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Introduction

Atherosclerotic cardiovascular disease (ASCVD) starts early, even in
childhood.1,2 Non-invasive imaging in the PESA (Progression of Early
Subclinical Atherosclerosis) study revealed that 71% and 43% of
middle-aged men and women, respectively, have evidence of subclin-
ical atherosclerosis.3 Extensive evidence from epidemiologic, genetic,
and clinical intervention studies has indisputably shown that low-
density lipoprotein (LDL) is causal in this process, as summarized in
the first Consensus Statement on this topic.4 What are the key bio-
logical mechanisms, however, that underlie the central role of LDL in
the complex pathophysiology of ASCVD, a chronic and multifaceted
lifelong disease process, ultimately culminating in an atherothrom-
botic event?

This second Consensus Statement on LDL causality discusses the
established and newly emerging biology of ASCVD at the molecular,
cellular, and tissue levels, with emphasis on integration of the central
pathophysiological mechanisms. Key components of this integrative
approach include consideration of factors that modulate the athero-
genicity of LDL at the arterial wall and downstream effects exerted
by LDL particles on the atherogenic process within arterial tissue.

Although LDL is unequivocally recognized as the principal
driving force in the development of ASCVD and its major clinic-
al sequelae,4,5 evidence for the causal role of other apolipopro-
tein B (apoB)-containing lipoproteins in ASCVD is emerging.
Detailed consideration of the diverse mechanisms by which
these lipoproteins, including triglyceride (TG)-rich lipoproteins
(TGRL) and their remnants [often referred to as intermediate-
density lipoproteins (IDL)], and lipoprotein(a) [Lp(a)], contribute
not only to the underlying pathophysiology of ASCVD but also
potentially to atherothrombotic events, is however beyond the
focus of this appraisal.6–14

The pathophysiological and genetic components of ASCVD are
not fully understood. We have incomplete understanding, for ex-
ample, of factors controlling the intimal penetration and retention
of LDL, and the subsequent immuno-inflammatory responses of
the arterial wall to the deposition and modification of LDL. Disease
progression is also affected by genetic and epigenetic factors influ-
encing the susceptibility of the arterial wall to plaque formation
and progression. Recent data indicate that these diverse patho-
physiological aspects are key to facilitating superior risk stratifica-
tion of patients and optimizing intervention to prevent
atherosclerosis progression. Moreover, beyond atherosclerosis
progression are questions relating to mechanisms of plaque regres-
sion and stabilization induced following marked LDL-cholesterol
(LDL-C) reduction by lipid-lowering agents.15–19 Finally, the poten-
tial implication of high-density lipoprotein (HDL) and its principal
protein, apoAI, as a potential modulator of LDL atherogenicity
remains unresolved.20 It was, therefore, incumbent on this
Consensus Panel to identify and highlight the missing pieces of this
complex puzzle as target areas for future clinical and basic

research, and potentially for the development of innovative thera-
peutics to decrease the burgeoning clinical burden of ASCVD.

Trancytosis of low-density
lipoprotein across the
endothelium

Apolipoprotein B-containing lipoproteins of up to �70 nm in diam-
eter [i.e. chylomicron remnants, very low-density lipoproteins
(VLDL) and VLDL remnants, IDL, LDL, and Lp(a)] can cross the endo-
thelium (Figure 1).21–29 Low-density lipoprotein, as the most abundant
atherogenic lipoprotein in plasma, is the key deliverer of cholesterol
to the artery wall. Many risk factors modulate the propensity of LDL
and other atherogenic lipoproteins to traverse the endothelium and
enter the arterial intima.30 Despite the relevance of LDL endothelial
transport during atherogenesis, however, the molecular mechanisms
controlling this process are still not fully understood.31

A considerable body of evidence in recent years32 has chal-
lenged the concept that movement of LDL occurs by passive filtra-
tion (i.e. as a function of particle size and concentration) across a
compromised endothelium of high permeability.33 Studies have
demonstrated that LDL transcytosis occurs through a vesicular
pathway, involving caveolae,34–36 scavenger receptor B1 (SR-B1),37

activin receptor-like kinase 1 (ALK1),38 and the LDL receptor.32

However, although the LDL receptor appears to mediate LDL
transcytosis across the blood–brain barrier,39 proprotein conver-
tase subtilisin/kexin type 9 (PCSK9)-directed degradation of the
LDL receptor has no effect on LDL transcytosis40; thus, LDL trans-
port across the endothelium in the systemic circulation seems to
be LDL receptor-independent.32 Indeed, new evidence shows that
LDL transcytosis across endothelial cell monolayers requires inter-
action of SR-B1 with a cytoplasmic protein.40 More specifically,
LDL induces a marked increase in the coupling of SR-B1 (through
an eight-amino-acid cytoplasmic tail domain) to the guanine nu-
cleotide exchange factor dedicator of cytokinesis 4 (DOCK4);
both SR-B1 and DOCK4 are required for LDL transport.41

Interestingly, expression of SR-B1 and DOCK4 is higher in human
atherosclerotic arteries than in normal arteries.41

Oestrogens significantly inhibit LDL transcytosis by down-regu-
lating endothelial SR-BI.42 This down-regulation is dependent on
the G-protein-coupled oestrogen receptor and explains why
physiological levels of oestrogen reduce LDL transcytosis in arter-
ial endothelial cells of male but not female origin. These findings
offer one explanation for why women have a lower risk than men
of ASCVD before but not after the menopause.43,44 Transcytosis
of LDL across endothelial cells can also be increased, for example,
by activation of the NOD-like receptor containing domain pyrin 3
(NLRP3) inflammasome,45 the multiprotein cytosolic complex that
activates expression of the interleukin-1 (IL-1) family of cytokines,
or by hyperglycaemia.46 In contrast, rapid correction of

2314 J. Borén et al.
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..hypercholesterolaemia in mice improved the endothelial barrier to
LDL.47 The mechanisms that underlie increased rates of LDL trans-
cytosis during hypercholesterolaemia remain unclear; improved
understanding offers potential for therapies targeting early events
in atherosclerosis.48

Factors affecting retention of
low-density lipoprotein in the
artery wall

Subendothelial accumulation of LDL at lesion-susceptible arterial sites
is mainly due to selective retention of LDL in the intima, and is medi-
ated by interaction of specific positively charged amino acyl residues
(arginine and lysine) in apoB100 with negatively charged sulfate and
carboxylic acid groups of arterial wall proteoglycans.49 Genetic alter-
ation of either the proteoglycan-binding domain of apoB100 or the
apoB100-binding domain of arterial wall proteoglycans greatly reduces
atherogenesis.49,50 Thus, the atherogenicity of LDL is linked to the abil-
ity of its apoB100 moiety to interact with arterial wall proteogly-
cans,50,51 a process influenced by compositional changes in both the
core and surface of the LDL particle. For example, enrichment of
human LDL with cholesteryl oleate enhances proteoglycan-binding
and atherogenesis.52 In addition, apoE, apoC-III, and serum amyloid A
increase the affinity of LDL for arterial wall proteoglycans.49 ,53–55

Autopsy studies in young individuals demonstrated that
atherosclerosis-prone arteries develop intimal hyperplasia, a

thickening of the intimal layer due to accumulation of smooth muscle
cells (SMCs) and proteoglycans.56,57 In contrast, atherosclerosis-
resistant arteries form minimal to no intimal hyperplasia.57–59 Surgical
induction of disturbed laminar flow in the atherosclerosis-resistant
common carotid artery of mice has been shown to cause matrix pro-
liferation and lipoprotein retention,60 indicating that hyperplasia is
critical to the sequence of events leading to plaque formation.

Although the propensity to develop atherosclerosis varies mark-
edly across different sites in the human vasculature, it is notable at
branches and bifurcations where the endothelium is exposed to dis-
turbed laminar blood flow and low or fluctuating shear stress.61

These mechanical forces may modulate gene and protein expression
and induce endothelial dysfunction and intimal hyperplasia.
Formation of atherosclerotic lesions in vessels exhibiting intimal
hyperplasia also occurs following surgical intervention, as exemplified
by vascular changes following coronary artery bypass surgery.62

A number of the genetic variants strongly associated with ASCVD in
genome-wide association studies (GWAS) occur in genes that en-
code arterial wall proteins, which either regulate susceptibility to
LDL retention or the arterial response to LDL accumulation.63 This
topic is discussed in more detail below.

Low-density lipoprotein particle
heterogeneity

Low-density lipoprotein particles are pseudomicellar, quasi-spherical,
and plurimolecular complexes. The lipidome accounts for �80% by

Figure 1 Low-density lipoprotein (LDL) as the primary driver of atherogenesis. Key features of the influx and retention of LDL in the arterial in-
tima, with ensuing pathways of modification leading to (i) extracellular cholesterol accumulation and (ii) formation of cholesteryl ester droplet-
engorged macrophage foam cells with transformation to an inflammatory and prothrombotic phenotype. Both of these major pathways favour for-
mation of the plaque necrotic core containing cellular and extracellular debris and LDL-cholesterol-derived cholesterol crystals. CE, cholesteryl
ester; DAMPs, damage-associated molecular patterns; ECM, extracellular matrix; FC, free cholesterol; GAG, glycosaminoglycans; PG, proteoglycans;
ROS, reactive oxygen species.

