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abstract

PURPOSE We focus on the problem of scarcity of annotated training data for nucleus recognition in Ki-67
immunohistochemistry (IHC)–stained pancreatic neuroendocrine tumor (NET) images. We hypothesize that
deep learning–based domain adaptation is helpful for nucleus recognition when image annotations are un-
available in target data sets.

METHODSWe considered 2 different institutional pancreatic NET data sets: one (ie, source) containing 38 cases
with 114 annotated images and the other (ie, target) containing 72 cases with 20 annotated images. The gold
standards were manually annotated by 1 pathologist. We developed a novel deep learning–based domain
adaptation framework to count different types of nuclei (ie, immunopositive tumor, immunonegative tumor,
nontumor nuclei). We compared the proposed method with several recent fully supervised deep learning
models, such as fully convolutional network-8s (FCN-8s), U-Net, fully convolutional regression network (FCRN)
A, FCRNB, and fully residual convolutional network (FRCN). We also evaluated the proposedmethod by learning
with a mixture of converted source images and real target annotations.

RESULTS Our method achieved an F1 score of 81.3% and 62.3% for nucleus detection and classification in the
target data set, respectively. Our method outperformed FCN-8s (53.6% and 43.6% for nucleus detection and
classification, respectively), U-Net (61.1% and 47.6%), FCRNA (63.4% and 55.8%), and FCRNB (68.2% and
60.6%) in terms of F1 score and was competitive with FRCN (81.7% and 70.7%). In addition, learning with
a mixture of converted source images and only a small set of real target labels could further boost the
performance.

CONCLUSION This study demonstrates that deep learning–based domain adaptation is helpful for nucleus
recognition in Ki-67 IHC stained images when target data annotations are not available. It would improve the
applicability of deep learning models designed for downstream supervised learning tasks on different data sets.
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INTRODUCTION

Neuroendocrine tumors (NETs) are heterogeneous
cancers that affect most organ systems. The incidence
of NETs is increasing, with approximately 12,000 new
diagnoses in the United States each year.1 The 5-year
survival rate of patients with NETs is associated with
tumor grades2 determined by the proliferation rate of
the neoplastic cells, most commonly by measuring the
Ki-67 labeling index (LI).3-5 Accurate grading of NETs
is necessary to ensure proper treatment and patient
management. Measurement of the Ki-67 LI from pa-
thology images requires accurate cell/nucleus clas-
sification (ie, quantification of immunopositive and
immunonegative tumor cells while excluding non-
tumor cells). This is an essential procedure in basic,
translational, and clinical research and in rou-
tine clinical practice. However, the commonly used

“eyeball” estimation method for Ki-67 counting of-
ten leads to poor reliability and reproducibility, and
manual counting is inefficient and subjective.6-8 To
address these issues, computerized methods, in-
cluding machine learning–based algorithms, have
been introduced to quantify different types of cells.9

In particular, deep learning has drawn considerable
attention in digital pathology and microscopy image
analysis.10

Deep neural networks are emerging as a powerful tool
for a wide variety of computer vision tasks,11,12 in-
cluding biomedical image computing.13,14 Currently,
convolutional neural networks (CNNs)15,16 are the
dominant deep learning technology for various bio-
medical image analysis applications.10,17,18 CNNs
have been applied to nucleus detection19 and im-
age segmentation20 in Ki-67–stained pancreatic NET
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images; however, few studies have proposed deep learning–
based Ki-67 counting. Although a CNN-based approach21

has been applied to differentiation between immuno-
positive and immunonegative tumor nuclei, it might not
exclude nontumor nuclei for Ki-67 counting. A recent
report22 has introduced a deep fully convolutional net-
work (FCN) for single-stage nucleus recognition for Ki-67
counting in pancreatic NETs, and the network allows
for simultaneous nucleus detection and classification
by using pixel-to-pixel modeling. Another end-to-end CNN,23

