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Abstract: Undesirable side effects and multidrug resistance are the major obstacles in conventional
chemotherapy towards cancers. Nanomedicines provide alternative strategies for tumor-targeted
therapy due to their inherent properties, such as nanoscale size and tunable surface features. How-
ever, the applications of nanomedicines are hampered in vivo due to intrinsic disadvantages, such as
poor abilities to cross biological barriers and unexpected off-target effects. Fortunately, biomimetic
nanomedicines are emerging as promising therapeutics to maximize anti-tumor efficacy with minimal
adverse effects due to their good biocompatibility and high accumulation abilities. These bioengi-
neered agents incorporate both the physicochemical properties of diverse functional materials and the
advantages of biological materials to achieve desired purposes, such as prolonged circulation time,
specific targeting of tumor cells, and immune modulation. Among biological materials, mammalian
cells (such as red blood cells, macrophages, monocytes, and neutrophils) and pathogens (such as
viruses, bacteria, and fungi) are the functional components most often used to confer synthetic
nanoparticles with the complex functionalities necessary for effective nano-biointeractions. In this re-
view, we focus on recent advances in the development of bioinspired and biomimetic nanomedicines
(such as mammalian cell-based drug delivery systems and pathogen-based nanoparticles) for targeted
cancer therapy. We also discuss the biological influences and limitations of synthetic materials on the
therapeutic effects and targeted efficacies of various nanomedicines.

Keywords: targeted drug delivery; biomimetic strategy; bioinspired nanomedicine; biohybrid
nanoparticles; cancer treatment

1. Introduction

Tumor progression and recurrence are leading causes of mortality. An estimated
19.3 million new cases and almost 10 million cancer deaths occurred worldwide in 2020 [1].
Currently, the diagnosis and treatment of cancer are hampered by the complexity and het-
erogeneity of tumor biology and an incomplete understanding of therapeutic interactions
within biological systems [2–4]. Generally, most conventional chemotherapeutics will cause
non-specific systemic biodistributions of drugs which can induce intolerable cytotoxicity to
healthy tissues [5]. Hence, cancer therapies are often accompanied by many unwanted side
effects associated with free chemotherapeutic drugs, such as myelosuppression, anemia,
thrombocytopenia, mucositis, and organ dysfunction [6–8]. In addition to their unfavor-
able biodistribution and poor selectivity, insufficient drug concentrations at the tumor site
and multiple drug resistance largely reduce the efficacy of cancer therapy [9]. Therefore,
targeted delivery is of utmost importance in order to overcome current limitations in cancer
therapy [10,11].
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In past decades, many promising materials for biomedical applications have been de-
veloped with the progress of nanotechnology, which has caused a boost in the development
of various therapies. Among these therapies, nanomedicine has been extensively explored
to improve the diagnosis and treatment of cancers due to its exclusive physicochemical
properties, such as nanoscale size, large surface area-to-volume ratio, tunable surface fea-
tures, and ability to encapsulate various drugs and control drug release [2,12]. Compared
to conventional chemotherapeutic drugs, nanomedicines play a more prominent role in
prolonging circulation half-lives and increasing the stability, bioavailability, and tumor
accumulation of drugs [13–15]. These tunable physiochemical properties can be employed
in targeted strategies to improve the biodistribution and target-site accumulation of free
drugs, improving on conventional cancer treatment in terms of specificity [16,17].

Improving tumor targeting efficiency is the critical problem and the major technical
difficulty in developing superior tumor-targeting nanodrugs. Passive tumor targeting via
the enhanced permeability and retention (EPR) effect has long been considered the most
effective mechanism for the accumulation of nanoparticles (NPs) in solid tumors; however,
whether it works as a key cornerstone of tumor-targeted drug delivery has long been
controversial [11,18,19]. The real efficiency of targeted NPs varies due to the heterogene-
ity of the EPR effect [19,20]. Compared to the EPR effect, surface functionalization with
high-affinity ligands, which has been developed as an active targeting strategy to improve
therapeutic efficiency, enables nanomedicines to easily penetrate tumor sites [21,22]. This
ligand-mediated method utilizes affinity ligands on the surface of delivery carriers to
bind specific molecules or receptors overexpressed in pathological organs, tissues, cells,
and even subcellular domains [23,24]. Therefore, these NPs with tailored surfaces have
the potential for prolonged circulation time, enhanced immune evasion, and superior
targeting capacity [25,26]. However, numerous challenges still lie ahead for clinical transla-
tion, though substantial advancements have been achieved in the development of active
targeting strategies [2]. For instance, in preclinical studies, drug-loaded nanocarriers can
reach tumor sites to achieve maximal therapeutic efficacy with minimal toxic effects, but in
clinical practice almost none of the active targeted NPs work due to impenetrable biological
barriers, resulting in no approved nanocarrier-based drugs being available for clinical
use [2]. This predicament is largely due to the complexity and heterogeneity of tumors,
and the artificial properties of synthetic NPs mean that they lack the intrinsic chemotactic
features necessary to overcome biological barriers easily [11].

With deeper understanding of biological and physiological systems and further de-
velopment of nanotechnology, scientists have gained inspiration from natural structures
and processes in the living world and can synthesize versatile and effective nanomedicines
mimicking biological features to overcome various biological barriers [27,28]. More-
over, some biomimetic features can also be incorporated into synthetic materials to make
nanomedicines with controlled size, shape, and surface parameters and to achieve specific
therapeutic goals [29,30]. In addition to these characteristics, bioinspired nanomedicines
are biocompatible, biodegradable, and have a superior capability to circulate for payload
delivery and potential therapeutic improvement. Therefore, bioinspired nanomedicines
are providing new strategies to overcome biological barriers and to better solve other
shortcomings of current drug delivery systems (DDSs).

In this review, we narrow our focus to recent advances in bioinspired nanomedicine
for targeted delivery based on various natural and synthetic materials. The applications
and limitations of each approach will also be highlighted and discussed (Figure 1).
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Figure 1. Bioinspired and biomimetic nanomedicines for targeted drug delivery. A variety of natural
living systems have been used as sources of carriers for targeted delivery of therapeutic agents. These
biohybrid drug delivery systems not only preserve the physicochemical properties of the synthetic
materials but also provide unique biofunctionalities supplied by integrated cells. The strategies of
targeted delivery systems can be adapted according to the desired applications. Abbreviations: Mϕ,
macrophage; NEs, neutrophils; RBC, red blood cell.

2. Physicochemical Impact on Delivery Efficiency
2.1. Size

As one of the most important characteristics of NPs, size greatly influences their biodis-
tribution after systemic administration [31]. There is a close correlation between anti-tumor
effect and the size of nanomedicines [32]. Studies have found that NPs of larger size tend
to remain in tumor tissues longer than those of smaller size [21]. Conversely, though
smaller particles have a better penetration ability, they are eliminated rapidly [33–35]. That
is, the smaller particles probably have a higher permeability with respect to tumor sites
but cannot guarantee enhanced accumulation because they can be easily pumped back
into the bloodstream by the high interstitial fluid pressure of the tumor [36,37]. Therefore,
researchers have gradually realized that a compromise should be made regarding the “size
dilemma”—that there is an equilibrium point between penetration and retention [38]. Smart
size-tunable strategies, including stimuli-induced aggregation and shrinkage, provide a
potential method for optimizing the size of NPs to enhance their retention and penetration
in tumor sites in response to various stimuli in the tumor microenvironment (TME), includ-
ing enzymes, redox, temperature, light, and pH [35,39–44]. Aggregation strategies using
small-sized NPs for deep penetration produce large agglomerates for enhanced retention
once NPs penetrate the tumor after specific stimulations [38] (Figure 2A), while shrinkage
can be used to generate NPs with a smaller size to deeply penetrate and be retained in
tumors. Theses NPs exhibit merits in terms of nuclear delivery, drug release, renal clearance,
and secondary distribution [45,46]. Hence, there is a question: which strategy is better,
given that the two strategies are opposite? To answer this question, sufficient experiments
need to be carried out to validate these methods. Alternatively, a flexible strategy may be a
better option. For example, Chen et al. developed an excellent NP which could maintain
a certain size and negative surface charge for prolonged circulation [45]. After accumu-
lating in the acidic TME, these NPs shrank to a smaller size and switched to a positive
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surface charge for efficient penetration and retention in the interstitial space throughout
the tumor tissue [45] (Figure 2B). The design of such size and charge dual-transformable
nanomedicine is an attempt to explore ways of making the most of the physiochemical
features of nanomedicines.

