SYNTHETIC
BIOLOGY

Synthetic Biology, 2017, 2(1): ysx002

doi: 10.1093/synbio/ysx002
Research Article

Chemical reaction networks for computing logarithm

Chun Tung Chou*

School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia

*Corresponding author: E-mail: ctchou@cse.unsw.edu.au

Abstract

Living cells constantly process information from their living environment. It has recently been shown that a number of cell
signaling mechanisms (e.g. G protein-coupled receptor and epidermal growth factor) can be interpreted as computing the
logarithm of the ligand concentration. This suggests that logarithm is a fundamental computation primitive in cells. There
is also an increasing interest in the synthetic biology community to implement analog computation and computing the log-
arithm is one such example. The aim of this article is to study how the computation of logarithm can be realized using
chemical reaction networks (CRNs). CRNs cannot compute logarithm exactly. A standard method is to use power series or
rational function approximation to compute logarithm approximately. Although CRNs can realize these polynomial or
rational function computations in a straightforward manner, the issue is that in order to be able to compute logarithm accu-
rately over a large input range, it is necessary to use high-order approximation that results in CRNs with a large number of
reactions. This article proposes a novel method to compute logarithm accurately in CRNs while keeping the number of reac-
tions in CRNs low. The proposed method can create CRNs that can compute logarithm to different levels of accuracy by
adjusting two design parameters. In this article, we present the chemical reactions required to realize the CRNs for comput-
ing logarithm. The key contribution of this article is a novel method to create CRNs that can compute logarithm accurately
over a wide input range using only a small number of chemical reactions.

1. Introduction

Cells constantly process information from their living environ-
ment in order to adjust their behavior accordingly (1,2). From a
computational point of view, cells use molecules and chemical
reactions to realize communication, information processing and
decision making. Inspired by this viewpoint, a research problem
in synthetic biology is to design molecular circuits that can carry
out different types of computation (3). Potential applications of
these circuits include metabolic engineering, therapeutics and
diagnosis (4,5). One method of realizing these novel circuits is
chemical reaction tetworks (CRNs) (6-8). Theoretically, CRNs have
been proven to be Turing universal, which intuitively means that
they are powerful computational engines (9). CRNs have been
used to realize a few different classes of computation. Salehi et al.
show how CRNs can be used to realize polynomial computation
using a new type of representation of the polynomial variable (10).
Oishi and Klavins show that linear dynamical systems that are
specified by linear ordinary differential equations can be realized

using CRNs that are based on three classes of chemical reactions,
namely catalysis, degradation and annihilation (11). This work is
further extended by Foo et al. to non-linear operators (12). More
recently, Zechner et al. show how de novo molecular circuits can be
used to implement optimal filters approximately (13).

There is a growing interest in the synthetic biology community
to use chemical reactions to realize analog computation due to
the energy efficiency of analog computation (14-17). A pioneering
work in analog biochemical computation is by Daniel et al. (18),
where the authors present a number of synthetic gene circuits to
compute the natural logarithm function log (1+ x) for non-
negative x. Furthermore, they show that the natural logarithm
function can be used as a primitive to realize other computation,
e.g. computing the ratio of two numbers. A reason why computing
logarithm is important is because it is related to the concept of
fold-change detection (19,20). Recently, Olsman and Goentoro
show that logarithmic sensing can be found in many cellular sig-
nal transduction mechanisms (21). Moreover, theoretical analyses

Submitted: 29 December 2016; Received (in revised form): 20 March 2017. Accepted: 23 March 2017

© The Author 2017. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

For commercial re-use, please contact journals.permissions@oup.com


Deleted Text: u
Deleted Text: s
Deleted Text:  
Deleted Text: A
Deleted Text: to 
Deleted Text: se
Deleted Text: C
Deleted Text: R
Deleted Text: N
Deleted Text: s
Deleted Text: s
Deleted Text: l
Deleted Text: ,
Deleted Text: which
Deleted Text: ,
Deleted Text: s
Deleted Text: by 
Deleted Text: s
Deleted Text: s
Deleted Text:  
http://www.oxfordjournals.org/

2 | Synthetic Biology, 2017, Vol. 2, No. 1

of cell signaling show that optimal decoding of cellular signals
require the computation of logarithm (22-25).

The aim of this article is to address the computation of loga-
rithm using CRNs. Although the article (18) presents three gene
circuits to compute logarithm, the problem of how chemical
reactions can be systematically designed to compute logarithm
has not been addressed. In this article, we present a novel
method to derive CRNs for computing the logarithm function.
The method has two tuning parameters that can be used to
derive CRNs which compute the logarithm to different levels of
accuracy. The advantage of the proposed method is that it can
accurately compute log (1 + x) without significantly increasing
the number of chemical reactions in the CRNs.

2. Materials and methods

Our proposed method of deriving CRNs consists of a number of
steps. In one of the steps, we make use of Pade approximation
to compute logarithm. We will first describe Pade approxima-
tion. We will then describe our proposed method. After that, we
will present how the proposed computation method can be
realized by CRNSs. Finally, we discuss our proposed method.

2.1 Pade approximation

Pade approximation is a well-known technique to derive
rational function approximation of the logarithm function. The
key idea is to approximate the logarithm function log (1 + x) by
a rational function Quy (x) which is the ratio of two polynomials
pu (x) and py (x):

_pu(x)

log (1+x) ~ Qu () N ()

where py (x) and py (x) are polynomials of degrees M and N,
respectively, in the variable x. The coefficients of the polyno-
mials py (x) and pn (x) are chosen such that the first (M + N)

terms in the Taylor series expansion of log (1 + x) are identical
to the first (M +N) terms in the polynomial expansion of
Qun (x). This implies that, the difference log (1 + x) — Qu (%) is
of the order Q (xM*N+1), Therefore, the level of approximation
can be tuned by adjusting the degrees M and N. We will refer to
Qun (x) as the Pade (M, N) approximation.

There are standard algorithms to derive the coefficients of
the polynomials pu (x) and py (x) (26). It can be shown that the
Pade (1,1) and (2,2) approximations of log (1 + x) are:

Q1) =1 g5 &)
o ox+43x?
Q2 (x) = Trx+1a 2

Since rational functions can be implemented by CRNs (11),
this leads to a way to systematically approximate the
logarithm function using CRNs. Figure 1 plots log (1 + x), Q11 (X)
and Q2 (x) for a range of x. It shows that Pade approximation
gives good approximation for small values of x, but the approxi-
mation error increases with x. For example, for the Pade (1,1)
approximation, the approximation error is 1.5% when x=0.5,
but the error increases to 20% when x=5. The figure also shows
that Q2 (x) gives better approximation for a larger range of x.
Although the approximation error can be decreased using a
higher order Pade approximation (i.e. larger values of M and N),
we will show shortly that there are more efficient methods to
reduce approximation error than using larger M and N values.

2.2 New method to compute log (1 + x)

In order to reduce the approximation error for computing
log (1 +x) for large x, this article proposes a new method to
compute log (1+x) approximately. This method requires a
technique to approximately compute logarithm as an intermedi-
ate step. For illustration, we will use Pade (1,1) approximation,

7 LA T T T T T

e |0g(1+X)

e Pade (1,1)

Pade (2,2)

6L —— Sqrt:Pade(1,1):x2

s QuIt:Pade(1,1):x4
5+
41
3+
2 —
1k 4
0 L ru 1l il 1 2ol
107 1072 107 10° 10" 102

Figure 1. This figure plots log (1+x) and four different approximations of this function. The approximations are Pade (1,1),

Qurt:Pade(1,1):x4.

10°

Pade (2,2), Sqrt:Pade(1,1):x2 and


Deleted Text: l
Deleted Text: paper 
Deleted Text: paper 
Deleted Text: paper
Deleted Text: which 
Deleted Text: s
Deleted Text:  respectively,
Deleted Text: (<italic>M</italic>, <italic>N</italic>) 
Deleted Text: by 
Deleted Text: by 
Deleted Text: paper 
Deleted Text: method 

i.e. Qi1 (x), in the explanation, but in general any method for
computing logarithm can be used. The proposed method consists
of three steps:

(i) compute x; =V1+x;
(ii) compute x; = Qq1 (%1 — 1) (= log (x1)); and
(iii) compute x3 =2 x Xa.