Pathophysiological role of LDL in atherosclerosis 2315
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weight and involves >300 distinct molecular species of lipids (Meikle
and Chapman, unpublished observations), whereas the proteome is
dominated by apoB100 (one molecule per LDL particle).64–66

ApoB100, one of the largest mammalian proteins (�550 kDa), main-
tains the structural integrity of particles in the VLDL-LDL spectrum
and, in contrast to smaller apolipoproteins, remains with the lipopro-
tein particle throughout its life cycle.

At circulating particle concentrations of �1 mmol/L, LDL is the
principal carrier of cholesterol (2000–2700 molecules per particle, of
which �1700 are in esterified form) in human plasma. Low-density
lipoprotein is also the major carrier of vitamin E, carotenoids, and
ubiquinol, but a minor carrier of small, non-coding RNAs compared
with HDL, although the proatherogenic microRNA miR-155 is abun-
dant in LDL.66–68

Low-density lipoprotein comprises a spectrum of multiple discrete
particle subclasses with different physicochemical, metabolic, and
functional characteristics (Box 1).64,66,67,69–84,90–98 In people with
normal lipid levels, three major subclasses are typically recognized:
large, buoyant LDL-I (density 1.019–1.023 g/mL), LDL-II of intermedi-
ate size and density (density 1.023–1.034 g/mL), small dense LDL-III
(density 1.034–1.044 g/mL); and a fourth subfraction of very small
dense LDL-IV (density 1.044–1.063 g/mL) is present in individuals
with elevated TG levels 64,75,81,90,99 Low-density lipoprotein-choles-
terol measured routinely in the clinical chemistry laboratory is the
sum of cholesterol in these subclasses and in IDL and Lp(a).100,101

Factors affecting the low-density
lipoprotein subfraction profile

Very low-density lipoprotein-TG levels are a major determinant of
the LDL subfraction profile. As plasma TG levels rise, the profile shifts
from a predominance of large particles to small dense LDL.64,66,74,77–

79,90,99 Sex is also a key factor; men are more likely to produce
small dense LDL than women at a given TG level, with the underlying
mechanism attributed to higher hepatic lipase activity.74,79,90 In
metabolic models explaining the generation of small LDL species
(LDL-III and LDL-IV), cholesteryl ester transfer protein (CETP)-medi-
ated transfer of TG molecules from VLDL (and potentially chylomi-
crons) to the core of LDL particles in exchange for cholesteryl esters
is a critical step.102 The LDL particle may be subsequently lipolyzed
by hepatic lipase to remove both TG from the core and phospholipid
from the surface, thereby producing a new, stable but smaller and
denser particle.64,74,75,79

Plasma TG levels in the fasting state are regulated by VLDL pro-
duction in the liver, residual intestinal production of apoB48-
containing VLDL-sized particles,103 the activities of lipoprotein and
hepatic lipases, and the rate of particle clearance by receptor-
mediated uptake. The liver can produce a range of particles varying in
size from large VLDL1, medium-sized VLDL2, to LDL, depending on
hepatic TG availability.92 The rate of VLDL production is also influ-
enced by metabolic factors, such as insulin resistance, and lipolysis
and clearance of VLDL are markedly affected by apoC-III and
angiopoietin-like 3 (ANGPTL3) content and lipase activities.91,94 The
LDL subclass profile is principally determined by the nature of the
secreted VLDL particles, their circulating concentrations, the activ-
ities of lipases and neutral lipid transfer proteins including CETP,

tissue LDL receptor activity, and the affinity of LDL particles to bind
to the receptor, which is, in turn, a function of the conformation of
apoB100 within the particle.69,104,105 These factors are critical deter-
minants of the amount and overall distribution of LDL particle sub-
classes, as well as their lipidomic profile and lipid load.64 ,69,70 ,74,75

Individuals with plasma TG in the range 0.85–1.7 mmol/L (75–
150 mg/dL) release VLDL1 and VLDL2 from the liver,91,93 which are
delipidated rapidly to IDL and then principally to LDL of medium
size;64,66,99 thus, the LDL profile is dominated by LDL-II (Figure 2A).
In contrast, people with low plasma TG levels (<0.85 mmoL/L or
75 mg/dL) have highly active lipolysis and generally low hepatic TG
content. Consequently, hepatic VLDL tend to be smaller and
indeed some IDL/LDL-sized particles are directly released from the
liver.74–76 The LDL profile displays a higher proportion of larger
LDL-I (Figure 2B) and is associated with a healthy state (as in young
women). However, this pattern is also seen with familial hypercholes-
terolaemia (FH), in which LDL levels are high77,99 because of over-
production of small VLDL and reduced LDL clearance due to low
receptor numbers.76 Finally, formation of small dense LDL is fav-
oured when plasma TG levels exceed 1.7 mmol/L (150 mg/dL),79,80

and especially at levels >2.23 mmol/L (200 mg/dL) due to VLDL over-
production (as in insulin-resistant states, such as Type 2 diabetes and
metabolic syndrome), and potentially when lipolysis is defective due
to high apoC-III content [which inhibits lipoprotein lipase (LPL) action
and possibly VLDL particle clearance].78,95 An LDL subfraction pro-
file in which small particles predominate (Figure 2C) is part of an
atherogenic dyslipidaemia in which remnant lipoproteins are also
abundant. As particle size decreases and the conformation of

Box 1 Differences in physicochemical, metabolic,
and functional characteristics between the mark-
edly heterogenous low-density lipoprotein
subclasses

• Particle diameter, molecular weight, hydrated density, net
surface charge, % weight lipid and protein composition (CE,
FC, TG, PL, and PRN), and N-linked glycosylation of
apoB100.

• Particle origin (liver and intravascular remodelling from pre-
cursor particles).

• Residence time in plasma (turnover half-life).
• Relative binding affinity for the cellular LDL receptor.
• Conformational differences in apoB100.
• Relative susceptibility to oxidative modification under oxi-

dative stress (e.g. conjugated diene and LOOH formation).
• Relative binding affinity for arterial wall matrix proteogly-

cans and thus potential for arterial retention.
• Relative content of minor apolipoproteins, including apoC-

III and apoE.
• Relative content of lipoprotein-associated phospholipase

A2.
• Relative acceptor activities for neutral lipid transfer/ex-

change (CE and TG) mediated by CETP.
References: 64,66,67,69–89

apo, apolipoprotein; CE, cholesteryl ester; CETP, cholesteryl
ester transfer protein; FC, free cholesterol; LOOH, lipid
hydroperoxide; PL, phospholipid; PRN, protein; TG,
triglyceride.

2316 J. Borén et al.



Figure 2 Model of the metabolic interrelationships between low-density lipoprotein (LDL) subfractions and their hepatic precursors. The liver
produces apolipoprotein (apo)B100-containing particles ranging in size from large triglyceride (TG)-rich very low-density lipoprotein (VLDL) 1,
through small VLDL2 and intermediate-density lipoprotein (IDL) to LDL.74 The hepatic TG content (TG pool) affects the profile of the secreted par-
ticles.99 Secreted VLDL undergoes lipolysis and remodelling to form remnants/IDL; LDL is then formed via the actions of lipoprotein lipase (LPL),
hepatic lipase (HL), and cholesteryl ester transfer protein (CETP). (A) In people with population average TG levels, about half the lipolytic remnants
(which correspond to IDL based on density and size) in this pathway are cleared relatively efficiently and the remainder are converted mainly to
LDL-II, which has higher LDL receptor affinity and shorter residence time than the LDL arising from VLDL1.74,79,82,83 The composition of IDL-derived
LDL is modulated both by CETP-mediated transfer of cholesteryl esters (CE) from high-density lipoprotein (HDL) and by CETP-mediated transfer
of TG from VLDL and their remnants.102,106 (B) In individuals with low plasma TG, LDL-I and -II predominate. Clearance of these lipoproteins is rapid
and LDL-cholesterol (LDL-C) and apoB concentrations are low. (C) Individuals with elevated plasma TG levels overproduce VLDL1 and have
reduced lipolysis rates due in part to inhibition of LPL activity by their abundant content of apoC-III, an LPL inhibitor. Very low-density lipoprotein 1
remodelling gives rise to remnants within the VLDL size range that are enriched in apoE; such circulating remnants can be removed by several mecha-
nisms, primarily in the liver, including the LDL receptor-related protein, heparan sulfate proteoglycans, and LDL receptor.107–109 Hepatic clearance
of VLDL1-derived remnant particles may, however, be slowed by enrichment with apoC-III.78 Very low-density lipoprotein 1 and VLDL2 are targeted
by CETP, which exchanges core CE in LDL for TG in both VLDL1 and VLDL2. Hydrolysis of TG by HL action then shrinks LDL particles to preferen-
tially form small, dense LDL-III in moderate hypertriglyceridaemia, or even smaller LDL-IV in severe hypertriglyceridaemia; such small dense LDL
exhibit attenuated binding affinity for the LDL receptor, resulting in prolonged plasma residence (Box 2). Together, this constellation
of lipoprotein changes, originating in increased levels of large VLDL1 and small dense LDL, represents a lipid phenotype designated atherogenic dysli-
pidaemia,6–8,74,75,79–81,110 a key feature of metabolic syndrome and Type 2 diabetes.6–8,78–80 Typical LDL subfraction patterns are indicated together
with relevant plasma lipid and apoB levels. Note that when small dense LDL is abundant, apoB is elevated more than LDL-C. The width of the red
arrows reflects the quantity of apoB/particle production and release from the liver, while the width of the blue arrows depicts relative lipolytic
efficiency.
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apoB100 is altered, LDL receptor binding affinity is attenuated, result-
ing in a prolonged residence time in plasma (Box 2).64,78–80