Figure 2. Morphological design of nanoparticles (NPs). (A). Light-triggered assembly of gold
NPs (AuNPs). (Aa) Schematic illustration of a light-triggered assembly of diazirine-decorated
AuNPs (dAuNPs). (Ab) Transmission electron microscopy (TEM) images of dAuNPs before and
after illumination with a 405 nm laser for different periods of time [42]. Aggregation and the
agglomeration degree of dAuNPs depended on irradiation time, demonstrating that interparticle
cross-linking took place upon laser irradiation. (B). TEM images of shell-stacked NPs (SNPs) in
PBS at pH 7.4 or 6.8 [45]. SNPs with size and charge dual-transformable ability displayed a clear
spherical core–shell structure at pH 7.4, with a size of 145 nm. When SNPs were incubated at pH
6.8, a polyethylene glycol (PEG) corona detached from the core and subsequently the small-sized
core with a size of 40 nm was exposed. (C). Morphology and structure of gold nanorods (GNRs) and
bacteria-like mesoporous silica nanoshell (MSN)-coated GNRs (bGNR@MSN). (Ca) TEM image of
GNRs. (Cb,Cc) TEM images of bGNR@MSN coated for 12 h with silica. The red arrows indicate
the size (~6.7 nm) of mesopores. (Cd) TEM image of bGNR@MSN coated for 24 h with silica [29].
The morphology of the outside mesoporous silica layer resembled bacterial pili, and the thickness of
the mesoporous silica layer could be controlled by changing the reaction time. (D). Morphology of
virus-like mesoporous silica NPs. (Da,Db) Scanning electron microscopy (SEM) and (Dc,Dd) TEM
images with different magnifications of the virus-like mesoporous silica NPs. The red arrows mark the
open tubular structures; the red circles highlight the top view of the open silica nanotubes. The inset
of (Da) is a structural model for the virus-like mesoporous silica [47]. (Image (A) is reproduced
with permission from [42] (Copyright © 2016 John Wiley & Sons, Inc.). Image (B) is reproduced
with permission from [45] (Copyright © 2017 John Wiley & Sons, Inc.). Image (C) is reprinted with
permission from [29] (Copyright © 2018 Elsevier Ltd.). Image (D) is reprinted with permission
from [47] (Copyright © 2017 American Chemical Society).)

2.2. Shape

Spheres remain the predominant shapes of particulates because they are easy to man-
ufacture [48]. Non-spherical shapes, including rod-like, disc-like, and other unusual mor-
phologies inspired by natural entities, also exhibit unique properties which are influenced
by specific structure–activity relationships between particle shapes and biological pro-
cesses [49]. It has been demonstrated that ellipsoid particles display lower internalization
by macrophages than spheres with prolonged circulation time [50]. Inspired by the intrinsic
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surface features of the natural biomembrane system, many particles with biomimetic shapes
have been reported to exhibit functional merits. For example, bacteria-like mesoporous
silica nanoshell-coated gold nanorods present high doxorubicin (DOX) loading efficiency
(40.9%, w/w) due to a large pore volume and surface area [29] (Figure 2C). Another exam-
ple of a unique virus-like mesoporous silica NP has a spiky, tubular, and rough surface,
which is associated with high cellular uptake (the particles invade living cells in large
quantities within 5 min) [47] (Figure 2D). Nie et al. designed a spiky nanoinhibitor which
can neutralize influenza A virus by matching the surface topology of the viral particle to
block its attachment and entry to host cells [51]. The reason why researchers continue to
study shape effects is that they want to figure out whether shape effects can offer bene-
fits for specific therapeutic purposes; therefore, specifications of definite mechanisms for
nano-biointeractions should be verified by reliable experiments.

2.3. Permeability and Retention

With an in-depth understanding of the interaction between nanomedicines and biosys-
tems, pathological features of cancers and TME have been elucidated and exploited for
targeted drug delivery in cancer treatment. In particular, the EPR effect of solid tumors
has been extensively studied and utilized for passive targeting therapy. The EPR effect
is the fundamental pathophysiological phenomenon that occurs in solid tumors and it
is universally observed in human cancers [52]. This strategy is based on abnormal vas-
culatures in which endothelia are fenestrated, with gaps between 100 nm and 780 nm
of size, enabling the extravasation and retention of macromolecules and nanocarriers at
pathological sites [53]. However, a debate has been provoked in recent years about the real
efficiency of the EPR effect due to its large inter- and intraindividual heterogeneity [20].
Wilhelm et al. claimed that a median of 0.7% of the administered dose of the NPs under
study was detected in solid tumors in mouse models and that the median delivery effi-
ciency had not improved in the past 10 years [11]. Other experts argued that this negative
consequence relied largely on an unconventional parameter being selected for efficiency
evaluation without consideration of the active pharmaceutical ingredient [54]. Ding et al.
confirmed that 87.8% of the human renal tumors in their study showed a considerable
EPR effect, although significant diversity and heterogeneity was exhibited in an ex vivo
perfusion model [55]. Another study indicated that NPs were transported into tumors
predominantly by active transendothelial mechanisms instead of a passive process because
tumor vessels were mostly continuous and interendothelial gaps rarely occurred, even
though these gaps had a size of up to 2000 nm, which was sufficient to allow NPs to
enter tumors [53,56,57]. Regardless of whether the localization of nanocarriers in tumors is
mainly attributed to the EPR effect, passive accumulation, though it definitely occurs after
systemic administration, is highly heterogeneous, both inter- and intraindividually [17,55].
Despite this, nanocarriers themselves are frequently utilized to transport therapeutic drugs
to the tumor site due to their nanoscale size advantage.

Overall, in spite of the current controversy regarding its heterogeneity and efficacy,
the EPR effect is still considered an effective means and a fundamental basis for deliv-
ering nanomedicines to tumors. It is critical to further identify the pathophysiological
mechanisms and limitations of the EPR effect in order to better utilize this concept in devel-
oping tumor-selective nanomedicine delivery strategies and thereby achieve satisfactory
outcomes in clinical applications [52,58].