which requires a prerequisite of individual cell segmenta-
tion, has been applied to cell classification in breast cancer
Ki-67 images. Both methods provide excellent nucleus/cell
classification and outperform other machine learning–
based approaches, which shows the great potential of deep
learning in Ki-67 LI assessment. However, they as well as
other CNN-based methods often require a large number of
annotated training images. Medical image annotation is
often labor intensive, especially individual nucleus labeling
as required for Ki-67 scoring. In real applications, there
might be few labeled data in one specific data set but
a sufficient number of labeled images in another (eg, other
imaging sources). However, models trained on one data set
might not be directly applicable to another because of data
set shift, a situation where the joint distribution of inputs
and outputs differs between the training and test stages. We
hypothesize that deep learning–based domain adaptation,
which can transfer learned knowledge from existing data
sets to others, is helpful for nucleus recognition such that
deep models can be reused for different data sets.

In this study, we developed a novel deep learning–based
domain adaptation framework (Fig 1) to quantify nuclei for
Ki-67 LI assessment in pancreatic NETs. This framework
can convert Ki-67 immunohistochemistry (IHC)-stained
images from an existing, annotated data set (ie, source) to
another style of images that look similar to those in an
unannotated or limited annotated data set (ie, target) in

terms of color and texture. Thus, it enables nucleus rec-
ognition in the target data set if no target data annotations
are available. Specifically, this framework learns a cycle-
consistent generative adversarial network (GAN)24,25 (see
Appendix, Explanation of Terminology/Algorithms, for de-
tailed descriptions of this term and others) for image
conversion between source and target data sets and then
trains a deep regression model with the converted source
images and corresponding annotations to locate and
classify different types of nuclei in the target data set. In this
scenario, the framework is able to significantly reduce
human effort for data annotation by eliminating the need for
additional annotation of images in the target data set,
thereby shortening the period of algorithm development.

METHODS

Data Sets

We collected pancreatic NET image data sets from 2 dif-
ferent academic medical centers: University of Florida (UF)
and University of Colorado (CU). Additional details about
cohort assembly are provided in the Data Collection section
of the Appendix. Briefly, the UF data set contained 38
cases of IHC Ki-67–stained tissuemicroarray (TMA) images
captured at 20× magnification, and each case had three
500 × 500 × 3 (ie, width × height × number of image
channels in pixels) images cropped from TMA cores (114
total images). Each image had individual nucleus anno-
tations available (ie, position and category [immunopositive
tumor, immunonegative tumor, nontumor]). The CU data
set contained 72 cases of IHC Ki-67–stained whole-slide
imaging (WSI) data captured at 40× magnification. Each
case had 1 WSI slide from which an approximately 1,192 ×
1,192 × 3 (ie, width × height × number of image channels
in pixels) image was cropped (72 total images). The
cropped images were annotated by an expert pancreatic
pathologist using a custom tool developed in MATLAB
(MathWorks, Natick, MA). Each nucleus in an image was

CONTEXT

Key Objective
To develop an adversarial learning-based domain adaptation method to count different types of nuclei for automated Ki-67

labeling index assessment.
Knowledge Generated
Without any target data annotations, adversarial learning-based domain adaptation is able to conduct automated nucleus

recognition for Ki-67 scoring in Ki-67 immunohistochemistry–stained target images. In addition, learning a deepmodel with
a mixture of source images and only little real target annotation can further improve model performance.

Relevance
The proposedmethod can address the issue of image appearance variation in staining by using generative adversarial learning

such that it would significantly improve the re-use of state-of-the-art deep learning algorithms for Ki-67 scoring in clinical
research and practice. In addition, it provides a pixel-to-pixel learning pipeline for automated, single-stage nucleus
detection and classification and thus, could eliminate the need for pathologists to exclude areas of nonrelevant regions for
Ki-67 image analysis.
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FIG 1. Overview of the proposed framework. (A) Adversarial image translation. Gst and Dt are the source-to-target generator and its associated
discriminator, respectively. Gts is the target-to-source generator. The generative adversarial network (GAN) loss and the cycle loss are used to train the
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assigned to 1 of the 3 classes by placing amarker as near to
the nuclear center as possible.