It can readily be shown that x; is an approximation of log (1 + x),
because log (1+x) =2logv1+x. In order to understand how
this method will give a better approximation, we first point out
that both square root (Step (i)) and multiplication by two (Step (iii))
can be implemented by CRNs exactly, see Section 2.3 for the CRN
implementation. Therefore, we will assume that Steps (i) and (iii)
can be carried out with high precision and the only approximation
is in the computation of log+/1+ x in Step (ii). The intuition is
that, for any x>0, we have vI+x < (1+x), therefore the pro-
posed method computes the logarithm of a smaller number,
which can be more accurately calculated. This improvement in
accuracy is demonstrated in Figure 1, where the line labeled as
Sqrt:Pade(1,1):x2 (short for: square root—Pade (1,1)—multiplica-
tion by 2) shows that the proposed method is more accurate than
using Pade (2,2) approximation.

The proposed method is modular. It is possible to replace
Steps (i) and (iii) by quartic root (or 4th root) and multiplication
by 4, respectively. Figure 1 shows that this revised computation
scheme, labeled as Qurt:Pade(1,1):x4 (short for: quartic root—
Pade (1,1)—multiplication by 4) shows much better approxima-
tion. Moreover, the computation of the quartic root can be
implemented in CRN as a cascade of two consecutive square
root calculations. Similarly, multiplication by 4 can be imple-
mented as two consecutive multiplication-by-2 modules.

In general, our method is based on the equality
log (1+x)=nlog ((1+ x)%), which holds for any non-zero n.
Since our goal is to compute log (1 + x) accurately using a small
number of chemical reactions in CRNs, we have two additional
requirements: (i) We need (1 + x)% < (1+x) for x>0 and (i) the
computation of (1 + x)% can be implemented accurately using only

C.T.Chou | 3

a small number of chemical reactions in CRNs. The first require-
ment means we need n> 1. The second requirement means that
we need to choose n to be a power of 2,i.e.n = 2,4, 8, ... (wWhere
n=2 corresponds to square root and n=4 is the quartic root)
because we can compute these roots by repeatedly computing
square roots. Note that there are CRNs to compute the nth root,
where n is an integer >1, see (27) for their implementation.
However, the computation of roots where n is a power is 2 can be
done more efficiently compared with other values of n.

For illustration, we used Pade (1,1) approximation in Step (ii)
above. However, we can replace it by other Pade approximations.
In order to demonstrate the efficiency of the proposed method,
Figure 2 compares the function log (1+x), Qurt:Pade(2,2):x4
(short for: quartic root—Pade (2,2)—multiplication by 4) and Pade
(100,100). It can be seen that Qurt:Pade(2,2):x4 is more accurate
than Pade (100,100). Moreover, the implementation complexity
of CRNs for Pade (100,100) is far more complicated than that of
Qurt:Pade(2,2):x4. A CRN implementing Pade (100,100) will
require about 100 reactions, but we will see subsequently that a
CRN implementing Qurt:Pade(2,2):x4 requires only 24 reactions.
This figure therefore shows that there are more efficient meth-
ods to reduce approximation error than simply increasing the
order of Pade approximation.

In summary, a key contribution of this article is to propose a
modular method to compute the logarithm function log (1 + x) to
different levels of accuracy. The proposed method can be tuned by
two mechanisms. First, computation of (1 + x)% at the beginning
and multiplication by n at the end, where n is a parameter that
can be tuned. Second, the order of approximation in Pade approxi-
mation can be chosen to adjust the level of accuracy.

2.3 CRN realization

In this section, we show how the computation modules of our
proposed method can be implemented in CRNs. We will present
four different modules, for computing square root, Q11 (x1 — 1),
Q22 (x1 — 1) and multiplication by 2.

e |00 (1+X)
e Qurt:Pade(2,2):x4
Pade (100,100)

6 -
5L
4L
3L 4
oL B
1L B
O ! il L Lol L Lol L Lol L Lo
107 1072 107! 10° 10° 102

Figure 2. This figure plots log (1 + x) and two different approximations of this function. The approximations are Qurt:Pade(2,2):x4 and Pade (100,100).


Deleted Text: 3
Deleted Text: C
Deleted Text: C
Deleted Text: C
Deleted Text: to
Deleted Text: l
Deleted Text: x2 
Deleted Text:  &ndash; 
Deleted Text:  &ndash; 
Deleted Text:  respectively,
Deleted Text: l
Deleted Text: x4 
Deleted Text:  &ndash; 
Deleted Text:  &ndash; 
Deleted Text: 1
Deleted Text: ;
Deleted Text: 2
Deleted Text: T
Deleted Text: -
Deleted Text: greater than
Deleted Text:  
Deleted Text: x4 
Deleted Text:  &ndash; 
Deleted Text:  &ndash; 
Deleted Text: x4 
Deleted Text: x4
Deleted Text: later 
Deleted Text: x4 
Deleted Text: paper 
Deleted Text: s

4 | Synthetic Biology, 2017, Vol. 2, No. 1

The following notation will be used. We will use uppercase let-
ters, sometimes with a subscript, e.g. X and Y3, to denote chemical
species. We will use ¢ to denote a species whose concentration
we are not keeping track of. The concentrations of the species at
time t will be denoted by the notations [X] (t) and [Y1] (t) for the
concentrations X and Y; at time t, respectively. The letter k is used
to denote a base reaction rate constant, and we will express all
reaction rates as a multiple of base rate constant k.

The proposed algorithm to approximately compute log (1 + x)
takes x as the input and computes x4, X, and x3 in three steps.
Both x; and x; are intermediate results and x3 is the approximate
value of log (1+x) computed by the algorithm. In the CRN
description below, the concentrations of the chemicals X, X4, X»
and X3 correspond to the numerical values of x, x;, X, and x3,
respectively.

We assume that the number of molecules in the CRNs is
large, and we can model the behavior of the CRNs using deter-
ministic reaction rate equations.

Computing v/'1 + x.
For a given x, the computation of /1 + x can be realized by the
following CRN:

ctcrn

X5X + v,
Yl_k'¢

Yy By +2x,

k
X1+ X1—¢

where C, X, Y; and X, are chemical species. The chemical spe-
cies C has a constant concentration of 1 unit and the initial con-
centration of X is x. The first three reactions are used to
compute (1 + x), which is the steady-state concentration of the
species Y;. This is the standard method to implement addition
in a CRN. The key idea is to use both chemical species C and X
to produce the same chemical species Y;. In order for the con-
centration of Y; to reach a steady state, we need to add the deg-
radation of Y; which is the third reaction above. At steady state,
when the rate of production of Y; balances its rate of degrada-
tion, the concentration of Y, equals to the concentration of C
plus the concentration of X.

The last two reactions are used to compute /1 + x, which is
given by the steady-state concentration of X;. This method of
computing square root is similar to that found in (27). The
chemical X; is produced at a rate of 2k[Y4] (t) (the fourth reac-
tion; note that the multiplication factor 2 comes from the fact a
molecule of Y; produces two molecules of X;) and consumed at
a rate of 2k [X;] (t)? (the fifth reaction; note that two molecules
of X; are consumed per reaction). Thus, at steady state, when
the rate of production equals the rate of consumption, we have
[Y1] (00) = [X1] (00)?, i.e. the steady concentration of X, is the
square root of the concentration of Y;.

We can argue that the above reactions provide the correct
result by writing down the mass-action kinetics. We have:

ax) ) _
a0
MO i) + k() ()~ k2] (1
%) ()

= 2k [Ya](t) - 2k [X4] (1)?

dt

Using the fact that [C] =1 and [X](0) = x, it can be shown
that the steady-state solution is as claimed.

