor suppressors and cell
metabolism: a recipe for cancer growth. Genes Dev., 23, 537–548.

48. Degenhardt,K., Mathew,R., Beaudoin,B., Bray,K., Anderson,D.,
Chen,G., Mukherjee,C., Shi,Y., Gelinas,C., Fan,Y. et al. (2006)
Autophagy promotes tumor cell survival and restricts necrosis,
inflammation, and tumorigenesis. Cancer Cell, 10, 51–64.

49. Lan,Y.Y., Londono,D., Bouley,R., Rooney,M.S. and Hacohen,N.
(2014) Dnase2a deficiency uncovers lysosomal clearance of damaged
nuclear DNA via autophagy. Cell Rep., 9, 180–192.

50. Petermann,E., Orta,M.L., Issaeva,N., Schultz,N. and Helleday,T.
(2010) Hydroxyurea-stalled replication forks become progressively
inactivated and require two different RAD51-mediated pathways for
restart and repair. Mol. Cell, 37, 492–502.

51. Liu,A., Yu,X. and Liu,S. (2013) Pluripotency transcription factors
and cancer stem cells: small genes make a big difference. Chin. J.
Cancer, 32, 483–487.