2.4. Stimuli-Triggered Drug Release

Stimuli-responsive drug release is a pivotal strategy in current drug delivery research
due to the “smart” drug release behaviors of certain types of nanomedicines at predictable
locations in response to local (i.e., physiological or pathophysiological) cues, including pH,
redox, hypoxia, glucose, and enzymes, or in response to external stimuli, such as light, ul-
trasound, magnetic fields, electric fields, and temperature [59–64]. These so-called “smart”
therapeutics mainly depend on hydrolysis-controlled release systems. They can sensitively
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alter their microstructures to adapt to minor environmental changes to reduce the systemic
toxicity and enhance the efficiency of cancer therapy [59]. In addition, dual- or multirespon-
sive nanomedicines may provide a better option because they possess more comprehensive
abilities of site-specific drug release in response to the complex, heterogeneous, and dy-
namic TME for improved cancer treatment. For example, Huang et al. developed a kind
of smart nanoparticle which was dual-triggered by pH and matrix metalloproteinase
2 [65]. Song et al. engineered a unique smart nanoagent based on self-assembled quantum
dots–phenolic nanoclusters for improved antitumor chemotherapy through adenosine
triphosphate (ATP)-responsive drug release in cancer cells [66]. Although considerable
effort has been expended, the development of responsive nanomedicines still has a way
to go.

3. Mammalian Cell-Based DDSs

The research field of drug delivery optimization has grown tremendously in the
past few decades with the development of nano-sized DDSs. The synthetic materials,
either organic or inorganic, may have defects in terms of biocompatibility and tumor
targeting, such as difficulties in crossing biological barriers and short blood circulation
half-lives. Compared to synthetic materials, biomimetic nanomedicines originated from
natural cells possess various advantages owing to their high biocompatibilities and versatile
functionalities, which can compensate the limitations of synthetic materials to some extent.

3.1. Cell Membrane-Camouflaged NPs

Cell membrane-camouflaged nanomedicines not only preserve the physicochemi-
cal properties of the synthetic materials, they also inherit biological functions from the
original source cells due to integrated membrane compositions with surface molecular
diversity [67,68]. The surface properties and complex biofunctions of biomimetic NPs
inherited from source cells are difficult to replicate with traditional chemical modifications.
Several methods have been developed to construct membrane-cloaked nanomaterials with
many types of membranes. Generally, the fabrication process of cell membrane-coated NPs
is facile, which includes two main steps: isolating the cell membrane and fusing the mem-
brane with the synthetic core [69]. With regard to erythrocytes and platelets, which are both
devoid of nuclei, we can directly extract membrane vesicles by high-speed centrifugation.
Regarding other nucleated cells, complex biochemical procedures are often needed to com-
pletely remove intracellular contents, including hypotonic lysis followed by ultrasonication,
along with discontinuous sucrose density centrifugation, repeated freeze–thaw cycles and
so on [70,71]. Afterwards, the synthesized cores can be covered with the membrane using
different approaches. Among these strategies, the most frequently used method is physi-
cal extrusion, by which the synthesized core and the membrane are co-extruded to pass
through polycarbonate porous membranes of the desired size [30]. Although the extrusion
process is quite promising, lab productivity performance has been disappointing, resulting
in great challenges for large-scale industrial production, while sonication seems to be
more effective and practicable [72]. The types of cell sources, fabrication processes, unique
properties, and potential applications of currently available cell membrane-camouflaged
nanomedicines are summarized in Table 1. Cell membrane-camouflaged NPs have great
potential to overcome biological barriers for active targeting. The integrity of the cell
membrane coating on NPs is a critical metric by means of which to evaluate the potency
of these biomimetic NPs. Liu et al. uncovered that up to 90% of biomimetic NPs were
only partially coated [73]. Whether these partially coated NPs have defective biomedical
functions remains unclear and needs further experimental validations.
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Table 1. Summary of cell membrane-camouflaged nanomedicines for cancer therapy.

Cell Source Synthetic Carrier Therapeutic
Agent

Fabrication
Methods Cancer Model Unique Advantages Refs.

RBC

Fe3O4 MNs - Extrusion CTCs
Reduced non-specific

protein adsorption;
Prolonged circulation time

[74]

BSA
PAAV-SNO

10-HCPT;
ICG

IR1061
1-MT

Sonication
and extrusion

HeLa
4T1

Synergistic chemo-PTT;
Immune evasion ability [75–77]

Macrophage Polymer PTX Sonication
and extrusion MDA-MB-231 Tumor-homing ability;

Controlled release [78]

TAAM UCNP RB Extrusion 4T1 TME targeting [23]

Neutrophils PLGA PTX Sonication
and extrusion SKOV3 Prolonged circulation time;

Enhanced accumulation [79]

Platelet Fe3O4 SAS Extrusion 4T1 Effective ferroptosis;
Mild immunogenicity [80]

NK cell PLGA TCPP Sonication
and extrusion 4T1 M1-Mϕ polarization;

Activated effector T cells [81]

T cell HA-SS-VES Curcumin Extrusion B16 Bind to PD-L1;
Membrane escape effect [67]

Tumor cell

CT26 Bi NPs - Extrusion CT26 Long-term circulation [82]

B16 USIO NPs DOX Extrusion B16 Homotypic targeting;
Immune escape [13]

bEnd.3 (PTX)NS PTX Extrusion bEnd.3 BBB penetration [30]

Hybrid membrane

RAW264.7 4T1 PLGA Met; siFGL1;
DOX Sonication 4T1 Lysosomal escape;

Targeting metastasis [68,72]

B16F10; 4T1;
M1-Mϕ;
platelets

- - Sonication
and extrusion

B16F10;
4T1

Increased affinity to CD47;
M2-to-M1 repolarization [83]

RBC; MCF-7 Melanin NPs - Sonication
and extrusion MCF-7 Prolonged circulation

time;Homotypic targeting [84]

Abbreviations: RBC, red blood cell; MNs, magnetic nanoparticles; CTCs, circulating tumor cells; BSA, bovine
serum albumin; PAAV-SNO, S-nitrosothiols (SNO)-pendant copolymer (poly(acrylamide-co-acrylonitrile-co-
vinylimidazole)-SNO copolymer; PTT, photothermal therapy; RES, reticular endothelial system; TAMM, tumor-
associated macrophage membrane; UCNP, upconversion nanoparticle; TME, tumor microenvironment; RB,
Rose Bengal; PLGA, poly (lactic-co-glycolic acid); SAS, sulfasalazine; PTX, paclitaxel; NK, natural killer; TCPP,
4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid); Mϕ, macrophage; HA-SS-VES, hyaluronic acid-
grated-disulfide bond-vitamin E succinate; PD-L1, programmed cell death ligand-1; CT26, mouse colon cancer
CT26 cells; Bi, bismuth; NPs, nanoparticles; B16, mouse melanoma cell line; USIO, ultrasmall iron oxide; DOX,
doxorubicin; NS, nanosuspensions; BBB, blood brain barrier; Met, metformin; siFGL1, small interfering fibrinogen-
like protein 1.

3.2. Whole Cell as Drug Carrier

Compared to the cell membrane-coating strategy which has little component loss,
the whole living cell presents an intact system for biological applications with no need
for further modifications. Therapeutic cargos can be encapsulated into cells by various
methods, including electroporation, diffusion, extrusion, and active endocytosis, depending
on the properties of payloads and cell types. Many types of cells can be directly used as
whole-cell carriers for drug delivery. For example, due to superior circulation lifespan and
high biocompatibility, erythrocytes are frequently used to increase the half-life of drugs in
the circulation; phagocytes can be used for drug loading because of their endocytosis and
exocytosis functions; certain types of cells that have intrinsic tumor-tropic properties can
be used for targeted drug delivery to target certain types of tumors [85–87]. In addition,
the outer surface of cells offers robust functional groups of molecules, such as proteins,
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polysaccharides, and lipids, providing diverse synthetic materials for durable adhesion by
covalent and non-covalent bindings [88,89].