Computing Q1 (X1 — 1),
The aim of this subsection is to show how Qi (x; — 1) can be
computed. From Equation (1), we have

Q“‘“—1>=o§;+%5
Note that the numerator of Q;; (x; — 1) contains a minus 1 term.
Since the concentration of a chemical species is always positive,
the subtraction can in principle be handled using the frame-
work proposed in (11) or (16). In this article, we propose a
method to compute Q11 (x1 — 1) without using subtraction.

Our proposed method is to compute the numerator x; — 1
making use of the fact that x;=v1+x or x; = (1+ x)%. If
x; = V1 + x, then it can be shown that

X

X
Xx1-1=Vl+x-1=——081=——.
! VItx+1l x+1

©)

This means that we can compute x; — 1 by computing the ratio

of x and x1 + 1, and this calculation does not involve any nega-
. 1 .

tive number. If x; = (1 + x)4, then it can be shown that:

X

x1-1=—F—+
1 1+x +x2+x3

@

which again means that we can compute x; — 1 without using
any negative number. This method can be generalized to other
integral roots of (1 + x).

We will show how we can use a CRN to compute x; — 1 using
Equation (3). The CRN is:

XEX1Y,
Y, E><f’

X1+ Yzi X

where X and X, are the same chemical species that we have
used earlier. Note that although X and X; are involved in some
reactions in the above CRN, the chemical species X and X;
appear on both sides of the reaction equations, which means
their quantities are not changed by these reactions. We will use
this CRN to illustrate how it can compute y, = %4, where y, is
the concentration of Y,. In terms of concentration, the calcula-
tion that we want to perform is:

[Yo] = X1 (5)

This calculation is not in the form that can be implemented by a
CRN directly because it uses division. We know from mass
kinetic that the rate of a chemical reaction is proportional to the
product of the concentration of the reactants. Therefore, we
need to rewrite this calculation in a form that has only products.
We can rewrite the above calculation as:

0 = k[X] — k[Ys] — k[X4][Ya): 6)

We can implement each of the terms on the right-hand side
(RHS) using a chemical reaction. The first term is positive and
corresponds to the production of Y, from X at a rate of k [X]; this
is the first chemical reaction shown above. The second term is


Deleted Text: such as 
Deleted Text: , respectively,
Deleted Text: of 
Deleted Text: 3
Deleted Text: , respectively,
Deleted Text: u
Deleted Text: by 
Deleted Text: 2.3.1 
Deleted Text: s
Deleted Text:  
Deleted Text:  
Deleted Text: 2
Deleted Text: 2
Deleted Text: to 
Deleted Text: By u
Deleted Text:  
Deleted Text: 2.3.2 
Deleted Text: by 
Deleted Text: Ref. 
Deleted Text:  in Ref. 
Deleted Text: paper
Deleted Text: s
Deleted Text: -
Deleted Text: by 
Deleted Text: it 

negative and corresponds to the degradation of Y5; this is the
second chemical reaction. The third term is negative and
corresponds to X; and Y, reacting together to degrade Y,; this is
the third chemical reaction. Since the fundamental idea of this
article is to use rational function to approximate the computa-
tion of logarithm, our proposed CRN will need to perform divi-
sion. The above strategy for deriving a CRN that carries out
division will be used throughout this article.

Formally, from the chemical reactions given above, we can
write down the mass-action kinetics of Y, as follows:

d[Y](t)
dt

=k[X](t) — k[Y2](t) — k [X1](t) [Y2](D).
At steady state, i.e. when t = oo, it can be shown that:

__ [X](o0)
[Y2](c0) = m

which means the steady-state concentration of Y5 is *5. The
implementation of Equation (4) by CRN will be similar and will

not be presented here.

Lety, = ﬁ, then Q11 (x1 — 1) (for the case where x; = V1+Xx) is:
1) = y2
Q=1 =555

Since this is the output of Step (ii) of our algorithm, we use x,
to denote 5 227=. In terms of concentration, the relation that we
want to realize is [X;] = %ﬁ[xﬂ. We then follow our strategy of
implementing division and rewrite this as 0= [Y3] — 0.5[X]
—0.5[X1][X2]. We then implement each term by a chemical reac-
tion. The resulting CRN is:

Y, 57, + X
k
X2 %45
k
2
X1 +Xo= X1

where Y, and X; are the same chemical species as before. Note
that the concentrations of Y, and X, are not changed by these reac-
tions. By writing down the mass-action kinetics of X, we have:
d[Xo](t) k k
@ R[Y>](t) — 2 [X2](t) — 2 (Xa](t) [X2](1).
At steady state, we have:

[Y>](o0)
[X2](00) = m

which means that the steady-state concentration of [X;](c0) is
X2 = Qu1 (x1 — 1), which is the value that we need at Step (ii) of
our algorithm.

Computing Qz, (%1 — 1)
From Equation (2), we have:

(x1 —1)(0.5%, +0.5)
x4+ 1 (%1 —1)?

Qo(x1—-1) =

where we have purposely written Q,, (x; — 1) as a rational func-
tion in terms of x; and x; — 1. Again, we want to avoid using

C.T.Chou | 5

negative numbers and we can make use of the above method to
calculate x; — 1. Let y, = x; — 1. We can write Q as:

Qo = y2 (0.5%1 +0.5) )

%1 +5Y3

Let Y, be the chemical whose concentration corresponds to the
number y, = x; — 1. (Note: this is the same notation as above.)
We again use x, to denote the calculation in Equation (7),
because this is the output of Step (ii) of our algorithm. In terms
of concentration, the relation that we want to realize is:

_ [Y2](0.5+0.5[X4])
X = v

[Xl] + 3 [YZ]

We then follow our strategy of implementing division and
rewrite this as:

0= 05KYs] + 05kIXi][Y:] - kXK1 JIXo] - L[V Ko (8)

Although all the terms are in the form of a product of concentra-
tions, the last term contains the product of three concentra-
tions. Since chemical reactions generally involve only two
chemical species at a time, we first compute [Y,]? and let this be
[Y3]. We can now rewrite Equation (8) as:

O:OSkWﬂ+05kMﬂWﬂ—kWﬂmﬂ—§Wﬂmﬂ. ©)

Each of the terms on the RHS can now be implemented by a
chemical reaction, and four chemical reactions are required for
these calculations. In addition, we also need to compute
[Y3] = [Y2]?, and this can be done with two chemical reactions.
The CRN for implementing the computation of Q,, is:

Yo=Yy +Xo

TN

X1+ Y2 =X+ Y2 + X
Yo+ YooYy + Y, + Vs
Y3L¢
X +X2£X1

k
Y3 +X2§»X2

where Y3 is an intermediate chemical species. By writing down
the mass-action kinetics for the species Y; and X,, we have:

d[ys](t)
dt

=2 0l + & [x0I0 - kX0 X))

=R[Y2](1)* — k[Ys](1)

d [X5)(t)
dt

om0,

The steady-state concentrations of Y3 and X, are:

[Ya](o0) = [Y2](c0)?
[Y2)(00)(0.5 + 0.5 [X1] ()

[X](c0) = .
[X1)(o0) + 5 [¥s](o0)



Deleted Text: it 
Deleted Text: it 
Deleted Text: a
Deleted Text: in 
Deleted Text: paper 
Deleted Text: which 
Deleted Text: paper
Deleted Text: .
Deleted Text: ,
Deleted Text:  
Deleted Text: s
Deleted Text:  
Deleted Text: 2.3.3 
Deleted Text:  above
Deleted Text: s
Deleted Text:  

6 | Synthetic Biology, 2017, Vol. 2, No. 1

This means that the above CRN implements the calculation
in Equation (7).

Multiplication by two.
We can implement the multiplication-by-two module using the
following CRN:

X, 5%, + 2X3

Xak"f’

By writing down the mass-action kinetics, we can readily show
that at steady state, the concentration of X3 is twice that of X.
Details are omitted for brevity.