Low-density lipoprotein as the
primary driver of atherogenesis

All LDL particles exert atherogenicity to variable degrees, which can
be influenced by the proteome, lipidome, proteoglycan binding,
aggregability, and oxidative susceptibility.64,96,97 The atherogenic
actions of LDL in arterial tissue have multiple origins. Broadly, these
encompass:

(1) Formation of macrophage-derived foam cells upon phagocytic up-
take of aggregated LDL particles, or LDL in which lipid and/or pro-
tein components have undergone covalent modification, triggering
uptake by scavenger receptors. Aggregation may occur by non-
enzymatic or enzymatically induced mechanisms. Oxidation of lipids
(phospholipids, cholesteryl esters, and cholesterol) or apoB100 can
occur enzymatically (e.g. by myeloperoxidase) or non-enzymatically
(e.g. by reactive oxygen species liberated by activated endothelial
cells or macrophages).

(2) Release of bioactive proinflammatory lipids (e.g. oxidized phospholi-
pids) or their fragments (e.g. short-chain aldehydes) subsequent to
oxidation, which may exert both local and systemic actions.

(3) Formation of extracellular lipid deposits, notably cholesterol crys-
tals, upon particle denaturation.

(4) Induction of an innate immune response, involving damage-
associated molecular patterns (DAMPs, notably oxidation-specific
epitopes and cholesterol crystals). Damage-associated molecular
patterns promote recruitment of immuno-inflammatory cells
(monocyte-macrophages, neutrophils, lymphocytes, and dendritic
cells) leading to local and potentially chronic inflammation that can
induce cell death by apoptosis or necrosis, thereby contributing to
necrotic core formation.

(5) Induction of an adaptive immune response subsequent to covalent
modification of apoB100 by aldehydes or apoB100 degradation
with the activation of antigen-specific T-cell responses and anti-
bodies.114–118

Beyond LDL, additional apoB-containing lipoproteins (<70 nm
diameter) can exacerbate the atherogenic process; these include
Lp(a) (which is composed of apo(a) covalently linked to the apoB
of LDL and is a major carrier of proinflammatory oxidized phos-
pholipids) and cholesterol-enriched remnant particles metabolic-
ally derived from TGRL.6,7,11,13,26,119 Whereas the classic TG-
poor LDL requires modification for efficient uptake by arterial
macrophages, remnant particles are taken up by members of the
LDL receptor family in their native state.107,120 There is also evi-
dence that LPL-mediated hydrolysis of TG from incoming rem-
nant particles enhances the inflammatory response of arterial
macrophages, 121,122 and that the internalization of remnants indu-
ces lysosomal engorgement and altered trafficking of lipoprotein
cholesterol within the cell, 123 thus inducing endoplasmic reticu-
lum stress and activation of apoptosis disproportionate to the
cholesterol cargo delivered.

Low-density lipoprotein
subfraction profile affects
atherogenicity

Under defined cardiometabolic conditions, a specific LDL subclass
may become more prominent as the driver of atherogenesis. Several
biological properties of small dense LDL could confer heightened
coronary heart disease (CHD) risk (Box 2). Certainly, small dense
LDL appears to enter the arterial intima faster than larger LDL.111

However, the significant metabolic inter-relationships of small dense
LDL with abnormalities of other atherogenic apoB-containing lipo-
proteins, particularly increased concentrations of VLDL and remnant
lipoproteins, have created challenges in assessing the independent
contributions of small dense LDL to CHD.81 Nevertheless, in several
recent large prospective cohort studies,98,124,125 and the placebo
group of a large statin trial,126 concentrations of small dense LDL but
not large LDL predicted incident CHD independent of LDL-C. The
heterogenous proteomic and lipidomic profiles of LDL particles may
also affect their pathophysiologic activity. For example, small dense
LDL is preferentially enriched in apoC-III and glycated apoB relative
to larger LDL.85,112 Additionally, the small dense LDL subclass
includes an electronegative LDL species associated with endothelial
dysfunction.113 Moreover, the unsaturated cholesteryl esters in the
lipidome of small dense LDL are markedly susceptible to hydroper-
oxide formation under oxidative stress.73

Low-density lipoprotein particle profiles may also reflect specific
genetic influences on LDL metabolism that concomitantly influence
CHD risk.98 A notable example is a common non-coding DNA vari-
ant at a locus on chromosome 1p13 that regulates hepatic expres-
sion of sortilin, as well as other proteins, 127 and is strongly associated
with both LDL-C levels and incident myocardial infarction.128 The
major risk allele at this locus is preferentially associated with
increased levels of small dense LDL, 127 but the mechanistic basis for
this association is unknown.

The residence time of LDL in the circulation may be the critical
factor in the relationship between plasma LDL subclass level and
atherosclerosis risk, as it determines both exposure of arterial
tissue to LDL particles and the potential of LDL to undergo

Box 2 The distinct biological features of small
dense low-density lipoprotein

• Prolonged plasma residence time reflecting low LDL recep-
tor binding affinity.

• Increased affinity for LDL receptor-independent cell surface
binding sites.

• Small particle size favouring enhanced arterial wall
penetration.

• Elevated binding affinity for arterial wall proteoglycans
favouring enhanced arterial retention.

• Elevated susceptibility of PL and CE components to oxida-
tive modification, with formation of lipid hydroperoxides.

• Elevated susceptibility to glycation.
• Enrichment in electronegative LDL.
• Preferential enrichment in lipoprotein-associated phospho-

lipase A2.
• Preferential enrichment in apoC-III.
References: 54,55,64,66,69–75,78,79,81–85,105,111–113

apo, apolipoprotein; CE, cholesteryl ester; PL, phospholipid.
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proatherogenic intravascular modifications, such as oxidation.
Increased plasma residence time can result from deficiency or dys-
function of LDL receptors, as in FH, or from structural or com-
positional features of LDL particles that impair their binding
affinity for LDL receptors, as for small dense LDL.82,83 Indeed,
there is evidence of a lower fractional catabolic rate and longer
plasma residence time for small dense LDL than for larger LDL in
combined hyperlipidaemia.84

Responses elicited by low-density
lipoprotein retained in the artery
wall

Retention and subsequent accumulation of LDL in the artery wall
triggers a number of events that initiate and propagate lesion devel-
opment.21, 50 Due to the local microenvironment of the subendothe-
lial matrix, LDL particles are susceptible to oxidation by both
enzymatic and non-enzymatic mechanisms, which leads to the gener-
ation of oxidized LDL (oxLDL) containing several bioactive mole-
cules including oxidized phospholipids.129,130 Oxidized LDL, in turn,
initiates a sterile inflammatory response by activating endothelial cells
to up-regulate adhesion molecules and chemokines that trigger the
recruitment of monocytes—typically inflammatory Ly6Chi mono-
cytes—into the artery wall.131 The importance of oxidized phospho-
lipids in the inflammatory response of the vascular wall has been
demonstrated through the transgenic expression of an oxidized
phospholipid-neutralizing single-chain antibody, which protected
atherosclerosis-prone mice against lesion formation.132 Newly
recruited monocytes differentiate into macrophages that can further
promote the oxidation of LDL particles, which are then recognized
and internalized by specific scavenger receptors giving rise to
cholesterol-laden foam cells.133 Several other modifications of
retained LDL, including enzymatic degradation or aggregation, have
also been shown to promote its uptake by macrophages.
Macropinocytosis of native LDL may also contribute to this
process.134,135

Macrophages exhibiting different phenotypes, ranging from
classical inflammatory subtypes to alternatively activated anti-
inflammatory macrophages, have been identified in atherosclerot-
ic lesions.136,137 Macrophage polarization appears to depend on
the microenvironment, where different pro- and anti-
inflammatory inducers are present together with complex lipids,
senescent cells, and hypoxia.137 Thus, macrophage behaviour is a
dynamic process adapting to the microenvironment, thereby
allowing macrophage subsets to participate in almost every stage
of atherosclerosis.138

Several DAMPs, generated by modification of retained LDL, induce
the expression of pro-inflammatory and pro-thrombotic genes in
macrophages by engaging pattern recognition receptors, such as toll-
like receptors (TLRs). In particular, recognition of oxLDL by a com-
bination of TLR4-TLR6 and the scavenger receptor CD36 triggers
NFjB-dependent expression of chemokines, such as CXCL1, result-
ing in further recruitment of monocytes.139 Such leucocyte recruit-
ment is tightly controlled in a stage-specific manner by a diverse
range of chemokines and their receptors.140 At later stages of plaque

development, the pool of intimal macrophages is largely maintained
by self-renewal, which increases the burden of foam cells in the pla-
que. Moreover, SMCs may take up cholesterol-rich lipoproteins to
become macrophage-like cells that contribute to the number of foam
cells in advanced lesions.141