3.2.1. Red Blood Cells

Red blood cells (RBCs) have a biconcave disc shape, maximized surface area-to-
volume ratio, and a deformable soft cytoskeleton, enabling them to be resistant to lysis
and fracture and to squeeze through constricted spaces within the vasculature [90,91].
In addition, some RBC membrane glycoproteins can protect RBCs from damage and
elimination from the bloodstream by the immune system, allowing human RBCs to circulate
in vivo for a long period of time (~120 days) [91]. RBCs also have many other advantages,
such as considerable total amount in circulation, easy collection, and high drug-loading
capacity [92]. Owing to these favorable features, RBCs are widely used to deliver drugs
for long-term release in blood circulation, with high drug-loading, good biocompatibility,
and limited immunogenicity [90,93].

RBC-derived pharmaceutical nanocarriers have gained remarkable interest in past
decades for use in the development of targeted cancer treatment. This is partially due
to the potential for improved passive tumor-targeting via the enhanced EPR effect. Sev-
eral chemical or physical methods have been developed to load drugs in RBCs or attach
them on the outer surfaces of RBCs. For example, the osmotic lysis-based method is a
common strategy to load therapeutic agents into RBCs. It is based on the basic principle
that RBCs swell in hypotonic drug solutions, this being followed by pore formation on
the cell membranes, which allows the diffusion of dissolved substances into cells driven
by a concentration gradient [94,95]. The pores will be partially resealed in the hypertonic
solutions and the substances will be retained in the RBCs at appropriate concentrations [94].
L-asparaginase (ASNase)-loaded RBCs are the typical example of entities prepared by this
method. ASNase-loaded RBCs can specifically catalyze the substrate asparagine (ASN) to
produce free L-aspartic acid and circulate for a longer time as enzyme bioreactors [96,97].
What is more, research on ASNase-loaded RBCs has entered the clinical stage for treatment
of acute lymphoblastic leukemia, pancreatic cancer, acute myeloid leukemia, and triple-
negative breast cancer [96]. However, despite the great clinical progress of ASNase-loaded
RBCs, the osmotic lysis-based method still has several limitations. Although the pores in
cell membranes can be partly restored, the damage is irreversible, resulting in deteriora-
tion of the structural integrity of RBCs and inevitable drug diffusion [97]. To overcome
this obstacle and optimize the methodology, researchers have applied non-invasive cell-
penetrating peptide-mediated cell internalization to encapsulate ASNase into RBCs, which
could maintain the structural integrity of RBC membranes [97]. Other drug-loading meth-
ods, such as electroporation, extrusion, and mechanical force (fluidic shear stress), also
induce irreversible membrane integrity disruption in RBCs and thus may impair their
survival, circulation, and therapeutic functions [94,98]. However, the concept of applying
cell-penetrating peptides has stimulated the exploration of other strategies which might
improve the existing methods of drug encapsulation.

Apart from the above-mentioned methods that are used to encapsulate drugs into
RBCs, the large surface area-to-volume ratio of RBCs is also beneficial for surface attach-
ment of cargos via chemical conjugation or non-covalent binding mechanisms, such as
electrostatic interactions, hydrogen bonding, van der Waals and/or hydrophobic forces [99].
As a paradigm of surface attachment for cargo loading, the idea of RBC hitchhiking (RH) is
to adsorb therapeutic NPs onto RBC membranes for subsequent administration by intra-
venous (IV) or intra-arterial (IA) injection. This is a method that exhibits the synergistic
effects of the “nano–micro–macro” combination (nanoscale drug carriers + microscale
RBCs + macroscale IV/IA catheters) [100]. After entering the circulation, the NPs on RBCs
are entrapped by pulmonary capillary endothelial cells when RBCs squeeze through the
lung capillaries, leading to the passive dissociation of therapeutic agents from the surfaces
of RBCs (Figure 3A). Therefore, this strategy is usually used to target the lungs and vessels
rather than the spleen and liver [93,100]. Researchers have also attempted to employ RH
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for cerebrovascular targeting, producing a brain accumulation of 11.5% of the total injected
dose of therapeutic agents [100]. Zelepukin et al. demonstrated that RBCs carrying certain
small 100 nm-sized particles can be more effective to boost the delivery of non-targeted
particles to the lungs, providing boosts up to a record high value of 120 times the delivery
capacities of RBCs carrying sub-micron particles [101]. This result suggests that larger
NPs are easier to be separated and removed from the surface of RBCs than smaller ones.
Furthermore, the authors also screened RH with sub-200 nm-sized NPs and found that
they were effective in inhibiting lung metastases of melanoma B16-F1 cells [101]. Therefore,
they proposed the hypothesis that changing the affinity of RH complex formation may
allow the targeting of different organs or at least the discrimination of different tissues with
or without pathological changes [101].

Figure 3. Mammalian cells for targeted drug delivery. (A). RBC hitchhiking (RH) drug delivery
system. (Aa) Procedural steps of RH. NPs were first adsorbed onto the RBCs ex vivo. The RBC–NP
complexes were then injected intravenously (IV) or intra-arterially (IA). Then, RH transferred NPs to
the capillaries of the first downstream organ. (Ab) SEM images of polystyrene NPs (PS-NPs) and
nanogels attached to the surface of murine RBCs [100]. NPs were mixed with RBCs in vitro. Scale
bars = 1 µm. (B). M2-like tumor-associated macrophage (TAM)-targeted NPs. (Ba) Composition
and structure of a self-assembled micelleplex. The amphiphilic diblock copolymers self-assembled
into M2-targeting micelles with therapeutic agents. (Bb) TEM images of a micelleplex at pH 7.4
and pH 6.8. At pH 6.8, the size of the micelleplex decreased due to the removal of the sheddable
PEG corona. (Bc) Schematic illustration of PEG-sheddable nanodrug targeting M2-like TAMs for
tumor immunotherapy [102]. The pH-sensitive nanodrug with M2-targeting peptide (M2pep) was
coated with a sheddable PEG corona. It was stable at pH 7.4 but cleavable in the acidic tumor
microenvironment (TME) for active M2 targeting. A STAT6 inhibitor, AS1517499 (AS), and IKKβ
siRNA were exposed for M2-to-M1 transpolarization for cancer immunotherapy. (C). Confocal
micrographs of cellular backpacks attached to the surface of leukocytes (nucleus, blue; membrane,
green; backpack, red) [103]. (D). Schematic illustration of neutrophil-mediated delivery of NPs to
inflammatory tumor tissues induced by photosensitization (PS) [104]. Firstly, anti-CD11b antibody-
coated NPs (NPs-CD11b) were constructed via biotin–neutravidin binding. Then, neutrophils were
activated after tumor PS treatment and the intravenously injected NPs-CD11b were internalized by
active neutrophils. Finally, NP-laden neutrophils infiltrated the tumor for drug delivery. (Image (B) is
reprinted with permission from [102] (Copyright © 2020 American Chemical Society). Image (D) is
reproduced with permission from [104] (Copyright © 2017 John Wiley & Sons, Inc.).
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Taken together, RBC-based DDSs take advantage of carrier RBCs to improve the circu-
lating time, drug-loading capacity, and biocompatibility of therapeutic agents. However,
as has already been mentioned, there are two major problems that remain unresolved
after several years of preclinical research. On the one hand, the encapsulation procedure
impairs the membrane integrity and function of RBCs to varying extents, reducing their
biocompatibility and probably having systemic and local side effects in the body. On the
other hand, bioactive drugs attached to the surface of RBCs could be desorbed by the shear
force when drug-carrying RBCs pass the capillaries, which limits drug accumulation in
target organs and thereby restricts therapeutic outcomes. However, this restriction could
also be an unexpected advantage for the delivery of NPs with specific purposes, such as
targeting blood- and endothelium-related diseases. Research on new ways to develop
more efficient RBC-based DDSs with better safety profiles and therapeutic efficacies for the
treatment of cancers is highly desirable.