3. Results

3.1 Implementation using DNA strand displacement
reactions

Using the modules presented earlier, we can realize four differ-
ent CRNs:

1. Sqrt:Pade(1,1):x2
2. Sqrt:Pade(2,2):x2
3. Qurt:Pade(1,1):x4
4. Qurt:Pade(2,2):x4

These CRNs can be implemented using DNA strand displace-
ment reactions (SDRs). SDR is chosen, because it is shown that
SDR can be used to emulate both unimolecular and bimolecular
reactions (28). For example, the unimolecular chemical reaction
Z1 — Zy + Z3 in a CRN can be implemented using the following
two reactions in DNA SDR:

Z1 + G, — waste + 0, (10)

0, + T, — waste +2Z, +Z3 (11)

where G4, O; and T; are auxiliary chemical species. A special
case of this unimolecular reaction is Z; —¥ ¢, which can be
implemented by:

Z1 + G, — waste + 0, (12)

where O, is a chemical species for which we will not keep track.
Note that both Z; and O, are single-stranded DNA, while both G,
and waste are double-stranded DNA. In the reaction, a strand in
the double-stranded G, is replaced by Z; to produce the waste
and O;.

DNA SDR can also implement bimolecular chemical reac-
tions in a CRN. In this case, a bimolecular reaction Z; +Z, — Z3
can be implemented by four DNA SDRs with five auxiliary
chemical species, see (28) for implementation details. For our
CRNs, we will also need bimolecular reactions of the form
Z1 + Zy — Z1 + Zy + Z3, which can also be implemented as DNA
SDRs, see (10) for implementation details.

Since both single molecular and bimolecular reactions can
be implemented by DNA SDRs, this allows general CRNs to be
implemented. We use the methods in (28) to turn the CRNs into
their DNA implementation. In our implementation, we impose
the limits mentioned in (28), namely the maximum SDR reac-
tion rate is 10° M™* s and the initial concentration of the auxili-
ary chemical species is set to its maximum value of 10> M.

We turn the CRNs and their DNA SDR implementations into
ordinary differential equations. We solve these ordinary differ-
ential equations to steady state using Matlab. (Alternatively,
note that public domain tools for performing these calculations
can also be found in (29,30).) We will show the results for
Qurt:Pade(2,2):x4. We consider x in the range of [0.1, 100]. As
reference, we compute the true log (1+x) and true
Qurt:Pade(2,2):x4 values, which are given by the solid lines
in Figure 3. For the CRN and DNA SDR implementations, we use
12 discrete values of x and record the steady-state value of the
simulation output. The 12 values of x used are 0.1, 0.5 and 10
values equally spaced in the log scale in [1, 100]. The CRN out-
puts are marked by crosses in Figure 3. It can be seen that the
CRN accurately approximates the Qurt:Pade(2,2):x4 computa-
tion scheme. The DNA SDR outputs are marked by circles in
Figure 3. It can be seen that the DNA SDR implementation gives
accurate approximation for Qurt:Pade(2,2):x4. The error is due
to the fact that the DNA SDR implementation is exact only if the
concentration of the auxiliary species is infinity.

3.2 Number of chemical species and number of
reactions

The aim of this section is to determine the number of chemical
species and chemical reactions needed to realize our proposed
CRNs. We consider 9 different CRNs that realize Pade(N,N),
Sqrt:Pade(N,N):x2 and Qurt:Pade(N,N):x4 with N=1, 2 and 3. For
our implementation, the quartic root is realized by concatenat-
ing two square root modules and multiplication by four is
implemented by two multiplication-by-two modules. In
Columns 2 and 3 of Table 1, we summarize the number of
chemical species and chemical reactions used by these CRNs.
The corresponding results for DNA SDR implementation can be
found in Columns 4 and 5 of Table 1. We will focus our discus-
sion on the number of chemical species and chemical reactions
required by the CRNs.

From Table 1, we observe linear increase in the number of
chemical species for all three approximation schemes. The
number of reactions for Pade(N,N) increases linearly with N.
However, the number of chemical reactions needed for
Sqrt:Pade(N,N):x2 and Qurt:Pade(N,N):x4 do not appear to
increase linearly. We will investigate this further by deriving
how the number of chemical species and chemical reactions
needed to implement the CRN for Pade(N,N), Sqrt:Pade(N,N):x2
and Qurt:Pade(N,N):x4 vary with N in general.

The Pade(N,N) approximation is a rational function, where
both the numerator and the denominator are polynomials of
degree N. For this discussion, we assume N < 13. This is
because if N < 13, all the coefficients of the Pade(N,N) approxi-
mation for log (1+x) are non-negative. For N> 13, negative
coefficients begin to appear in the Pade(N,N) approximation for
log (1+x). Since CRNs handle negative numbers differently
(11,16), the CRN implementation for the N>13 cases will be
slightly different. In addition, the N > 13 cases may not be prac-
tical, so we will not consider them.

The Pade(N,N) case: For any CRN implementation for
Pade(N,N) approximation, we need a chemical species to repre-
sent the input value x and another for the output value; in addi-
tion, we also need chemical species to represent these powers
of x: X, ..., xN. Therefore, we need (N + 1) chemical species.
Note that the coefficient for the constant term in the numerator
is always zero for the Pade(N,N) approximation for log (1 + x),
we therefore do not require a chemical species to represent a
numerical constant.


Deleted Text: 2.3.4 
Deleted Text:  
Deleted Text:  
Deleted Text: by 
Deleted Text: .
Deleted Text: By u
Deleted Text: s
Deleted Text: x2
Deleted Text: x2
Deleted Text: x4
Deleted Text: x4
Deleted Text: by 
Deleted Text: by 
Deleted Text: of 
Deleted Text:  
Deleted Text:  
Deleted Text: 5
Deleted Text: Ref. 
Deleted Text: Ref. 
Deleted Text: Ref. [
Deleted Text: ] 
Deleted Text: Ref. [
Deleted Text: ], 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: by 
Deleted Text: x4
Deleted Text:  a
Deleted Text: x4 
Deleted Text:  
Deleted Text: ,
Deleted Text: -
Deleted Text: x4 
Deleted Text: x4
Deleted Text: s
Deleted Text: which 
Deleted Text: s
Deleted Text: x
Deleted Text: x
Deleted Text: s
Deleted Text: -
Deleted Text: -
Deleted Text: 4
Deleted Text: 2 
Deleted Text: s
Deleted Text: x2 
Deleted Text: x4 
Deleted Text: x2 
Deleted Text: x4 
Deleted Text: of 

C.T.Chou | 7

log(1+x)
Qurt:Pade(2,2):x4
CRN

4.5

DNA SDR

3.5

15+

107" 10°

10" 102

Figure 3. This figure plots log (1 + x), the approximation Qurt:Pade(2,2):x4, CRN implementation of Qurt:Pade(2,2):x4 (crosses) and DNA SDR implementation of

Qurt:Pade(2,2):x4 (circles).

Table 1. This table shows the number of chemical species and
chemical reactions required by the CRN as well as its DNA SDR
implementation

Approximation CRN DNA SDR
method
#Species  #Reactions #Species #Reactions

Pade (1,1) 2 3 14 9
Pade (2,2) 3 7 32 22
Pade (3,3) 4 11 50 35
Sqrt:Pade (1,1):x2 7 13 62 40
Sqrt:Pade (2,2): ><2 8 16 81 54
Sqrt:Pade (3,3):x 9 21 98 66
Qurt:Pade (1,1):x 10 21 102 68
Qurt:Pade (2,2):x 11 24 121 82
Qurt:Pade (3,3): ><4 12 29 138 94

The CRN for Pade(N,N) approximation consists of two classes
of reactions. The first class of reactions is to compute these
powers of x: X, ..., xN. This requires 2 (N — 1) reactions. The sec-
ond class of reactions is to calculate the output value. Each non-
zero term in the numerator and denominator polynomials
requires one chemical reaction. Since there are 2 (N — 1) non-
zero terms, we need 2 (N — 1) reactions. The total number of
chemical reactions needed is therefore 2(N—1)+ (2N+1)
=4N - 1.