An important consequence of lipid loading of macrophages is
the formation of cholesterol crystals, which activate an intracellu-
lar complex, the NLRP3 inflammasome, to promote local produc-
tion of IL-1b and IL-18.142–144 The persistent presence of lipid-
derived DAMPs in the artery wall, together with continuous ex-
pression of inflammatory cytokines and recruitment of phagocytes
(whose role is to remove the triggers of inflammation), sustains
this inflammatory response. It also facilitates an active cross-talk
with several other arterial cells, including mast cells, which in turn
become activated and contribute to plaque progression by releas-
ing specific mediators.145

The recruitment of myeloid cells is also accompanied by the in-
filtration of both CD4þ and CD8þ T cells that display signs of ac-
tivation and may interact with other vascular cells presenting
molecules for antigen presentation, such as major histocompatibil-
ity complex II.146 Analyses of the T-cell receptor repertoire of
plaque-infiltrating T cells demonstrated an oligoclonal origin of
these T cells and suggest expansion of antigen-specific clones.
Indeed, T cells with specificity for apoB-derived epitopes have
been identified, linking adaptive immune responses to the vascular
retention of LDL (Figure 3).147

Interferon-gamma (IFNc)-secreting CD4þ Th1 cells promote
atherogenesis, but this response is dampened by T regulatory cells
expressing transforming growth factor beta (TGF-b) and IL-10.148

Box 3 Cell-specific responses to retained and
modified low-density lipoprotein

• Oxidized LDL initiates a sterile inflammatory response by
activating endothelial cells to up-regulate adhesion mole-
cules and chemokines, triggering the recruitment of mono-
cytes that differentiate into macrophages.

• Modifications of retained LDL promote its uptake by mac-
rophages leading to cholesterol-laden foam cells.

• Smooth muscle cells also take up cholesterol-rich lipopro-
teins and significantly contribute to the number of foam
cells in advanced lesions.

• Lesional macrophages contain subsets with different pheno-
types, ranging from classical inflammatory subtypes to alter-
natively activated anti-inflammatory macrophages.

• DAMPs, formed when retained LDL become modified, in-
duce the expression of pro-inflammatory and pro-throm-
botic genes in macrophages by engaging PRRs, such as
TLRs.

• Lipid loading of macrophages may lead to formation of
cholesterol crystals, which activate the NLRP3 inflamma-
some, leading to production of IL-1b and IL-18.

• T cells and B cells are found in atherosclerotic lesions. The
B cells have specificity for oxidized LDL, which also triggers
the activation of complement, further modulating the in-
flammatory response.

References: 129,130,132,133,136–143,145–148,150–153

DAMPs, damage-associated molecular patterns; IL, interleukin;
PRRs, pattern recognition receptors; TLRs, toll-like receptors.
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..The role of CD4þ Th2 and Th17 cells is less clear, but CD8þ
cytotoxic T cells also seem to promote atherogenesis.149 Distinct
roles for different B-cell subsets have been reported, and although
only small numbers of B cells are found in atherosclerotic lesions,
both immunoglobulin (Ig)G and IgM antibodies derived from
such cells accumulate.150,151 Many of these antibodies have
specificity for oxLDL and, in an isotype-dependent manner, trigger
activation of complement, further modulating the inflammatory
response.152

Thus, retention and subsequent modification of LDL elicits
both innate and adaptive cellular and humoral immune responses
that drive inflammation in the artery wall. Disrupting this vicious
cycle by targeting inducers and mediators may provide alternative
approaches to halting atherogenesis at specific stages (Box 3).
Proof of concept for this therapeutic strategy has been provided
in a secondary prevention trial in which patients were treated

with a statin in combination with the anti-IL-1b antibody
canakinumab.154

Defective cellular efferocytosis
and impaired resolution of
inflammation

The efficient clearance of dying cells by phagocytes, termed efferocy-
tosis, is an important homeostatic process that ensures resolution of
inflammatory responses (Figure 4).155,156 This involves recognition of
several ‘eat-me’ signals, such as phosphatidylserine exposure on
apoptotic cells, by their respective receptors on macrophages, as
well as bridging molecules that mediate binding. Moreover, ‘don’t-
eat-me’ signals, such as CD47, also play a critical role and influence
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Figure 3 Cellular and humoral immune responses in atherosclerosis. Dendritic cells (DC) take up several forms of modified low-density lipopro-
tein (LDL), including oxidized LDL (oxLDL), and present specific epitopes (e.g. apolipoprotein B peptides) to naive T cells (Th0), which induces differ-
entiation into CD4þ T helper 1 (Th1), T helper 2 (Th2), T helper 17 (Th17), or T regulatory (T reg) cell subtypes; multiple cytokines control such
differentiation. CD4þ T-cell subtypes, together with specific cytokines that they secrete, provide help to B cells and regulate the activity of other T-
cell subtypes. The pro-atherogenic role of interferon gamma (IFN-c)-secreting Th1 cells and the anti-atherogenic effect of interleukin-10/transform-
ing growth factor beta (IL-10/TGF-b)-secreting T regulatory cells are well established. However, the role of Th2 and Th17 in atherogenesis is less
clear, as opposing effects of cytokines associated with these respective subtypes have been described. Cytotoxic CD8þ T cells can promote athero-
genesis. Anti-oxLDL immunoglobulin (Ig)M antibodies produced by B1 cells are atheroprotective, whereas anti-oxLDL IgG antibodies produced by
B2-cell subsets are likely pro-atherogenic. All of these cell types may infiltrate the arterial wall at sites of ongoing plaque development, with the pos-
sible exception of Th2 and Th17 cell types. EC, endothelial cell; Mph, monocyte-derived macrophage.
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..atherogenesis.157 Uptake of apoptotic cells is associated with
increased expression of the anti-inflammatory cytokines TGF-b and
IL-10 and decreased expression of pro-inflammatory IL-8 and IL-1b
by macrophages.158 Efficient efferocytosis thereby protects against
atherogenesis by removing cellular debris and creating an anti-
inflammatory milieu. Uptake of cellular debris also favours the pro-
duction of various specialized pro-resolving lipid mediators, such as
lipoxins, resolvins, and maresins that are actively involved in resolving
inflammation.159

In chronic inflammation, the general pro-inflammatory environ-
ment alters the expression of molecules that regulate efferocytosis,
so that oxLDL particles in atherosclerotic lesions compete for uptake
by macrophages.129,160 As a result, efferocytosis becomes defective
and resolution of inflammation, which is mainly driven by modified
LDL, is impaired. Under such conditions, apoptotic cells accumulate
and undergo secondary necrosis, promoting the release of several
DAMPs that further propagate inflammation. Impaired clearance of
apoptotic cells results in the formation of necrotic cores that contrib-
ute to unstable plaques and plaque rupture (Box 4). Thus, defective
efferocytosis may be a potential therapeutic target to promote reso-
lution of inflammation in atherosclerosis.

How does plaque composition and
architecture relate to plaque
stability?

Our knowledge of the intricate relationships between plaque stability
and the cellular and non-cellular components of plaque tissue, to-
gether with their spatial organization, is incomplete. Local SMCs re-
spond to insults exerted by progressive oxLDL accumulation170 by
proliferating and ultimately changing their phenotype to fibroblast- and
ostechondrogenic-like cells;171 the latter produce extracellular matrix,
regulate calcification and contribute (through SMC death) to necrotic
core formation. This ‘healing’ response is the major source of key com-
ponents of advanced plaques but is highly heterogenous. Furthermore,
the determinants of this response are diverse, and its interaction with
LDL-driven inflammation is poorly understood. Depending on the
pathways that predominate in development of a lesion, segments of an
atherosclerotic artery may remain quiescent, exhibit chronic stenosis,
or precipitate an acute, life-threatening thrombus.

Lesions that develop substantial lipid cores, which almost reach
the luminal surface, are at risk of rupturing with subsequent thrombus

A  EFFICIENT EFFEROCYTOSIS

B  DEFECTIVE EFFEROCYTOSIS
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Figure 4 Schematic representation of processes involved in lesional efferocytosis. (A) Externalized ‘eat me’ signals including phosphatidylserine
(PS), calreticulin, and oxidized phospholipids (oxPL) are recognized by their respective receptors, Mer tyrosine kinase (MerTK), low-density lipopro-
tein-receptor-related protein 1 (LRP1), as well as integrin avb3 and CD36 on macrophages; such recognition is facilitated either directly or mediated
by bridging molecules such as growth arrest-specific 6 for PS, complement protein C1q for calreticulin and milk fat globule-epidermal growth factor
8 (MFG-E8) for oxPL. Calcium-dependent vesicular trafficking events driven by mitochondrial fission and LC3-associated phagocytosis (LAP) pro-
mote phagolysosomal fusion and the hydrolytic degradation of apoptotic cells. Simultaneously, natural immunoglobulin (Ig)M antibodies with reactiv-
ity towards oxidation-specific epitopes further enhance the efficient clearance of dying cells via complement receptors. (B) In advanced
atherosclerosis, one or more of these mechanisms are dysfunctional and can lead to defective efferocytosis, propagating non-resolving inflammation
and plaque necrosis. Additional processes contributing to impaired efferocytosis include ADAM-17-mediated cleavage of MerTK as well as the in-
appropriate expression of the ‘don’t eat me’ signal CD47 on apoptotic cell surfaces. ACs, apoptotic cells.
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..formation (Figure 5). In this event, the thin cap of fibrous tissue be-
tween the lipid core and blood is torn, allowing blood to enter and
often core material to leak out. Cholesterol crystals, which can be
seen protruding through the plaque surface around sites of rupture,
may contribute to final disintegration of the residual cap tissue.172

Ruptured lesions are also typically large with intraplaque angiogenesis

and often have little previous stenosis due to extensive expansive
remodelling (Box 5).