3.2.2. Macrophages and Monocytes

Macrophages are important innate immune cells that show inherent capabilities to
detect, engulf, and digest invading pathogens or remove dying or dead cells and cellular
debris, mainly based on the recognition of specific receptors termed pattern recognition
receptors (PRRs). The ability of macrophages to sense chemotactic cues and home in
on tumors is called chemotaxis and has been elucidated and exploited for targeted drug
delivery to treat tumors [86]. Apart from intrinsic tumor tropism capacities, their superior
phagocytic abilities also make macrophages the ideal natural drug carriers. Therapeutic NPs
can be loaded into macrophages ex vivo by phagocytosis so that drug-bearing macrophages
can then be re-injected into the body as “Trojan horses”, providing a potent platform for
enhanced therapeutic efficacy in treating tumors [105]. Considering the possible biosafety
risk of ex vivo preparation of drug-loading macrophages, researchers have developed an
alternative in vivo internalization strategy for encapsulating drugs dependent on receptor-
mediated phagocytosis for therapeutic intervention [106]. Xiao et al. developed a type of
micellar nanodrug with M2 macrophage-targeted peptides hidden in the pH-sheddable
PEG corona so that active targeting of M2 macrophages is triggered only in the acidic
TME [102] (Figure 3B). Smart nanodrugs direct the transpolarization of M2 towards M1
macrophages via co-delivery of IKKβ siRNA and STAT6 inhibitors to suppress tumor
growth and metastasis [102].

The entrapped therapeutic agents in phagosomes, especially some genetic drugs, may
be degraded within destructive lysosomes; therefore, more research needs to be carried out
to find a way to preserve drug stability and biological activity in the circulation and in target
sites. Shields IV et al. constructed discoidal particles (referred to as “backpacks”) which
can adhere to macrophage surfaces, thus evading phagocytosis for prolonged durations,
and maintain the M1 polarization of tumor-associated macrophages (TAMs) to potentiate
a robust anti-tumor response [103]. However, the cellular functions of macrophages may
be compromised by the high surface densities of particles since the sufficient exposure
of proteins on plasma membranes to microenvironmental stimuli is essential for certain
cellular functions, such as ligand recognition and chemotaxis (Figure 3C).

Tumor-infiltrating macrophages possess intrinsic phenotypic plasticity allowing adap-
tation to specific TMEs and impacts on tumor progression. In turn, the TME can dictate
macrophage polarization towards a favorable M2 phenotype with immunosuppressive
and pro-tumorigenic properties from M0 and M1 phenotypes [107]. Compared to M2
macrophages, M1 macrophages are considered to support anti-tumor effects and have
stronger phagocytic capabilities that would help to improve drug-loading efficacy. To
maintain M1 polarization in the TME, IFN-γ-loaded “backpacks” can be bound to the
surfaces of macrophages with sustained release of IFN-γ to treat murine mammary carci-
noma [103]. Thus, M1 transpolarization from M2 TAMs in the TME emerges as a promising
strategy for anti-tumor immunotherapy, and macrophage-based DDSs engineered with
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nanotechnology will provide a more effective cellular function-driven strategy for targeted
anti-cancer therapy.

Monocytes are mononuclear phagocytes circulating in the bloodstream which can be
recruited at every step during tumor progression. Classical monocytes are believed to be a
major source of TAMs because they can be recruited to deep hypoxic areas of tumors [108].
Such a property confers on monocytes the desirable potential to deliver drugs into inacces-
sible areas inside tumors such as hypoxic and necrotic regions. Smith et al. indicated that,
of all myeloid cells, only Ly-6Chi monocytes displayed substantial single-walled carbon
nanotube (SWNT) uptake within 2 h post-intravenous injection of SWNTs [109]. In contrast,
other circulating white blood cells only took up negligible amounts of SWNTs [109]. This
high selectivity of SWNT uptake by the Ly-6Chi subset instead of the EPR effect is probably
much more beneficial for treating solid tumors. Similarly, Yang et al. reported that COSA
micelles, composed of chitosan and stearic acid, were selectively taken up by circulating
Ly-6Chi monocytes in a receptor-mediated way after intravenous administration [110]. It
is difficult for injected particles to reach deep hypoxic regions given the lack of vessels in
solid tumors; targeting Ly-6Chi monocytes in the blood for drug delivery may overcome
this limitation. In addition, flat, disk-like particles attached to the surface of monocytes
can also avoid phagocytosis by monocytes, which can limit the toxic effect of NPs on
monocytes [111].

3.2.3. Neutrophils

Neutrophils, one of the primary kinds of effector cells in acute inflammation, lead the
first wave of host defense against infection or tissue damage [112]. In humans, they are
the most abundant (50–75%) type of leukocytes circulating in the bloodstream and require
constant replenishment because of their short half-life [113–115]. Activated neutrophils
hold great potential in cancer targeted drug delivery, having advantages similar to those
of other immune cells, such as niche-targeting trafficking properties via intrinsic cell
adhesion molecules on membranes [116]. Neutrophils also have distinct capabilities to
travel to the brain and penetrate inflamed brain tumors which other cells cannot easily
access [117]. For example, Xue et al. reported that paclitaxel (PTX)-loaded neutrophils could
suppress postoperative glioma recurrence [118]. Firstly, PTX-loaded cationic liposomes
were incubated with neutrophils in vitro to obtain PTX-loaded neutrophils by neutrophil
internalization. Secondly, inflammatory factors released after surgical tumor resection
guided the transmigration of the PTX-loaded neutrophils into the inflamed area of the
brain. Finally, PTX was released from PTX-loaded neutrophils to induce cytotoxicity
toward the recurring tumor cells to inhibit their proliferation and tumor relapse. This is
an ideal design that makes full use of the physiological properties of native neutrophils
to enhance the therapeutic potential of anti-cancer drugs. Nevertheless, NPs internalized
into neutrophils ex vivo may also have some common flaws, such as reduced cell viability,
insufficient cell numbers, and a risk of in vitro contamination. These concerns should be
addressed to ensure the biosafety and efficacy of neutrophil-based DDSs.

Moreover, better therapeutic results may be achieved if activated neutrophils that
can be used as drug delivery carriers can be produced incidentally during certain com-
bination therapies. In preclinical trials, several strategies have been used in combination
with neutrophils to improve the therapeutic efficacy of neutrophil-based DDSs, such as
photothermal therapy (PTT), which could naturally create an acute inflammatory envi-
ronment for the recruitment of neutrophils into tumor tissues [119,120]. Based on this
phenomenon, Li et al. proposed a more advantageous strategy for in situ hitchhiking
of circulating neutrophils for cancer treatment [121]. The researchers cloaked NPs with
bacteria-secreted outer membrane vesicles to construct neutrophil-based delivery vehicles
carrying nano-pathogenoids which could eliminate residual microtumors after PTT [121].
By this means, the number of neutrophils in tumors could be increased by up to 300–600%
via PTT pretreatment, which dramatically improved therapeutic outcomes. Consequently,
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a single treatment produced a 60% tumor-free rate and a 97% tumor growth inhibition rate,
and tumors were completely eradicated by repeated treatment [121].