The number of chemical species and reactions for general N
are summarized in Table 2. Note that these formulas are consis-
tent with the results for N=1, 2, 3in Table 1.

The Sqrt:Pade(N,N):x2 case: We can break down the compu-
tations of Sqrt:Pade(N,N):x2 into the following steps:

Step 1: Computation of (1+x) from x with three chemical

reactions.
Step 2: Computation of x; = v/1 + x from (1 + x) with two chemical
reactions.

Table 2. This table shows the number of chemical species and
chemical reactions required by the CRN assuming Pade(N,N) is used

Approximation method CRN

#Species #Reactions
Pade (N,N) N+1 4N-1
Sqrt:Pade(N,N):x2 N+6 4N+9
Qurt:Pade(N,N):x4 N+9 4N +17

Step 3: Computation of y, = x; — 1 from x; and x with 3 chemical
reactions

Step 4: Computation of Pade(N,N) with up to (4N — 1) chemical
reactions.

Step 5: Multiplication by two using two chemical reactions.

The number of reactions required is therefore 342+ 3+
(4N — 1) + 2 = 4N + 9. The number of chemical species required
is N+ 6. These results are summarized in Table 2. Note that the
number of reactions presented here is upper bound rather than
the exact number. For N =2, the general expression says that 4N
+9 =17 reactions are required, but Table 1 says that
Sqrt:Pade(2,2):x2 requires 16 reactions. This is because the
Pade(2,2) expression in Sqrt:Pade(2,2):x2 can be written in a way
with one fewer non-zero term than the standard expression;
therefore, our implementation of Sqrt:Pade(2,2):x2 requires one
chemical reaction fewer than the upper bound.

The Qurt:Pade(N,N):x4 case: The computation steps in
Qurt:Pade(N,N):x4 are analogous to those in Sqrt:Pade(N,N):x2,
except that we need to replace Steps 2, 3 and 5 above by:

Step 2: Computation of x; =
cal reactions.

Step 3: Computation of y, = x; — 1 from x; and x with seven chemi-
cal reactions.

Step 5: Multiplication by four using four chemical reactions.

1+ x) from (1 + x) with four chemi-


Deleted Text: s
Deleted Text: x
Deleted Text: x
Deleted Text: 3
Deleted Text: 2
Deleted Text: 2 
Deleted Text: 2
Deleted Text: s
Deleted Text: an 
Deleted Text: ,
Deleted Text: x2 
Deleted Text: x2 
Deleted Text: x
Deleted Text: x
Deleted Text: x
Deleted Text: x
Deleted Text: 4
Deleted Text: 7
Deleted Text: 4 
Deleted Text: 4

8 | Synthetic Biology, 2017, Vol. 2, No. 1

The number of reactions required is therefore 344+ 7+
(4N — 1) + 4 = 4N + 17. The number of chemical species required
is N+ 9. Again the number of reactions presented here is upper
bound, and the Qurt:Pade(2,2):x4 in Table 1 needs one fewer
chemical reaction than the upper bound because of the same
reason discussed before.

4. Discussion

4.1 Comparing Pade approximation to other
approximations

A justification for using Pade approximation is that it is a
more accurate approximation compared to other well-known
approximations of the logarithm, such as Taylor series and
the inverse hyperbolic tangent series approximation (31). The
Taylor series expansion of log (1+x) up to degree L is given

by:

1)L+1 L

log(1+X)~X—%x2+lx3—...+%(— x

3

As mentioned earlier, the coefficients of the Pade (M, N)
approximation Qyny (x) are chosen such that its first (M + N)
coefficients match the first (M + N) coefficients of the Taylor
series expansion. A fair comparison of Pade and Taylor ser-
ies is to compare Qun (x) against Taylor series of degree
L =M+ N. We use absolute value of the approximation error
as the criterion, e.g. for Pade approximation, we consider |
log (1+x) —Qun(x)|. The top graph of Figure 4 compares the
absolute approximation error of Q,,(x) against Taylor series
of degree L=4. It can be seen that Pade approximation gives
a better approximation over a wider range of x. Note that the
graph compares the approximation error for x in the interval
(—1,0) too. Our CRN will not be operating in this range of x,
but we have included this range of x for a discussion point
later.

The inverse hyperbolic tangent series approximation for log
(1+x)is:

_ (X
log (1+x) =2tanh <x+2)
X
X+

N2L+1_3+ELS+ +1LH
T x+2 73 2 5\x+2 T TH\x+2

The inverse hyperbolic tangent series is known to be more
accurate for large x and there is a CRN implementation (32). Note
that the inverse hyperbolic tangent series approximation for H=1
is identical to the Pade (1, 1) approximation. A fair comparison is to
compare Qun(x) approximation with an inverse hyperbolic tan-
gent series with H=N. This is because we will be comparing two
rational function approximations with both numerator and
denominator being polynomials in x of degree N. The bottom graph
of Figure 4 compares the absolute approximation error of Pade (3,3)
against inverse hyperbolic tangent series approximation for H=3.
It can be seen that Pade approximation is more accurate.

4.2 Complexity and accuracy

In the discussion under Section 4.1, we used the same order of
approximation and compared the accuracy of different approxi-
mation methods. This is the standard method used in mathe-
matics. However, the order of approximation may not truly
reflect the complexity of a CRN. Here, we will use the number of
reactions as a measure of complexity and compare the accuracy
of Pade, Taylor series and inverse hyperbolic tangent series for a
given number of reactions. For a given number of chemical reac-
tions, if an approximation method has a better accuracy, then it
is a better approximation method.

For comparison, we will vary the order of each approxima-
tion method. We know from Section 3.2 that Pade(N,N) requires
4N — 1 chemical reactions. For fair comparison, we will realize
the CRNs for Taylor series and inverse hyperbolic tangent series
in exactly the same manner as that of Pade(N,N).

approximation error

0.35

0.3 I
0.25 -
0.2 -
0.15 -
0.1+

0.05 —\
0

approximation error

Figure 4. This figure compares the absolute value of the approximation error of Pade, Taylor series and inverse hyperbolic tangent series of log (1 + x). The top graph
compares Pade (2,2) approximation against a Taylor series expansion of degree 4. The bottom graph compares Pade (3,3) approximation against inverse hyperbolic tan-

gent series of up to degree 3.


Deleted Text: an 
Deleted Text: x
Deleted Text: to
Deleted Text: ,
Deleted Text: the 
Deleted Text: s

For a Taylor series of degree N (with N > 1), its CRN can be
realized by 3N + 1 reactions. These reactions come from the fol-
lowing: (i) the computation of ¥, ..., x" requires 2 (N — 1) reac-
tions; (ii) we need N+2 reactions to obtain the positive and
negative terms; and (iii) one reaction is needed to subtract the
negative term from the positive one.

For the inverse hyperbolic tangent series with N terms (with
N > 1), its CRN uses (3N +4) reactions. These reactions come
from the following: (i The computation of %; requires three

x+2
chemical reactions. (i) Let z = -%,. We need to compute 23, 2°, ...,

z?N-1_ An efficient method is toxftlf‘st compute z” and then compute
z3 from z x z2, z° from z3 x z2, etc. These computations require 2N
reactions. (iii) To sum the N terms up, we need N + 1 reactions.

We first consider an input value of x=0.1. For each of Pade,
Taylor and inverse hyperbolic tangent approximation, we vary
their order to compute different approximations of log (1 + x).
In Figure 5, we plot the approximation error (in log scale) versus
the number of chemical reactions. It can be seen that when the
number of reactions increases (by increasing the order), the
approximation error decreases. The figure shows that for a
given number of chemical reactions, the Pade approximation
gives the best accuracy. Since Taylor series gives a lot worse
results, we will not consider it any more.

We next consider an input value of x=5. We compare only
Pade and inverse hyperbolic tangent series. In Figure 6, we plot the
approximation error (in linear scale) versus the number of chemi-
cal reactions. It can be seen that for a given number of chemical
reactions, the Pade approximation again gives the best accuracy.