Plaque rupture accounts for the majority of coronary thrombi at
autopsy (73%), 173 and in survivors of ST-elevation myocardial infarc-
tion (STEMI) examined by optical coherence tomography (�70%),
174,175 but is less common (�43–56%) in culprit lesions of non-ST
segment elevation myocardial infarction (NSTEMI).175,176 Lesions
without lipid cores or with thick fibrous caps are not at risk of rup-
ture but may produce a thrombus in response to plaque erosion. In
these cases, the plaque is intact but lacks endothelial cells, and neu-
trophils predominate at the plaque-thrombus interface. The underly-
ing lesion is frequently, but not always, rich in the glycosaminoglycan
hyaluronan and SMCs.173 The mechanism leading to intravascular
thrombosis is not yet clear, but experiments with mouse arteries
have shown that subendothelial hyaluronan and disturbed blood flow
render the endothelium vulnerable to neutrophil-mediated denuda-
tion and thrombosis.177 Vasospasm has also been proposed as the ini-
tiating event in plaque erosion.178

Rupture requires a specific plaque morphology (thin-cap fibro-
atheroma) and is a strong prothrombotic stimulus, whereas erosion

Box 4 Efficient vs. impaired efferocytosis

• Efficient efferocytosis removes cellular debris and modified
forms of low-density lipoprotein, and creates an anti-inflam-
matory milieu.

• Impaired efferocytosis in atherosclerosis results in non-
resolving inflammation.

• Impaired clearance of apoptotic cells contributes to forma-
tion of necrotic core in atherosclerotic lesions

• Genetically modified mice with enhanced/restored efferocy-
tosis protects from atherosclerosis, indicating novel thera-
peutic strategies.

References: 129,155–169
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Figure 5 Proposed mechanisms of plaque rupture and plaque erosion. Rupture: lesions that develop extensive necrosis and only sparse fibrous
cap tissue are at risk of plaque rupture. Suggested final processes that precipitate rupture include senescence and death of residual cap smooth
muscle cells (SMC), degradation of the fibrous matrix by macrophage-secreted proteolytic enzymes, and cholesterol crystals, which may penetrate
cap tissue. These processes expose the prothrombotic plaque interior and result in neutrophil-accelerated thrombosis. Erosion: lesions that are
complicated by erosion typically display variable amounts of plaque necrosis, but are frequently characterized by subendothelial accumulation of pro-
teoglycans and hyaluronan. Current hypotheses suggest that the combination of disturbed blood flow and endothelial activation by immune activa-
tors, e.g. hyaluronan fragments, leads to neutrophil recruitment with neutrophil extracellular trapsosis, endothelial cell apoptosis/sloughing, and
thrombus formation. ACS, acute coronary syndrome; NETosis, cell death by neutrophil extracellular traps.
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complicates earlier lesion types and provides a subtler thrombogenic
stimulus. Plaque progression and potentially plaque rupture are influ-
enced by the complex interaction between biological and mechanical
factors, indicating that plaque composition is a major factor in its re-
sistance to mechanical stress.179 Erosion favours a higher fraction of
thrombi in younger, especially female, patients and in patients with
less severe atherosclerosis with few thin-cap fibroatheromas,173,174

and more frequently affects lesions exposed to local (disturbed blood
flow near bifurcations) or systemic (smoking) prothrombotic
factors.56

Low-density lipoprotein-lowering therapies mitigate key mecha-
nisms of plaque rupture, i.e. lipid core formation and LDL-driven in-
flammation and degeneration of caps. Statin therapy lowers the rate
of events but also shifts the presentation of acute coronary syn-
dromes from STEMI towards NSTEMI, indicating that LDL lowering
is less efficient in counteracting erosion mechanisms.176,180 Successful
implementation of LDL lowering in patients with established plaques
may, therefore, leave a residual burden of thrombosis caused by pla-
que erosion, thus emphasizing the need for alternative types of pre-
vention and therapy.

Fibrous cap matrix components:
guardians of cardiovascular peace?

Lesions that rupture form predominantly in arterial regions with thick
pre-existing arterial intima. When the lipid core develops in the deep
part of the intima at these sites, it is initially separated from the lumen
by normal intima but is gradually replaced by a more compact layer
of SMCs and collagen-rich matrix that spreads underneath the endo-
thelium.181 This structure, called the fibrous cap in areas where it
overlies lipid core, prevents rupture as long as it is not excessively
thin: 95% of ruptured plaques have cap thickness <65lm (by defin-
ition thin-cap fibroatheroma).182 It is uncertain to what extent such
thin caps result from degradation of an initially thick cap or from fail-
ure to form thick-cap tissue in the first place. From a therapeutic
viewpoint, the relationship of LDL-C levels to fibrous cap thickness is
of relevance.183 Thus, frequency-driven optical coherence

tomography imaging of coronary arteries selected for percutaneous
intervention in statin-treated patients with CHD revealed that those
with LDL-C levels <1.3 mmol/L (50 mg/dL) were more likely to have
fibrous plaque and thick fibrous caps (51.7% and 139.9 lm,
respectively).183

Lineage tracking of SMCs showed that fibrous caps in mice form
by massive clonal expansion of a few pre-existing SMCs.184,185 These
findings are consistent with earlier studies of X chromosome inactiva-
tion patterns in human lesions, which indicated the existence of simi-
lar large clonal populations in SMC-rich lesion areas.186 If substantial
SMC clonal expansion does indeed occur during human cap forma-
tion, this may contribute to the replicative senescence and limited re-
pair potential that characterize cap SMCs.187

Several processes leading to cap degradation have been described.
Cap collagen and elastin fibres are long-lived with little spontaneous
turnover, but invading macrophages, recruited as a result of LDL-
driven plaque inflammation, secrete matrix metalloproteinases and
cathepsins that break down the matrix.188 Together with SMC and
macrophage death, such proteolysis progressively converts cap tissue
into lipid core and predisposes it to rupture (Box 6).

How does calcification impact
plaque architecture and stability?

Arterial calcification is an established marker of atherosclerotic dis-
ease,192,193 and the severity of coronary artery calcification is a strong
predictor of cardiovascular morbidity and mortality.194,195 Yet
whether coronary artery calcium (CAC) is simply a marker of
advanced disease, or whether it increases risk of plaque rupture, is
unclear.

Clinical, animal, and in vitro studies implicate hyperlipidaemia-
induced inflammation in the genesis and progression of arterial calcifi-
cation.196–201 Although statins were expected to prevent and/or re-
verse vascular calcification, clinical studies showed that, despite
benefit on mortality,202 treatment increased progression of coronary
artery calcification.203–206 Moreover, elite male endurance athletes
have higher CAC scores than less physically active individuals, but ex-
perience fewer cardiovascular events.207–209

This paradox raises the question of whether calcified plaque archi-
tecture influences rupture vulnerability, either positively or negative-
ly. Understanding in this area, however, remains limited. By using
finite element analysis, rigid deposits (calcification) embedded in a dis-
tensible material (vessel wall) under tension are shown to create
focal stress that is concentrated at areas of compliance mismatch at
the surfaces of the deposits, 210 rendering them prone to debonding
or rupture. The mineral surfaces found in carotid arteries and those
in skeletal bone are remarkably similar and characterized by abundant
proteoglycans.211 The chemical nature and architecture of that sur-
face bonding may be critical in determining whether calcium deposits
promote plaque rupture or stability.

Clinical studies provide varying results with respect to the associ-
ation of calcification with plaque rupture. Histological analysis
showed that patients who died of acute myocardial infarction had
more CAC than controls, but the CAC did not colocalize closely
with the unstable plaque.212 Computed tomographic (CT) analyses
of patients with acute coronary syndrome, however, showed that

Box 5 Plaque rupture and erosion

• Plaques developing substantial necrosis that reach the lu-
minal surface can rupture and precipitate thrombus.

• Ruptured plaques are often large, non-stenotic, and vascu-
larized lesions with protruding cholesterol crystals, but the
causal role of these features is unresolved.

• Thrombus can form on other types of plaques by plaque
erosion. The process is less well-understood but may in-
volve combinations of flow disturbance, vasospasm, and
neutrophil-generated endothelial shedding.

• Plaque progression and rupture are influenced by both bio-
logical and mechanical factors, highlighting plaque compos-
ition as a major factor in resistance to mechanical stress.