The in situ hitchhiking strategy is practically advantageous. Once engineered nanomed-
icines can specifically target activated neutrophils in situ, therapeutic agents sequentially
hijack neutrophils for targeted drug delivery. Nanomedicines with high binding affinity to
neutrophils are critical for this active targeting process. In preclinical studies, numerous
membrane proteins of neutrophils are potential candidates for this active targeting of NPs.
For example, anti-CD11b antibody-coated NPs can facilitate engulfment by neutrophils
in vivo because CD11b is highly expressed on activated neutrophils [122]. This neutrophil-
based drug delivery enables therapeutic agents to reach TMEs along with neutrophil
infiltration induced by photosensitization [104] (Figure 3D). In fact, the selective targeting
of neutrophils via high-affinity ligands is still a challenge, owing to a close lineage similarity
between neutrophils and other types of myeloid cells, such as monocytes, macrophages,
and osteoclasts [123]. However, as the first responders, neutrophils initiate host defenses
against various pathogens and could definitely serve as promising natural carriers to
transport payloads from blood circulation to diseased tissues across the blood vessel barrier
via chemotactic recruitment [114].

4. Pathogen-Based NPs

Pathogen-based DDSs can deliver a variety of drugs to target sites, taking advantage of
inherent biomimetic properties and the immunogenicity of carriers [124–127]. For example,
most cells, particularly phagocytes, can ingest pathogen particles by endocytosis and
transport payloads to target sites [121,128]. There are many types of pathogens that can be
engineered as agent carriers and numerous efforts have been made to use these pathogens
for therapeutic delivery functions [129].

4.1. Viruses

Viruses are composed of genomic DNA or RNA and a protein coat capsid. They
can package and transfer their nucleic acids into host cells for self-replication and exhibit
intrinsic abilities to evade host immune surveillance by several means [130–132]. Viral
vectors, such as adenoviruses, adeno-associated viruses, retroviruses, and lentiviruses,
are regarded as superior natural nucleic acid vehicles because they can protect and carry
their cargos for gene therapy, but their application remains a matter of debate due to
biosafety concerns caused by their immunogenicity and off-target effects [133]. The genetic
reprogramming of viruses, which replaces their genetic materials with therapeutic nucleic
acids, has shown great potential to improve their biosafety and therapeutic efficacy [134].
Moreover, surface modifications to both the exterior and interior capsid surfaces, another
crucial engineering approach, can also broaden the application of virus-based DDSs by
improving pharmacokinetics and targeted delivery efficacy, while attenuating immune
responses [133,135]. Numerous therapeutic agents can be effectively delivered to treat
breast, melanoma, ovarian, and prostate cancers via these approaches [136]. In recent years,
plant virus-based nanotechnologies have also been recognized for their possible applica-
tions in treating human diseases [137,138]. Plant viruses and certain bacteriophages may
provide higher biosecurity, as the nucleic acids of these viruses cannot be integrated into
the genomes of mammalian cells, avoiding possible infection, contaminations, and genomic
mutations [135].

Virus-like particles (VLPs) are self-assembled particles with capsids that can be uti-
lized as delivery carriers for various cargos, including small synthetic molecules, antigens,
adjuvants, nucleic acids, peptides, and proteins [126,129]. Compared to conventional viral
vectors, VLPs lack a viral genome and are considered to be safer carriers because they can
only mimic the bioactivity of their parental virus and have comparable immunogenicity
to the parental virus [129]. Different strategies, such as self-assembly processes, genetic
engineering, infusion, and bioconjugation, have been developed to carry the payloads
either inside the VLPs or on the outside membranes of capsids [139–143]. Taking advantage
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of the immunogenicity of viruses, VLPs have been frequently designed for vaccination or
immunotherapy in cancer treatment [144,145]. In addition, VLPs also share the intrinsic
tropisms of their parental viruses towards certain organs or tissues [146]. This characteristic
of VLPs facilitates the development of VLP-based DDSs dependent on their natural tar-
geting capabilities without requiring further engineering processes; for example, hepatitis
B VLPs can be used to target the liver, JC VLPs to target glial cells, and papilloma and
polyoma VLPs to target the spleen [147–152].

Virosomes, another category of virus-derived particles, are liposome-like NPs—phosph-
olipid-bilayered vesicles with virus-derived surface glycoproteins and removed nucleo-
capsids [129,153,154]. Two unique influenza envelope proteins, haemagglutinin and neu-
raminidase, are important for virosome reconstitution and endow virosomes with excellent
adjuvant properties for the production of various vaccines [154,155]. Virosomes can be
modified by different types of antigen epitopes and can target different kinds of host
cells [156]. Virosome-based vaccine delivery systems have been successfully developed
against hepatitis A viruses and influenza viruses, but in vivo applications are limited due
to their high immunogenicity [129].

Over the past decades, researchers have been working to apply the merits of viruses
to synthetic materials, while ensuring the biosafety of viral carriers for their successful
use in drug delivery. Mimicry of the structural advantages and surface characteristics of
viruses has been used to improve targeting efficiency and cellular uptake and to achieve
mucus penetration, which is beneficial for drug delivery [157,158]. For instance, Wu et al.
developed an artificial tobacco mosaic virus (ATMV) therapeutic agent to the mimic rod-
shaped structures and infection process of tobacco mosaic virus (TMV) [159]. Negatively
charged ATMVs with high-aspect ratio morphologies showed significant advantages,
namely, long-term circulation, powerful tumor tropism, and robust oncolytic potency owing
to their arginine–glycine–aspartate (RGD) modification and close structural resemblance to
TMV [159]. They could not only destroy primary infected cells but also deeply infect solid
tumor cells by cell-to-cell disseminations (Figure 4A).

Figure 4. Pathogen-based drug delivery systems. (A). Construction of an artificial tobacco mo-
saic virus (ATMV). (Aa) Schematic illustration of supramolecular assembly fabrication of ATMVs.
(Ab) TEM images of a single-walled carbon nanotube (SWNT) which was conjugated with an RGD
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peptide (SWNT-R) (left) and ATMVs (right). Atomic force microscopy (AFM) image of ATMVs (upper
right) [159]. To build the ATMVs, SWNT-R scaffolds and capsid subunit mimetic dendrons (CSMDs)
were co-dissolved in dimethyl sulfoxide (DMSO) and then the mixture was dropped into ultrapurified
water under ultrasonic conditions to form tightly ordered arrays that closely mimicked the structure
of tobacco mosaic virus. (B). Bacteria-based anti-tumor vehicles. (Ba) Biosynthesis mechanism of
TPB@Au. AuNPs were adsorbed onto the thermally sensitive programmable bacteria (TPB) through
enzymatic reduction to obtain TPB@Au. (Bb,Bc) TEM images of TPB@Au. (Bd) TEM image of AuNPs
on the surface of TPB@Au. (Be) SEM image of TPB@Au [125]. (C) Biomimetic yeast microcapsule
for anti-tumor therapy. (Ca) Schematic illustration of a nanoprecursor packaged into a yeast capsule
(YC). A water soluble cis-diamminedichloro-platinum (CDDP) precursor (PreCDDP) was loaded
into the interior of a YC and was simultaneously adsorbed on the YC wall largely by electrostatic
forces. (Cb) TEM (left) and SEM (right) images of YCs prepared under optimized core-removing
conditions. The core contents of YCs were partially removed, resulting in a collapsed structure.
(Cc) TEM (left) and SEM (right) images of PreCDDP-loaded YCs. The interiors of YCs were largely
filled with PreCDDP post-drug-loading and exhibited a plump morphology [160]. (Image (A) is
reproduced with permission from [159] (Copyright © 2020 John Wiley & Sons, Inc.). Image (B) is
reprinted with permission from [125] (Copyright © 2018 American Chemical Society).)