4.3 Error analysis

In order to understand why the proposed method works better,
here we analyze the error in using Sqrt:Pade(1,1):x2 for approxi-
mating log (1 + x). Define

A(x) = log (14 x) — Q11(x)

C.T.Chou | 9

which is the approximation error in using Pade (1,1) approxima-
tion. If Sqrt:Pade(1,1):x2 is used, the approximation error E(x) is:

E(x)=1log (1+x)—2Q11(V1+x-1)

Using the definition of A(x), we have
Q1(V1+x—-1)=log (VI+x)-AWVLI+x-1)

Therefore, the approximation error E(x) in using Sqrt:Pade(1,1):x2
can be written as:

E(x)=2A(VI+x—-1)

which is equal to twice the error of using Pade (1,1) approxima-
tion to calculate log (v/1 + x). The reason why Sqrt:Pade(1,1):x2
works better is because the approximation error in calculating
log (v/1+x) using Pade (1,1) approximation is less than half of
that calculating log (1+x) using Pade (1,1) approximation.
Although our analysis is based on Pade(1,1) approximation, the
argument can also be applied to other approximations of
log (1 +x).

4.4 Does scaling down the number work?

A key contribution of this article is to compute log (v1+x)
instead of log (1+x) because log (v1+x) can be computed
more accurately. Another way to obtain a smaller number from
(1+ x) is to compute L%, where b > 1. This will allow us to com-
pute log (1 + x) via:

log (1+x) = log (?) + log (b).

For this method, one first computes log (4*), which is the loga-
rithm of a smaller number and adds the result to log (b) to

x=0.1

10-10 L

Approximation error

10-12 L

10-14 L

e Pade
=) = Tanh
Taylor

-16 1 1
10 0 5 10

15 20 25

Number of reactions

Figure 5. The plot compares the CRN implementation for Pade, Taylor series and inverse hyperbolic tangent series for computing log (1 + x) with x=0.1. Vertical axis

is the absolute approximation error. The horizontal axis is the number of reactions.


Deleted Text: s
Deleted Text: 1
Deleted Text: T
Deleted Text: .
Deleted Text: 2
Deleted Text: W
Deleted Text: .
Deleted Text: 3
Deleted Text: O
Deleted Text: 1
Deleted Text: 3
Deleted Text: 2
Deleted Text: ,
Deleted Text: 3
Deleted Text: -
Deleted Text: s
Deleted Text: x2 
Deleted Text: x
Deleted Text: By u
Deleted Text: x
Deleted Text: x
Deleted Text: paper 
Deleted Text:  where

10 | Synthetic Biology, 2017, Vol. 2, No. 1

0.4 T T T

0.35 -

0.3 |-

0.25 -

0.2

Approximation error

0.1+

0.05 -

\
P i
-~
\'.
—
—) | ~1-°

I
12 14 16 18 20

Number of reactions

Figure 6. The plot compares the CRN implementation for Pade and inverse hyperbolic tangent series for computing log (1 + x) with x = 5. Vertical axis is the absolute

approximation error. The horizontal axis is the number of reactions.

[ ———
s |09 (14X)
— D = 10
b =100
6+
5L
41
3+
oL
1k
0 . s 1l n Lol PR
108 1072 107" 10" 102 10°

Figure 7. This figure plots log (1 + x) against an approximation method based on computing log (1;*) for b=10and b=100.

obtain log (1 + x). Figure 7 shows the values of log (1 + x) calcu-
lated by this method with log (1*) computed using Pade (2,2)
approximation and for b=10 and b=100. It can be seen
from Figure 7 that this method does not work well for small
values of x.

We will use the approximation error graph in Figure 4 to
explain why this method does not work for small x. As an exam-
ple, consider x=9 and b=100. This method requires us to

compute log (4*) which is log (0.1). Since our function approxi-
mates log (1+x), we therefore have to compute Q2(—0.9)
which approximates log (0.1) = log (1—0.9). It can be seen
from Figure 4 that Pade approximation gives poorer approxima-
tion for x near -1, and this explains why this scaling method
does not work well for small x. It can also be seen from Figure 4
that this method will also face the same problem if other
approximation methods are used.


Deleted Text: by 

4.5 Pade approximation and logarithm sensing in
biochemical systems

Recently, (21) shows that many allosteric proteins act as loga-
rithm sensors. For example, consider a G-coupled protein
receptor, which measures an input concentration ¢ and uses the
fraction of Guanosine triphosphate (GTP)-bound «-unit, denoted
by édgrp, as the output. It is shown in Ref. (21) that, at steady
state, dgrp and c are related by an input-output response func-
tion of the form:

w1C
1+ wac

oGTP = (13)

where w; and w, are coefficients. The authors in (21) argue that
the RHS of Equation (13) computes logarithm approximately
when the concentration of c is around w% In fact, (21) has made
use of Pade approximation without mentioning it. Their argu-
ment is based on the approximation:

(14)

which can be derived from equations [S8] and [S9] in the
supplementary information of (21). If we substitute L =1 +x in
Equation (14), then after some manipulations, we get
log (x) ~ 1755 Which is the Pade(1,1) approximation in Equation
(1). In order to see how Equation (13) computes the logarithm,
we first rewrite c as ¢ = w% + Ac, where Ac is the deviation of the
concentration from wiz It can be shown that:

wic W wy Ac w1

=21 . et

1+ wye 4w, 14 sz Ac 2wy
wq W1
~—-o7I1 1 A —
aw, og (1+ wy Ac) + 2w,

where Equation (14) or Pade(1,1) approximation is used to obtain
the result in the second line. This shows that, when the input
concentration c is around wiz, the output is a logarithm function
of the change of input concentration Ac.

Interestingly, we want to point out that Equation (13) also
computes logarithm in another range of input concentration.
First, note that the Pade (1,1) approximation in Equation (1)
holds when x is small; e.g., if we limit the relative approxima-
tion error to 10%, then the approximation holds for x in the
interval [0, 0.41]. By comparing the RHS of Equation (13) and the
Pade (1,1) approximation, it can be shown that:

w1C w1
~—1I1 1+2
1+woe 2wy 0g (1 +2wsc)

Therefore, if the input concentration c is in the interval {O, %],
then it computes logarithm to a 90% accuracy.

An interesting question is what biochemical reactions can
compute logarithm. In fact, the article (21) finds many allosteric
protein that can compute logarithm in some range of concen-
tration. We have seen above that if the input-output response is
of the form on the RHS side of Equation (13), then there are two
ranges of concentration that this response computes logarithm,
though two different logarithm functions. It is also shown in
(21) that logarithm computation also holds for certain input
concentration range for some Monod-Wyman-Changeux (MWC)
or Hill models. Therefore, one may ask when an input-output
response function computes logarithm. One answer to this

C.T.Chou | 11

question lies with Pade approximation because Pade approxima-
tion tells us which rational functions can be used to compute
algorithm. Since the input-output response of Equation (13),
MWC and Hill models all has the form of a rational function, we
can therefore start with the rational input-output response of a
set of biochemical reactions and use Pade approximation to check
whether this response may compute logarithm.

Finally, we remark that rational function response with
higher order polynomials can also be found in gene regulatory
circuits (33). This opens the possibility of designing synthetic
gene expression circuits that implement higher order Pade
approximations.

4.6 Square roots and quartic roots as primitive
computation elements in CRNs

Until now, we have presented our method as an algorithm with
three computation steps. Here, we present a closed-form expres-
sion for our proposed method of approximating log (1+x) in
terms of x. For example, for Sqrt:Pade(5,5):x2, our approximation
is:

2x 0.018x3 + 0.306x} + 1.306X3 + 2x% + X1
1+ x10.004x3 + 0.119x% + 0.833x3 + 2.222x% +2.5%, + 1’

log (1+x) ~

where x; = v/1+ x. Assuming that x> 1 such that V1 +x=~ X,
then this approximation has the form:

s
Numerator polynomial in xz
Denominator polynomial in x?

log (1+x)~

An important point to note is that our approximation uses non-
integral powers (or exponents) of the input x. To the best of our
knowledge, previous work on CRNs has so far been focusing on
integral powers of the input, e.g. polynomials with integral powers
(10) and rational functions with integral powers (11,12). Therefore,
a novelty of our approach is the use of non-integral exponents.