• Lowering of low-density lipoprotein levels appears more
effective in reducing the risk for plaque rupture than for
plaque erosion.

References: 56,172–180
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the culprit lesions tended to have dispersed or ‘spotty’ calcification
(�0.2–3 mm), whereas stable lesions tended to have contiguous cal-
cium deposits (>_3 mm).213 Based on this and other findings, 214,215

the presence of a spotty pattern of calcium deposits is now consid-
ered a feature of a ‘high-risk’ plaque.

A new imaging modality using positron emission tomography
(PET)216 detects smaller calcium deposits that are below the reso-
lution of CT (�200–500lm)217 and intravascular ultrasound
(�200 lm lateral resolution). In human and animal studies, 18F-NaF
PET-CT imaging, which has higher sensitivity for calcium mineral, 218

identified high-risk, vulnerable lesions.218–221

Taken together, these findings suggest that calcification is not a
clear marker; mineral features may vary in quality and microarchitec-
ture, which may affect the mechanical properties of plaque tissue.222

For example, certain therapies, such as anabolic parathyroid hor-
mone analogues used to treat osteoporosis, may modify the architec-
ture of calcium deposits and impact calcified plaque vulnerability.219

Research is needed to establish the mechanism linking calcium
morphology and plaque vulnerability; the use of 18F-NaF PET scan-
ning offers promise.223 Given the evidence that statins and high-
intensity exercise promote calcification without increased risk, these
interventions may stabilize mineral morphology. Further studies are
needed to better understand these mechanisms in modulating the
effects of calcification on plaque vulnerability (Box 7).

Although the role of LDL in coronary artery calcification remains
unclear, 224 it is well-established that an elevated LDL-C level is a
strong risk factor for progression of calcification.225 Interestingly,
modified LDL stimulates vascular calcification by driving osteoblastic
differentiation of vascular SMCs,197 while inhibiting osteoclast differ-
entiation of macrophages.224 In contrast, HDL appears to exert
beneficial effects on vascular calcification, as HDL-mediated efflux of
cholesterol from bone preosteoclasts inhibits both their maturation
and osteoblast RANKL expression, and stimulates their apoptosis.226

In addition, several clinical trials have demonstrated that Lp(a) is an
independent risk factor for coronary artery calcification.227 Ongoing
research suggests a causal role for Lp(a) in arterial calcification; al-
though the underlying mechanisms remain unclear, oxidized phos-
pholipids in Lp(a) may induce differentiation of valve interstitial cells
into a procalcification, osteoblast-like phenotype.228 Ongoing trials
with Lp(a)-lowering therapies will provide insight into the potential
role of Lp(a) in coronary artery calcification.

Can genes influence the
susceptibility of the artery wall to
coronary disease?

Genome-wide association studies and related research indicate that
predisposition to ASCVD is associated with multiple variants in genes
that affect plasma LDL concentration (Figure 6).229,230 Indeed, genom-
ic risk scores that predict coronary artery disease (CAD) risk contain
a large number of variants that affect LDL particle quantity and LDL-
C levels.231 Most GWAS loci governing LDL-C levels and CAD risk
occur in noncoding regions and predominantly alter gene expression
that affects uptake and metabolism of LDL in the hepatic cell. Other
genomic loci affect qualitative attributes of LDL (Figure 6) including
arterial wall susceptibility to LDL infiltration, transcytosis, retention,
and modification (Box 8).229

A few early GWAS hits for lipid levels and CAD have mechanistic
links to LDL transcytosis across the endothelium, including SRB1
encoding SR-B1 and LDLR encoding the LDL receptor.32,232,233 Low-
density lipoprotein transcytosis requires caveolin 1,32 encoded by
CAV1, in which the single-nucleotide polymorphism (SNP) rs3807989
is associated with increased CAV1 expression from leucocytes,
altered plasma LDL-C levels and increased CAD risk.234

More recent GWAS and sequencing efforts further support a
causal role for such qualitative local pathways. For instance, a GWAS
of 88 192 CAD cases and 162 544 controls found 25 new SNP-
CAD associations from 15 genomic regions, including rs1867624 at
PECAM1 (encoding platelet and endothelial cell adhesion molecule
1), rs867186 at PROCR (encoding protein C receptor), and
rs2820315 at LMOD1 (encoding SMC-expressed leiomodin 1).235

Another GWAS of 34 541 CAD cases and 261 984 controls from
the UK Biobank, with replication in 88 192 cases and 162 544 con-
trols, identified 64 novel CAD risk loci, including several loci impli-
cated by network analysis in arterial wall biology, such as CCM2
encoding cerebral cavernous malformation scaffolding protein and
EDN1 encoding endothelin 1.236

Next-generation DNA sequencing of 4831 CAD cases and 115
455 controls identified 15 new CAD loci, which included
rs12483885, a common p.Val29Leu polymorphism in ARHGEF26

Box 6 Fibrous cap

• The fibrous cap, between the necrotic core and the lumen,
protects against rupture.

• Processes integral to both tissue degeneration and reduced
cap formation may be involved in the genesis of thin-cap
fibroatheromas.

• Caps form by oligoclonal expansion of smooth muscle cells
in experimental models, and there is suggestive evidence
for the same process in humans.

• Degradation of cap tissue involves inflammatory cell inva-
sion with secretion of proteolytic enzymes. Mechanical
effects of local cholesterol crystals may also contribute.

References: 181–191

Box 7 Calcification and plaque stability

• Oxidized low-density lipoprotein stimulates vascular calcifi-
cation by driving osteoblastic differentiation of vascular
smooth muscle cells.

• High-density lipoprotein exerts beneficial effects on vascular
calcification through effects on bone preosteoclasts.

• The severity of coronary artery calcification is a strong pre-
dictor of cardiovascular morbidity and mortality.

• It is still unclear whether coronary artery calcium is simply
a marker of advanced disease or whether it increases risk
of plaque rupture.

• Clinical studies provide varying results with respect to asso-
ciation of calcification with plaque rupture.

• Statins and high-intensity exercise promote calcification
without increasing risk.

References: 192–223
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encoding Rho guanine nucleotide exchange factor 26.237 The
ARHGEF26 Leu29 isoform had an allele frequency of 0.85 and
increased CAD risk by�8%, 237 a finding that was confirmed by an in-
dependent GWAS in the UK Biobank.238 ARHGEF26 activates Rho
guanosine triphosphatase, thereby enhancing formation of endothe-
lial docking structures, and in turn, promoting transendothelial migra-
tion of leucocytes.239–241 In vitro studies showed the high-risk Leu29
isoform to be degradation-resistant and associated with increased
leucocyte transendothelial migration compared with the low-risk
Val29 isoform.237 ApoE-null mice crossed with Arhgef26-null mice dis-
played reduced aortic atherosclerosis without any change in lipid lev-
els,240 supporting a modulatory role for ARHGEF26 in atherogenesis.

Other studies indicate a role for genes governing transcytosis of
LDL in CAD. For instance, genome-wide RNA interference screen-
ing supplemented by pathway analysis and GWAS data cross-
referencing identified ALK1 as a key mediator of LDL uptake into
endothelial cells. By directly binding LDL, ALK1 diverts LDL from
lysosomal degradation via a unique endocytic pathway and promotes
LDL transcytosis.38 Endothelium-specific ablation of Alk1 in Ldlr-null
mice reduced LDL uptake into cells.38 In studies of highly expressed
genes in human carotid endarterectomy samples, lipid metabolism
pathways, driven by genes such as ApoE, coincided with known CAD
risk-associated SNPs from GWAS.242 Consistent with this mechan-
ism, macrophage-specific re-introduction of apoE in hyperlipidaemic
ApoE-null mice ameliorated lipid lesion formation independent of
LDL levels, indicating a local apoE-related mechanism in the arterial
wall.243

Finally, as meta-analyses of GWAS incorporate ever-larger patient
cohorts, gene-regulatory networks are recognized as being highly
interconnected. For instance, a meta-analysis of GWAS results
showed that common CAD-associated variants near COL4A2 encod-
ing collagen type 4 alpha chain, and ITGA1 encoding integrin alpha 9,
both of which are important in cell adhesion and matrix biology,
were also significant determinants of plasma LDL-C levels.63 For
complex traits, such as LDL-C, arterial wall susceptibility, and CAD

LDL quan�ty:
LDLR
APOB
PCSK9

HMGCR
NPC1L1

ABCG5/G8
CELSR2/SORT1
APOE-C1-C2-C4

many others

GWAS locus

LDL quality or vessel wall effects:
CAV1

PECAM1
PROCR
LMOD1
CCM2
EDN1

ARHGEF26
ALK1

Figure 6 Genomic loci associated with atherosclerosis. Loci identified by genome-wide association studies (GWAS) can have different effects on
low-density lipoprotein (LDL). On the left are shown selected GWAS loci associated with LDL-cholesterol (LDL-C) levels, several of which are asso-
ciated with atherosclerosis events and are incorporated in predictive risk scores. Many have also been independently validated in Mendelian random-
ization studies and in studies of rare families. Some are proven drug targets to reduce clinical events. On the right are shown loci that do not
primarily affect LDL-C levels, but may instead underlie qualitative changes in either the particle itself or in the vessel wall to locally promote
atherogenesis.