Although these strategies have been extensively investigated in preclinical research,
their clinical applications are often unsatisfactory. When virus-based drug delivery is used
in vivo, the biosafety concern should be a top priority, and it is a matter that needs further
investigation. Modification strategies to overcome this obstacle and reduce the off-target
effects of virus-based DDSs are still in urgent demand.

4.2. Bacteria

The idea of using pathogenic bacteria as oncolytic agents to activate the immune
system to fight against cancer has been raised for more than a century. However, infection-
mediated treatment by oncolytic bacteria is usually accompanied by serious adverse effects,
making this therapy controversial and limiting its use [161]. Recently, the use of bacteria
as anticancer agents has been reproposed with the deep understanding of the TME and
the development of bioengineering technology [162]. Therefore, bacterial strains with
reduced bacterial virulence and attenuated immunogenicity but without compromised
tumor targeting capability have been produced by genetic engineering for selective tumor
treatment [162,163]. For instance, an auxotrophic strain was generated to compete with
tumor cells for local nutrients and control tumor cell proliferation in vivo without causing
serious systemic toxicity, while another strain with reduced bacterial virulence was gener-
ated by depletion of toxic genes with strongly reduced swarming but without attenuation
of flagellar swimming and twitching motility [164,165]. In addition, recombinant bacteria
can produce multiple therapeutic substances (e.g., cytotoxins, cytokines, tumor-associated
antigens) for the treatment of cancer [125,166,167].

Genetically modified bacteria which carry therapeutic payloads, including but not
limited to nucleic acids, cytotoxic agents, and enzymes, can serve as efficient drug delivery
vehicles to enter the hypoxic and necrotic regions of solid tumors due to their invasive
properties [168]. The passive behavior of bacterial carriers could be affected by various
environmental stimuli, while their active migration towards more favorable conditions is
guided by bacterial taxes, such as chemotaxis, phototaxis, thermotaxis, pH taxis, and aero-
taxis [169–172]. For example, facultative and obligate anaerobic bacteria display innate
tumor-targeting abilities, which enable them to penetrate deeply into solid tumors follow-
ing a high-to-low gradient of oxygen concentration [173–175].

The biohybrid micromotors design concept has also been developed as an additional
paradigm in bacteria-based drug delivery based on the self-propulsive capabilities of
bacteria. In a recent study, Alapan et al. present a multifunctional biohybrid microswimmer
with the potential to be used soon in in vivo medical applications [176]. This biohybrid
system is composed of bioengineered motile bacteria and RBCs loaded with the anticancer
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drug DOX and superparamagnetic iron oxide NPs (SPIONs). This therapeutic agent has
autonomous propulsion towards target tissues and can also be actuated under an oscillating
magnetic field, demonstrating that bacteria-based biohybrid systems represent a potent
tool for selective tumor-targeted delivery [176]. However, there are several limitations for
biohybrid delivery systems. For instance, the loading of substances may interfere with the
motion of biohybrid microbots, resulting in off-target effects, and the surface conjugation
of NPs may limit drug-loading efficiency as well.

Alternative approaches using bacteria-derived microvesicles, such as bacterial ghosts
(BGs) or outer membrane vesicles (OMVs), have been considered much safer than intact bacteria-
based delivery systems because of reduced immunogenicity and pathogenicity [177,178].

BGs are empty and non-living cell envelopes of Gram-negative bacteria produced by
the controlled expression of lysis gene E [179]. BGs preserve the entire surface structures of
native bacteria for activating the innate immune response, offering a tremendous platform
which not only provides efficient adjuvants for vaccines but also shows therapeutic potential
in combination with versatile carriers for co-delivery systems [179,180]. For example, when
combined with immunotherapies, BGs show excellent performance in priming dendritic
cells (DCs) and releasing tumor antigen payloads, resulting in more robust activation of
CD8+ T cells than can be achieved using lipopolysaccharide-based vectors [181].

OMVs are spherical buds on the outer membranes of Gram-negative bacteria filled
with periplasmic content with sizes ranging from 20 to 400 nm in diameter [182,183].
OMVs are usually utilized as non-living complexes for vaccinations and drug delivery
vehicles because of their immunomodulatory activities [183,184]. In order to investigate
the potential of bacterial OMVs as therapeutic agents for cancer immunotherapy, Kim et al.
demonstrated that systematically administered bacterial OMVs could fully eradicate es-
tablished tumors by inducing long-term anti-tumor immune responses without obvious
adverse effects [124]. Fan et al. developed an excellent design that took full advantage of
bacterial OMVs for tumor treatments [125] (Figure 4B). Non-invasive, thermally sensitive
programmable bacteria (TPB) were transformed with plasmids to express therapeutic pro-
tein tumor necrosis factor alpha (TNF-α) and then decorated with gold NPs (AuNPs) to
obtain TPB@Au. After oral administration, the therapeutic agents could be protected by
TPB in the gut and transported into tumor sites due to an anaerobic homing feature [125].
Inspired by the intrinsic adjuvant properties of parental bacteria, OMV-coated NPs have
been employed to enhance immune responses [185]. Wang et al. constructed a bacterial
vesicle–cancer cell hybrid membrane-coated NP which integrated hollow polydopamine
(HPDA) NPs with OMV and B16-F10 cancer cell membranes [186]. The dual-functional
NPs were used to improve anti-tumor efficacy toward melanoma by exploiting the syn-
ergistic effects of OMV-mediated immunotherapy and HPDA-mediated photothermal
therapy [186].

It is well known that an ideal drug-delivery system for cancer therapy should deliver
the substance selectively to tumor sites in order to maximize tumor-killing effects without
harming healthy tissues. Genetically engineered bacteria can help to achieve this goal.
Taking advantages of their active propulsion and environmental sensing capabilities, we
can steer bacteria to specific regions inside the body, which proves that bacteria can serve
as good tumor-targeting and drug-loading vehicles.

4.3. Fungi

Saccharomyces cerevisiae is non-hazardous and has been extensively used in the food
and beverage industry [187]. Due to their good safety and particular cell wall components,
these fungi are also some of the most studied for DDS construction. Yeast cells whose
membranes consist of β-1,3-D-glucan polymers associated with mannose-containing pro-
teins and chitin can be recognized by dectin-1, a membrane receptor which is expressed
on several types of antigen-presenting cells (APCs) (e.g., macrophages and dendritic
cells) [188,189]. Some researchers have taken advantage of this feature of yeast cells to
develop a promising strategy for targeting atherosclerotic plaques or tumors via an oral
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route [160,190]. After oral administration, yeast cells are taken by microfold cells through
Peyer’s patch and are transported via the lymphatic route to the systemic circulation for
efficient drug delivery [191]. The advantage of this strategy is that the orally administered
particulate vehicles transported through the intestinal lymphatic system can bypass the
hepatic first-pass metabolism, ensuring higher concentrations of therapeutic agents in the
circulation and target tissues [192].

Yeast microcapsules (YCs) can be prepared from yeast cells by treatment with alkalis,
acids, and organic solvents, resulting in minimal cytoplasmic contents and the preserved
cellular morphologies of the yeasts [189]. YCs are porous and hollow microspheres which
can serve as vehicles for various cargos, such as genes, proteins, and drugs, that can be effi-
ciently encapsulated by electrostatic interactions [190]. Zhou et al. demonstrated that orally
delivered drug-laden YCs accumulated in human A549 lung carcinoma xenografts in mice
and showed desirable anti-tumor effects (Figure 4C). Therefore, YC-related biomimetic ap-
proaches can probably serve as an effective strategy for targeted delivery of chemotherapies
by oral administration [160].