We argue that certain non-integral exponents—namely
square roots, quartic roots and so on—may have a special role
to play in CRN. This is because these roots can be easily calcu-
lated by CRNSs. For example, the square root of a number can be
calculated using a CRN with only two chemical reactions.
Interestingly, this is the same number of chemical reactions
required to compute the square of a number. Hence, if we meas-
ure the complexity of a computation in CRN using the number
of chemical reactions required to implement that computation,
then the complexity of calculating the square root is the same
as that of calculating the square. However, this is not true for
digital computation where the complexity of calculating the
square root is much higher. This may explain why our proposed
method has not been considered in digital computation. More
importantly, the implication for this discussion on computing
using chemical is that it is worthwhile incorporating square
root, quartic root calculations into algorithms designed for CRN
because these calculations have low complexity. We have seen
earlier in Figure 2 that the improvement can be drastic:
Qurt:Pade(2,2): x4 requires only 24 reactions and is more accu-
rate than Pade (100,100), which requires about 100 reactions.

4.7 Relation to (18): non-integral Hill coefficients and
extending the range of approximation

In the gene expression circuit for computing log (1 + x) in (18),
one of the blocks is based on the cooperative binding of an


Deleted Text: Ref. [
Deleted Text: ] 
Deleted Text: P
Deleted Text: R
Deleted Text:  (GCPR)
Deleted Text:  
Deleted Text: ] 
Deleted Text: -
Deleted Text: Ref. [
Deleted Text: ] 
Deleted Text: Ref. [
Deleted Text: ] 
Deleted Text: E
Deleted Text: S
Deleted Text: I
Deleted Text: Ref. [
Deleted Text: ]. 
Deleted Text: -
Deleted Text: for example
Deleted Text: paper 
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: Up till
Deleted Text: 3
Deleted Text: x
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: by 
Deleted Text: by 
Deleted Text: of 
Deleted Text: x
Deleted Text: Ref. [
Deleted Text: ]: 
Deleted Text: N
Deleted Text: Ref. [
Deleted Text: ], 

12 | Synthetic Biology, 2017, Vol. 2, No. 1

inducer to a transcription factor to form an inducer-transcrip-
tion factor complex (or complex for short). This block quantita-
tively relates the total inducer concentration Ir, the total
transcription concentration Tr and the concentration of the
complex Tc. It is shown in equation (16) in the supplementary
information of (18) that the relationship between Ir, Tr and T¢
has the form:

h
Te ~ WilfTr (15)
1+ wy = ITl + W3ITZTT
where w4, w, and ws are coefficients, and h; and h, are Hill coef-
ficients. In supplementary table S2 of (18), h; = 1.4 and h, = 1.05
for one circuit and h,; = 3 and h, = 2.5 for another circuit. Note
that this computation block calculates the ratio of two polyno-
mials with non-integral power of the input Ir.

This discussion shows that it may be possible to implement
our proposed method as a rational function for non-integral
powers of the input using gene expression circuits. For our pro-
posed method, the non-integral power comes from taking the
square root of the input in order to ‘compress’ its range. There
is a possibility that the non-integral Hill coefficients in Equation
(15) have the same purpose. Furthermore, an interesting future
research question is to explore the role of fractional Hill coeffi-
cient in computation of cells.

We would also like to contrast how this article and that of
(18) extend the range of approximation. For this work, we use
square root, quartic root, etc. to extend the range of approxima-
tion. A larger range of approximation is achieved using a higher
order root. Our method is open loop because feedback is not
used. In contrast, the work (18) uses positive feedback to extend
the range of approximation. The circuit in (18) computes
log (1 + Ir), where Iy is the total concentration of the inducer as
defined above. An issue that limits the range of the circuit in
(18) is the saturation of the transcription factor; this is because
the validity of Equation (15) requires that the transcription fac-
tor is not saturated. Instead of using a fixed amount of tran-
scription factor Tr, the circuit in (18) uses a positive feedback
circuit to dynamically adjust the total amount of transcription
factor. If the input—which is the amount of inducer I+—is small,
the circuit needs only a small amount of transcription factor Tr.
However, if the input is large, the positive feedback in the circuit
increases the total amount of transcription factor to prevent
saturation.

In principle, it may be possible to modify our proposed
method so that the range of approximation is dynamically
adjusted according to the input x using positive feedback. Recall
that a key step in our work is to compute (1 + X)*. The range of
approximation in our method is determined by the parameter n.
The idea is to make n bigger when the input x is bigger, and vice
versa. However, the implementation of this idea can be difficult.
This is because different sets of chemical reactions need to be
used for different values of n.

4.8 Direct implementation of CRN

An open research problem is whether we can implement the
proposed CRN directly. We see that it may be possible to imple-
ment the proposed method using either allosteric protein or
gene expression circuits. We will discuss two possible methods
here. For the first possible method, we can view our proposed
CRN as a two-stage computation process, where the first stage
computes the square root (or a higher order root) and the sec-
ond stage computes a rational function. The article (18) presents

a gene expression circuit which, for a given input y, can com-
pute y%7. It may be possible to design a similar circuit to com-
pute y%° (square root) or y>?° (quartic root). Alternatively, since
yO5 ~ (y°7)%7, it may be possible to compute the square root by
concatenating two circuits that compute y°7, assuming that the
two circuits can operate independently. For the second stage,
there are examples of gene expression circuits that can com-
pute rational function and these may be used. For the second
possible method, we can explore the fact that the overall input-
output response function of our proposed method can be
expressed as rational function whose polynomials have
non-integral exponents. This type of input-output response
functions have been observed in allosteric protein or gene
expression circuits, where the Hill coefficient is not an integer.
It is an interesting open research problem to explore these
possibilities further.

4.9 Using only one reaction rate constant

The chemical reactions in the CRN proposed in Section 2.3 uses
multiple reaction rate constants. However, for the implementa-
tion of CRNs using SDRs, it may be desirable to have all chemi-
cal reactions in the CRN using the same reaction rate constant.
This is because SDR can only realize different reaction rate con-
stants with limited precision. In this discussion, we explain
how we can modify our design so that all reactions use the
same reaction rate constant of the base value k.

The place where our design uses multiple reaction rate con-
stants is in the computation of Pade approximations Q; 1(x:—1)
and Qu(x1—1). The general problem is the computation of a
term of the form ay}', where a is the coefficient and m is the
exponent. Since the computation of yJ' can be computed with a
CRN with only one reaction rate constant, the remaining prob-
lem is to multiply the y' by a constant a using only one reaction
rate constant. We consider the generic problem of computing
azi, where z; has already been computed by another CRN. The
following CRN computes z, = az; with only one reaction rate
constant.

Di+Z1 5D +71 4+ 2,

k
Dy +Zy,—D,

where D; and D, are two chemical species with constant con-
centrations of d; and d, respectively. It can be shown that at
steady state, we have

1
Zy :d—zzl.

Therefore, by choosing g—; to be a, we can realize the desired
computation.

5. Conclusions

This article proposes a novel method to compute the logarithm
log (1+ x) using CRNs. Two key steps in the method are the
computation of (1 + x)% (where n is an integer) and the computa-
tion of log ((1+ D) using Pade approximation. The accuracy of
the proposed method can be increased using a larger n or higher
order Pade approximation. We have presented the chemical
reactions needed to realize the CRNs. We have also presented
an implementation of the CRN using DNA SDRs. We have dem-

onstrated that our proposed CRN can accurately compute


Deleted Text: -
Deleted Text: S
Deleted Text: I
Deleted Text: Ref. [
Deleted Text: ] 
Deleted Text: ,
Deleted Text: S
Deleted Text: T
Deleted Text: Ref. [
Deleted Text: ], 
Deleted Text: ,
Deleted Text: of 
Deleted Text: by 
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: in 
Deleted Text: paper 
Deleted Text: by 
Deleted Text: -
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: paper 
Deleted Text: -
Deleted Text: -
Deleted Text: s
Deleted Text: s
Deleted Text: paper 
Deleted Text: by 
Deleted Text: s
Deleted Text: strand displacement reactions

logarithm over a wide range of x with a small number of chemi-
cal reactions.