Box 8 New concepts in genetic determinants of
arterial wall biology and susceptibility to athero-
sclerotic cardiovascular disease

• Genome-wide association studies (GWAS) reveal causal
associations of coronary artery disease with loci for several
genes regulating arterial wall susceptibility to infiltration,
transcytosis, retention and modification of low-density lipo-
protein (LDL).

• The interconnectedness of gene-regulatory networks
means that virtually any expressed gene can modulate the
function of a ‘core’ disease-related gene.

• Atherosclerosis heritability will ultimately be explained in
large part by genes acting outside core mechanistic path-
ways, as exemplified by non-canonical, LDL-associated
genes.

• ‘Omnigenic’ models of disease are being vigorously
explored in large-scale GWAS.

References: 32,38,63,229–244
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risk, Boyle et al.244 proposed that gene-regulatory networks are suffi-
ciently interconnected that any gene expressed in disease-relevant
cells can modulate the function of core disease-related genes and
that most heritability is explained by genes that act outside core
mechanistic pathways. This ‘omnigenic model’ of disease is under ac-
tive investigation in current large-scale genetic studies.

Which plaque components favour
a thrombotic reaction upon
rupture?

Fibrous cap rupture is defined as a structural defect in the fibrous cap
that separates the lipid-rich necrotic core of a plaque from the lumen
of the artery.245 The key features of a vulnerable plaque are a thin fi-
brous cap, a large necrotic core, pronounced inflammation, and low
vascular SMC density.246 Both biomechanical and haemodynamic fac-
tors contribute to plaque rupture,247 and the exposure of the blood
to plaque components initiates the coagulation cascade, promoting
thrombus formation at the site of rupture.248 The question is: which
plaque components favour this thrombotic reaction?

The initial trigger of thrombus formation is the exposure of tissue
factor (TF) in the cell membrane of plaque macrophages and/or lipid-
laden vascular SMCs to blood components. Uptake of exogenous
non-lipoprotein cholesterol and oxLDL by human monocyte-
macrophages and foam cells markedly up-regulates TF synthesis and
release of TFþ microvesicles,249,250 with a strong correlation be-
tween intracellular cholesterol content and TF production.251,252

Such exogenous cholesterol may be derived from intimally retained
atherogenic lipoproteins subsequent to their degradation by macro-
phage- and SMC-derived foam cells. TF expression may also be
induced in endothelial cells by remnant lipoproteins.253 Exposure of
the extracellular domain of TF to flowing blood initiates the coagula-
tion cascade,254 and leads to thrombin formation; thrombin then
cleaves fibrinogen to fibrin, with ensuing formation of a fibrin mono-
layer covering the surface of the exposed damaged plaque surface.
Thrombosis evolves with a predominance of platelets that are rapidly
activated and recruited from the blood to the growing thrombus. In
addition, hypercholesterolaemia and oxidized lipids can promote
procoagulant activity and propagate the coagulation cascade that is
initiated by TF-VIII.249 Moreover, it is established that FH is associated
with increased platelet activation and an underlying pro-coagulant
state.255 Both native and oxidized forms of LDL may prime platelets
and increase platelet activation in response to various agonists, there-
by contributing to increased risk of atherothrombosis.256,257 Plasma
levels of platelet activation markers (such as thrombin-antithrombin
complex, soluble P-selectin, and soluble CD40L) or P-selectin expos-
ure at the surface of platelets can also be enhanced in hypercholes-
terolaemic patients, and are intimately associated with increased
platelet membrane cholesterol.

The healthy endothelium typically exhibits strong anticoagulant,
antiplatelet, and fibrinolytic properties that counterbalance pro-
thrombotic factors.258 Upon plaque fissure (or plaque erosion), the
local antithrombotic actions of the normal endothelium are lost, as
endothelium is absent from the fissured or eroded surface. An im-
portant amplifier of the thrombotic reaction upon fissure is the

interaction between inflammatory cells and platelets,247 which pro-
motes an autocrine loop stimulating platelet aggregation and adhe-
sion and sustained neutrophil adhesion and recruitment.259

Moreover, both oxLDL and oxidized phospholipids may activate pla-
telets.260 The cardiovascular risk reduction seen with antiplatelet
therapy is generally thought to be an effect of platelet inhibition in the
event of plaque rupture.261 However, platelets may also have direct
involvement in plaque instability.261

Does aggressive low-density
lipoprotein lowering positively
impact the plaque?

Previous sections in this article have described the complex nature of
atherosclerotic plaques, including foam cells, lipid cores, fibrotic caps,
necrosis, and calcification, all resulting from the retention and accu-
mulation of LDL in the subendothelial matrix.262 The structural com-
plexity of plaques almost certainly constitutes the basis of the
heterogeneous progression of ASCVD from subclinical to clinical,
246,263 as demonstrated in early studies where sites of modest sten-
osis were observed to rapidly progress to a clinical coronary event
upon rupture or erosion of plaques, with subsequent complete oc-
clusion of a vessel.264,265 Recent studies, using a variety of intravascu-
lar imaging approaches, show that plaque characteristics can not only
predict initial events, but also provide important insights into the
course of CHD after an individual’s first episode, lesions with large
necrotic cores, and thin fibrous caps being significantly associated
with greater risk for subsequent events.266–268

Although the evidence that treatments to reduce LDL-C lead to
fewer ASCVD events is unequivocal,4,5 understanding of how the
beneficial effects of lower circulating LDL levels translate to changes
in the atherosclerotic plaque is less clear. A pioneering investigation
of bilateral, biopsied carotid endarterectomy samples at baseline and
after 6 months of pravastatin treatment was seminal in demonstrating
statin-induced increases in collagen content and reductions in lipid
content, inflammatory cells, metalloprotease activity, and cell death,
all of which favour plaque stabilization.17 Furthermore, several early
studies involving quantitative coronary angiography without269 or
with intravascular ultrasound18 demonstrated modest but significant
benefits from statin-mediated LDL lowering on the degree of coron-
ary artery stenosis. The magnitude of the effects of statin treatment
on plaque volume and composition, particularly the thickness of the
fibrous cap and the size of the lipid-rich core have not, however,
been uniform among studies, potentially reflecting the differing reso-
lution of the imaging modalities applied and dissimilarities in the
underlying substrate.270,271 On the other hand, an open-label study
with serial intravascular optical coherence tomographic measure-
ments indicated that efficient LDL lowering can alter the balance be-
tween cap formation and degradation, leading to thicker caps and, by
inference, lower risk of rupture and thrombosis.272 Of note, reduc-
tions in LDL-C by the PCSK9 inhibitor evolocumab in a secondary
prevention trial reduced major coronary events273 and plaque vol-
ume274 but did not alter the composition of plaques over 76 weeks
of treatment.275 However, the validity of virtual histology for plaque
composition measurements remains uncertain.275 Moreover, this
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trial was conducted in patients previously treated with a statin, sug-
gesting that the lesions studied may, in all probability, have been stabi-
lized to a significant degree before the addition of evolocumab.

Can high-density lipoprotein
or its components modulate
intra-plaque biology driven by
low-density lipoprotein?

Our understanding of the putative direct role of HDL and its major
apolipoprotein, apoAI, in the pathophysiology of atherogenesis
remains unclear, as does the potential modulation of the atherogenic-
ity of LDL by HDL and its components within plaque tissue (Box 9).
Nonetheless, we cannot exclude the possibility that the biological
activities of functional HDL/apoAI particles may directly or indirectly
attenuate the atherogenic drive of LDL particles in plaque progres-
sion.276–281

The finding of abundant dysfunctional, cross-linked apoAI in human
atheroma tissue is perhaps relevant.282 Such dysfunction results from
chemical modification (oxidation, carbamylation, or glycation) of key
amino acid residues in apoAI by macrophage-derived myeloperoxi-
dase;282 moreover, oxidative modification also alters the endothelial
effects of HDL.283,284 These observations raise the possibility that a
primary function of apoAI/HDL in plaque tissue is anti-inflammatory
and anti-oxidative, i.e. apoAI acts to neutralize reactive oxygen spe-
cies, a central feature of the oxidative stress and inflammation integral
to the oxidative modification of LDL and thus to the pathogenesis of
accelerated atherosclerosis.285,286 Furthermore, recent data suggest
that plasmalogens of the HDL lipidome may also play an antioxidative
role by attenuating the propagation of lipid peroxidation in LDL par-
ticles.279 These initial insights into the potential actions of HDL/apoAI
in counterbalancing the atherogenic effects of LDL particles within
plaque tissue require confirmation and extensive additional
experimentation.

Missing pieces of the puzzle and
their potential translation into
innovative therapeutics

Genetic studies suggest that, in addition to LDL, TG-rich remnants
and Lp(a) are directly causal in ASCVD, independent of LDL-C lev-
els.6,7,9,11 Indeed, the hazard ratios for myocardial infarction for a
1 mmol/L (39 mg/dL) cholesterol increment were 1.3-fold for LDL,
1.4-fold for remnants, and 1.6-fold for Lp(a) when tested in parallel in
approximately 100 000 individuals in the Copenhagen General
Population Study (Figure 7).311 Using Mendelian randomization genet-
ic data, the corresponding causal risk ratios for myocardial infarction
were 2.1-fold for LDL, 1.7-fold for remnants, and 2.0-fold for Lp(a).