In addition, YCs can also be hydrolyzed into small fragments after internalization by
macrophages due to their biocompatibility and biodegradability [193]. Furthermore, YCs
are non-pathogenic, even though they can induce immunological responses in mammals
owing to their β-glucan constituents, known as immunomodulatory compounds, which
possess strong adjuvant properties [188,193]. Moreover, YCs exhibit good safety profiles
after long-term oral administration, which is extremely important for the management of
chronic diseases [190]. All of the above outstanding characteristics make YCs a promising
drug delivery platform for tumor-targeted treatment.

5. Biohybrid Micro-/Nanomotors

Inspired by fascinating biomolecular motors and movable organisms, scientists have
developed self-propelled micro- and nanomotors (MNMs) which can effectively convert
surrounding chemicals or external energies into driving forces for autonomous motion [194].
Compared to ordinary NPs, these MNMs are considered to have great potential for
tumor-targeted delivery and tissue penetration by overcoming biological barriers in an au-
tonomous manner driven by propelling forces [27]. Generally, there are two main categories
of MNMs. The first is that of chemically propelled MNMs, which utilize local chemicals
to generate driving forces, such as bubble propulsion, self-diffusion, and electrophoresis,
via specific catalytic or spontaneous reactions in the surrounding environment [195–197].
The other is that of fuel-free MNMs, which can be propelled by external fields, such as mag-
netic, electric, ultrasonic, and optical fields, showing alternative ways in which autonomous
motion can be induced in MNMs [194].

In recent years, much attention has been paid to artificial MNMs, the behaviors of
natural living systems inspiring improvements in tumor-targeting efficiency. Apart from
the aforementioned bacteria-based MNMs, sperm-based MNMs are also important in this
field of study, due to their good biocompatibility and autonomous motility [194]. Sperm,
the specialized male reproductive cells, possess chemotactic properties and excellent self-
propulsive capabilities, generated by the beating of the sperm flagella [198]. Biohybrid
MNMs constructed by integrating sperms into artificial materials may serve as useful
exploratory tools for targeted drug delivery. As an example of the application of free-
swimming functionalized sperm micromotors (FSFSMs), Chen et al. took advantage of
the endocytosis ability and chemotactic swimming behavior of sperm cells to develop an
intelligent and self-guided biomotor, loading multiple synthetic payloads with different
characteristics into natural sperm cells [199] (Figure 5).

However, micromotor navigation in complex blood vessels may be disturbed by many
factors, such as blood velocity, fluid viscosity, and blood content [194]. To overcome these
hurdles, Xu et al. developed streamline-horned cap (SHC) hybrid sperm micromotors
which could efficiently control the directed swim against flowing blood and cargo deliv-
ery [200]. The high propulsive force of the hybrid sperm micromotors was generated by
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a combination of rheotaxis and thigmotaxis inherited from the sperm and the magnetic
guidance from the coupled horned caps which were loaded with heparin [200]. Although
the hybrid sperm micromotors showed promise for cargo delivery against blood flow,
the propulsive force was not yet high enough to overcome the blood flow in large arter-
ies [200]. In addition, to avoid the motility impairment of sperms induced by antisperm
antibodies (AsAs) in body fluids, Chen et al. reported another kind of biohybrid sperm
microrobot [201]. They encapsulated sperm cells within metal organic frameworks (MOFs)
and zeolitic imidazolate framework-8 (ZIF-8) NPs (ZIFSpermbot) to fulfil active drug
delivery and avoid the biological threats from AsAs [201].

Figure 5. Biohybrid micro-/nanomotors. (A). RBC microswimmers for active cargo delivery.
(Aa) SEM image of an RBC microswimmer with an attached bacterium (pseudo-colored red, RBC;
pseudo-colored green, bacterium). RBC microswimmers were constructed through the non-covalent
interaction of biotin-functionalized RBCs with streptavidin-coated motile bacteria. (Ab) The RBC mi-
croswimmer changed swimming direction when the magnetic field direction was changed (i–iii) [176].
Red arrows indicate the direction of the magnetic field. The inset shows the setup used for magnetic
steering of the RBC microswimmers. Scale bars = 10 µm. (B). Free-swimming-functionalized sperm
micromotors (FSFSMs) for efficient drug-loading and self-propulsion. (Ba–c) TEM images of FSFSMs
loaded with iron oxide (Fe2O3) NPs. (Bd) After incubating with the FSFSMs for 10 min, egg cells
were surrounded by swarming FSFSMs. The functionalized sperm cells maintained their chemo-
tactic ability to sense egg cells. (Be) Fluorescence image of an accumulation of FSFSMs on the egg
surface. (Bf) Microscopic brightfield and (Bg–i) fluorescence images of the same sperm motor group
functionalized with multiple payloads: CdSe/ZnS QDs (Bg), Pt@FITC NPs (Bh), and (Bi) merged by
two fluorescence channels [199]. (Image (A) is reproduced with permission from [176] (Copyright ©
2018, The American Association for the Advancement of Science). Image (B) is reproduced with
permission from [199] (Copyright © 2017 John Wiley & Sons, Inc.).)

Biohybrid MNMs with inherent properties, including remarkable speed, large cargo-
towing ability, and precise motion control, are powerful candidates for improving cancer-
targeted treatment [176,200]. Within certain biological environments, these MNMs can
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sustain propulsive capabilities as long as the necessary fuels exist. However, in practice,
the efficient propulsion of MNMs is often hindered by the absence of inertial forces, which
is common for macroscale objects [202]. Therefore, biohybrid MNMs should be designed
to collect as much chemical fuel from surrounding environments as possible in order to
overcome the limitation mentioned above. In addition, available external forces are also
necessary and powerful supplements for ensuring the successful autonomous motion of
biohybrid MNMs.

6. Conclusions

Biohybrid therapeutic agents preserve features and functions from parental cells to
overcome various biological barriers for the improvement of diagnosis and treatment of
cancers. All the functionalized DDSs with intrinsic properties summarized above can serve
as potent platforms in prolonging circulation time, increasing specific targeting capability,
and enhancing the extensive immunomodulatory activities of various drugs.

In preclinical studies, numerous proofs of concept are continuously emerging, while
there still remains a relatively long way to go before the clinical translation of these ideas
can be achieved. This predicament is largely due to the complexity and heterogeneity of
tumors and incomplete understanding of the relevant nano-biointeractions. Therefore,
bioinspired and biomimetic nanomedicines are still in their infancy and there are several
challenges that need to be overcome to obtain the desired efficacies in anti-cancer treatment.

First, overall, biohybrid formulations remain to be investigated and standardized.
The pharmacokinetic and pharmacodynamic characteristics of synthetic materials are as
important as the biofunctions of natural materials and should be further profiled and de-
fined. Second, mimicking key biofeatures of natural materials to preserve specific biological
morphologies, structures, and functions is also required to construct efficient biomimetic
nanomedicines. However, we should clearly note that the precise architecture of creatures is
too complicated for replication by only physical and chemical methods. Therefore, we have
to seek other alternative methods to maximize the efficacy of biomimetic nanomedicines,
considering the inevitable compromises of functionality that are associated with these
approaches. Third, unlike well-defined synthetic materials, the reproducibility, biosafety,
and scale-up manufacturing of biomimetic nanomedicines must be fully considered before
translation to clinical practice.

The field of biomimetic nanomedicines is developing rapidly. Future advances in
this field will rely on deep understanding of nano-biointeractions, delivery mechanisms,
and advanced synthesis techniques. Meanwhile, controllability and large-scale production
capabilities should also be improved before clinical application.
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