In this article, we have evaluated the quality of our proposed
CRNs to compute logarithm using two criteria: wide input range
and small number of chemical reactions. We have also assumed
the number of molecules in the CRNs is large, which means we
can use the deterministic reaction rate equations to determine
the CRN output. However, in reality, chemical reactions are noisy.
Also, we have also assumed that the input concentration is deter-
ministic and constant, while real input concentration can be
noisy and time varying. It will be interesting to study how the
accuracy of our proposed CRNs is affected by noisy chemical reac-
tions and noisy inputs. It will also be interesting to see the
dynamic response of the proposed CRNs when the input is time
varying. These are open problems to be studied.

Conflict of interest statement. None declared.

References

1. Alberts, B., Johnsosn, A., Lewis, J., Raff, M., Roberts, K. and
Walter, P. (2007) Molecular Biology of the Cell, 5 edn. Garland
Science, New York, NY.

2. Lim, W., Mayer, B. and Pawson, T. (2014) Cell Signaling.
Garland Science, New York, NY.

3. Ma, K.C,, Perli, S.D. and Lu, T.K. (2016) Foundations and
emerging paradigms for computing in living cells. J. Mol. Biol.,
428, 893-915.

4. Riccione, K.A., Smith, R.P., Lee, AJ. and You, L. (2012) A syn-
thetic biology approach to understanding cellular informa-
tion processing. ACS Synth. Biol., 1, 389-402.

5. Hennig, S., Rodel, G. and Ostermann, K. (2015) Artificial cell-
cell communication as an emerging tool in synthetic biology
applications. . Biol. Eng., 9, 289.

6. Erdi, P. and Téth, J. (1989) Mathematical Models of Chemical
Reactions: Theory and Applications of Deterministic and Stochastic
Models. Manchester University Press, Manchester, UK.

7. Horn, F.and Jackson, R. (1972) General mass action kinetics.
Arch. Ration. Mech. Anal., 47, 81-116.

8. Soloveichik, D., Cook, M, Winfree, E. and Bruck, J. (2008)
Computation with finite stochastic chemical reaction net-
works. Nat. Comput., 7, 615-633.

9. Magnasco, M.O. (1997) Chemical kinetics is Turing universal.
Phys. Rev. Lett., 78, 1190-1193.

10. Salehi, S.A., Parhi, K.K. and Riedel, M.D. (2017) Chemical reaction
networks for computing polynomials. ACS Synth. Biol., 6, 76-83.

11.0ishi, K. and Klavins, E. (2011) Biomolecular implementation
of linear I/O systems. Syst. Biol. IET, 5, 252-260.

12.Foo, M., Sawlekar, R., Kim, J., Stan, G., Bates, D. and Kulkarni, V.
(2016) On the biomolecular implementation of nonlinear system
theoretic operators. In: Proceedings of the European Control
Conference, 29 June-1 July 2016. Aalborg, Denmark. pp. 1824-1831.

13.Zechner, C., Seelig, G., Rullan, M. and Khammash, M. (2016)
Molecular circuits for dynamic noise filtering. Proc. Natl Acad.
Sci. U.S. A., 113,4729-4734.

14.Teo, J.J.Y., Woo, S.S. and Sarpeshkar, R. (2015) Synthetic biol-
ogy: a unifying view and review using analog circuits. IEEE
Trans. Biomed. Circuits Syst., 9, 453-474.

C.T.Chou | 13

15.Sarpeshkar, R. (2014) Analog synthetic biology. Philos. Trans. A
Math. Phys Eng. Sci., 372,20130110.

16.Song, T., Garg, S., Mokhtar, R., Bui, H. and Reif, J. (2016) Analog
computation by DNA strand displacement circuits. ACS
Synth. Biol., 5, 898-912.

17.Perli, S.D.and Lu, T.K. (2016) Analog synthetic gene networks.
In: Proceedings of the 3rd ACM International Conference on
Nanoscale Computing and Communication (ACM NanoCom 2016),
28 September-30 September 2016. New York, NY, USA. Article
number 10.

18.Daniel, R., Rubens, J.R., Sarpeshkar, R. and Lu, T.K. (2013)
Synthetic analog computation in living cells. Nature,
497:619-623.

19.Adler, M., Mayo, A. and Alon, U. (2014) Logarithmic and power
law input-output relations in sensory systems with fold-
change detection. PLoS Comput. Biol., 10:e1003781.

20.Goentoro, L., Shoval, O, Kirschner, M.W. and Alon, U. (2009)
The incoherent feedforward loop can provide fold-change
detection in gene regulation. Mol. Cell, 36:894-899.

21.0lsman, N. and Goentoro, L. (2016) Allosteric proteins as
logarithmic sensors. Proc. Natl Acad. Sci. U. S. A, 113,
E4423-E4430.

22.Siggia, E.D. and Vergassola, M. (2013) Decisions on the fly in
cellular sensory systems. Proc. Natl Acad. Sci. U. S. A., 110,
E3704-E3712.

23.Chou, C.T. (2015) Maximum a-posteriori decoding for
diffusion-based molecular communication using analog fil-
ters. IEEE Trans. Nanotechnol., 14, 1054-1067.

24.Awan, H. and Chou, C.T. (2017) Generalized solution for the
demodulation of reaction shift keying signals in molecular
communication networks. IEEE Trans. Commun., 65, 715-727.

25.Chou, C.T. (2015) A Markovian approach to the optimal
demodulation of diffusion-based molecular communication
networks. IEEE Trans. Commun., 63, 3728-3743.

26.Baker, G.AJ. and Graves-Morris, P.R. (1996) Pade Approximants.
Cambridge University Press, Cambridge, UK.

27.Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.AJ. and
Liekens, AM.L. (2009) Computing algebraic functions with
biochemical reaction networks. Artif. Life, 15, 5-19.

28.Soloveichik, D., Seelig, G. and Winfree, E. (2010) DNA as a uni-
versal substrate for chemical kinetics. Proc. Natl Acad. Sci. U. S.
A.,107,5393-5398.

29.CRNSimulator Mathematica Package. http://users.ece.utexas.
edu/~soloveichik/crnsimulator.html (20 March 2017, date
last accessed).

30.Visual DSD: A Design and Analysis Tool for DNA Strand
Displacement ~ Systems.  https://www.microsoft.com/en-us/
research/project/programming-dna-circuits/ (20 March 2017,
date last accessed).

31.Abramowitz, M. and Stegun, I. (eds). (1964) Handbook of
Mathematical Functions. Dover, New York, UK.

32.Foo, M., Sawlekar, R. and Bates, D.G. (2016) Exploiting the
dynamic properties of covalent modification cycle for the
design of synthetic analog biomolecular circuitry. J. Biol. Eng.,
10, 15.

33.Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T.,
Kondev, J. and Phillips, R. (2005) Transcriptional regulation by
the numbers: models. Curr. Opin. Genet. Dev., 15, 116-124.


Deleted Text: paper
Deleted Text: by 
Deleted Text: -
Deleted Text: -
http://users.ece.utexas.edu/&sim;soloveichik/crnsimulator.html
http://users.ece.utexas.edu/&sim;soloveichik/crnsimulator.html
http://users.ece.utexas.edu/&sim;soloveichik/crnsimulator.html
https://www.microsoft.com/en-us/research/project/programming-dna-circuits/
https://www.microsoft.com/en-us/research/project/programming-dna-circuits/

	l
	l
	l
	l