These three lipoprotein classes may differ with respect to the
mechanisms that underlie their respective contributions to plaque
progression (Figure 7 and Box 10). Therefore, combining all three
lipoprotein classes as total apoB or non-HDL-C should demand cau-
tion. Simplified expressions, such as ‘atherogenic apoB-containing

lipoproteins’, may misinform the reader. As described above, LDL-C
is a main causal driver of atherosclerosis development and thereby
ASCVD, and typically is the most abundant atherogenic particle in
the majority of individuals (LDL �1 mmol/L; VLDL � 40mmol/L). Of
note, however, HDL particles are some 10-fold more abundant than
those of LDL (�12 mmol/L). Triglyceride-rich lipoproteins or Lp(a)
(molar particle concentration range: 0.1–0.7 mmol/L) may be quanti-
tatively more important than LDL in the causation of ASCVD in
some individuals as a function of genetic background and metabolic
state.

As a consequence of their elevated cholesterol content (‘remnant
cholesterol’, <4000 cholesterol molecules per particle), TG-rich
remnants also contribute to intimal cholesterol deposition. Like LDL,
remnants enter the arterial intima, in all likelihood by endothelial
transcytosis, and are trapped prior to uptake as native (rather than
modified) particles by macrophages to produce foam cells.6,312 In
addition, hydrolysis of remnant TG by LPL in the arterial intima will
produce tissue-toxic free fatty acids and thereby induce
inflammation.313,314

In the REDUCE-IT trial, treatment with icosapent ethyl omega-
3 fatty acid (4 g daily) resulted in a 25% reduction in ASCVD con-
comitant with a 20% reduction in plasma TG levels and 40% re-
duction in C-reactive protein (Box 10).315 This finding is
consistent with genetic studies that indicated a causal role of TG
in the aetiology of CAD.287,316,317 However, cardiovascular event
reduction in the REDUCE-IT trial was independent of TG levels
both at baseline and on treatment. This finding might raise ques-
tions about the role of TGRL in eliciting clinical benefit. However,
consideration of the area under the curve for TGRL and remnants
during the atherogenic postprandial period indicates that levels of
TGRL and remnants are considerably amplified in subjects with
Type 2 diabetes;78 such individuals represented 58% of partici-
pants in the REDUCE-IT trial. It is possible that attenuation of the
postprandial response by eicosapentanoic acid, the hydrolytic
product of icosapent ethyl, may underlie a significant proportion
of clinical benefit in the REDUCE-IT trial.

The results of similar cardiovascular outcome trials using another
purified omega-3 fatty acid formulation (STRENGTH; NCT0210
4817) or pemafibrate, a selective peroxisome proliferator-activated

Box 9 Apolipoprotein AI (apoAI), high-density
lipoprotein (HDL), and atherosclerosis

• HDL/apoAI possess diverse functional properties, including
cellular cholesterol efflux capacity and anti-oxidative and
anti-inflammatory activities.

• Which of these activities may be most relevant to intra-pla-
que biology is unclear.

• HDL/apoAI may slow plaque progression by lipid efflux and
by attenuating both intra-plaque oxidative modification of
low-density lipoprotein (LDL) and inflammatory processes
driven by modified LDL. For example, HDL plasmalogens
attenuate the propagation of lipid peroxidation in LDL
particles.

• Abundant apoAI in human atheroma tissue is typically dys-
functional due to extensive oxidative modification.

References: 20,276–310
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receptor alpha agonist, are eagerly awaited.318 In addition, ongoing
phase three trials involving inhibitors of apoC-III319 and of
ANGPTL3,320,321 whose action enhances the activity of LPL, should
significantly reduce remnant cholesterol and TG levels and may trans-
late into cardiovascular benefit (Box 10).

Implications for future prevention
of atherosclerotic cardiovascular
disease

Extensive evidence on the pathophysiology of ASCVD presented
here supplements and extends our earlier review on the causality of
LDL based on epidemiological, GWAS, and Mendelian randomization
studies, as well as controlled intervention trials with pharmacological
agents targeting the LDL receptor.4 Such evidence, together with the
associated molecular mechanisms, has clear implications across the
continuum of ASCVD prevention (i.e. primordial, primary, second-
ary, and tertiary) and is consistent with the central concept derived
from genomics that the cumulative arterial burden of LDL-C drives
the development and progression of ASCVD and its clinical
sequelae.4,334,335

Furthermore, the pathophysiological evidence supports thera-
peutic strategies aimed at maintaining very low levels of LDL-C
(e.g. <1 mmol/L or 40 mg/dL) in patients with established ASCVD
at very high risk of recurrent events.336 Such low plasma LDL-C
levels are now attainable with the combination of statins and
PCSK9 inhibitors (with or without addition of ezetimibe),

therapeutic regimens that have proven safety and tolerabil-
ity.273,337,338 The unequivocal body of evidence for LDL causality
in ASCVD will impact on future international recommendations
for the management of atherogenic and ASCVD-promoting dysli-
pidaemias and will guide the rational use of both existing and new
therapies.339–342 The success of modern programmes of ASCVD
prevention will also rely on the practice of precision medicine and
patient-centred approaches.343

Finally, this thesis has highlighted emerging mechanistic features of
atherosclerosis that can potentially lead to evaluation of new thera-
peutic targets integral to arterial wall biology and plaque stability.
Prominent amongst these are endothelial transcytosis of atherogenic

1.0 1.5 2.0 2.5 3.0 3.5

LDL cholesterol increase of 39 mg/dL (1 mmol/L)

Remnant cholesterol increase of 39 mg/dL (1 mmol/L)

Lipoprotein(a) cholesterol increase of 39 mg/dL (1 mmol/L)

Observational

Observational

Observational

Genetic (APOB, LDLR, PCSK9, HMGCR)

Genetic (TRIB1, GCKR, LPL, APOA5)

Genetic (LPA)

Individuals Events

108,554 2210

95,908 4155

108,508 2219

97,745 4199

108,550 2210

103,715 4425

Hazard ratio or causal risk ratio
for myocardial infarction (95% CI)

Figure 7 Comparison of risk of myocardial infarction by 1 mmol/L (39 mg/dL) higher levels of low-density lipoprotein (LDL) cholesterol, remnant-
cholesterol, and lipoprotein(a)-cholesterol from observational and genetic studies. Data from individuals in the Copenhagen General Population
Study adapted with permission from Nordestgaard et al.311

Box 10 Outstanding questions

• Do the causal mechanisms by which low-density lipoprotein
(LDL), lipoprotein(a) [Lp(a)], and remnant particles drive
atherosclerotic cardiovascular disease differ?

• Do omega-3 fatty acids influence the mechanisms that
underlie the atherogenicity of lipoproteins, including rem-
nants and LDL?

• Will therapeutic modulation of apolipoprotein C-III and/or
ANGPTL3 attenuate the impact of LDL on arterial plaque
biology?

• To what degree can therapeutic modulation of HDL par-
ticles and their components attenuate atherobiology driven
by LDL?

References: 6,7,9,11,12,287,311–333

ANGPTL3, angiopoietin-like 3.
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lipoproteins, monocyte/macrophage and SMC biology, efferocytosis,
inflammation, innate and adaptive immune responses to the intimal
retention of apoB-containing lipoproteins and calcification (Take
home figure). The future holds great promise but will not be lacking in
surprises.
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Katus HA, Landmesser U, Leclercq C, Lettino M, Lewis BS, Merkely B, Mueller
C, Petersen S, Petronio AS, Richter DJ, Roffi M, Shlyakhto E, Simpson IA,
Sousa-Uva M, Touyz RM, Nibouche D, Zelveian PH, Siostrzonek P, Najafov R,
van de Borne P, Pojskic B, Postadzhiyan A, Kypris L, �Spinar J, Larsen ML, Eldin
HS, Viigimaa M, Strandberg TE, Ferrières J, Agladze R, Laufs U, Rallidis L, Bajnok
L, Gudjónsson T, Maher V, Henkin Y, Gulizia MM, Mussagaliyeva A, Bajraktari
G, Kerimkulova A, Latkovskis G, Hamoui O, Slapikas R, Visser L, Dingli P,
Ivanov V, Boskovic A, Nazzi M, Visseren F, Mitevska I, Retterstøl K, Jankowski P,
Fontes-Carvalho R, Gaita D, Ezhov M, Foscoli M, Giga V, Pella D, Fras Z, de Isla
LP, Hagström E, Lehmann R, Abid L, Ozdogan O, Mitchenko O, Patel RS. 2019
ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to
reduce cardiovascular risk: the Task Force for the management of dyslipidae-
mias of the European Society of Cardiology (ESC) and European
Atherosclerosis Society (EAS). Eur Heart J 2020;41:111–188.

343. Currie G, Delles C. Precision medicine and personalized medicine in cardiovas-
cular disease. Adv Exp Med Biol 2018;1065:589–605.

2331i J. Borén et al.