Adversarial Image Translation

An overview of the proposed framework is shown in Fig 1A.
To reduce the variability of image appearance between the
data sets (ie, source, target), we applied generative
adversarial learning24 to image translation in a pixel-level
space such that converted/adapted source images looked
like those in the target data set. Compared with domain
adaptation in a feature space, pixel-level translation is more
suitable for structured prediction tasks,26,27 such as nu-
cleus localization and categorization. To better preserve
image content during image-to-image translation, we
introduced a cycle-consistent constraint25,27a into the
adversarial learning.

Formally, let (Xs,Ys) represent the training images (Xs) and
associated annotations/labels (Ys) in the source data set,
and Xt denote the unannotated training images in the target
data set. By using a cycle-consistent GAN (see Appendix
for mathematical equation) that consists of 2 generator-
discriminator pairs (Gst, Dt) and (Gts, Ds), we aimed to
translate source images Xs into target-like ones Gst(Xs) such
that the discriminator Dt is unable to differentiate Gst(Xs)
and Xt. In our implementation, the generators and dis-
criminators were selected as a 9–residual-learning-block
FCN28 and a 70 × 70 PatchGAN,29 respectively.

Deep Regression Model

With adversarial image translation, the adapted source
images appeared as if drawn from the target data set,
but the content was preserved. A model trained with the
adapted source images and associated annotations can
therefore be applied to nucleus recognition on real target
images. We then trained a U-Net–like regression model
(Fig 1B), which was built on a deep structured prediction
network.22 Instead of using 2 branches to identify nuclei and
requiring additional region of interest (ROI) annotations,22

our model adopted only 1 branch for a single task requir-
ing no ROI labeling. In addition, we did not penalize the
correlation between different feature maps in higher layers
but directly used 2 convolutional layers for nucleus iden-
tification (Fig 1B). This strategy can reduce memory usage
and accelerate model training.

Specifically, our deep regression model (see Appendix for
the mathematical equation) is a variant of an encoder-
decoder network architecture, U-Net,30 which has multiple
long-range skip connections between the encoder and
decoder. In our design, the encoder and decoder consist of
4 stacked residual learning blocks.31 In addition, we fused
the information from different layers such that the model
can handle scale variation of nuclei.22 The fused in-
formation was finally fed into 2 consecutive convolutional
layers for output prediction. During training, we used both
converted and original source images for better learning.32

During testing, we applied the learned regressor R to output

TABLE 1. University of Colorado Data Set Patient and Tumor
Characteristics
Characteristic No. (%)

Total 72 (100)

Male 43 (59.7)

Female 29 (40.3)

Median age, years (range) 60 (20-80)

Tumor site

Head 27 (37.5)

Uncinate process 1 (1.4)

Neck and/or body 12 (16.7)

Neck, body, and tail 1 (1.4)

Body and tail 3 (4.2)

Tail 25 (34.7)

Liver 2 (2.8)

Other 1 (1.4)

Procedure

Pancreaticoduodenectomy 30 (41.7)

Distal pancreatectomy 37 (51.4)

Total pancreatectomy 1 (1.4)

Enucleation 1 (1.4)

Liver resection 2 (2.8)

Other 1 (1.4)

Unifocal/multifocal

Unifocal 62 (86.1)

Multiple 9 (12.5)

NR 1 (1.4)

Tumor size (largest tumor if multiple), cm

, 2 33 (45.8)

2-4 24 (33.3)

. 4 14 (19.4)

NR 1 (1.4)

Ki-67 labeling index, %

, 3 36 (50.0)

3-20 30 (41.7)

. 20 5 (6.9)

NR 1 (1.4)

Mitotic rate, mitoses/2 mm2

, 2 52 (72.2)

2-20 14 (19.4)

. 20 1 (1.4)

NR 5 (6.9)

Histologic grade

G1 33 (45.8)

G2 34 (47.2)

G3 5 (6.9)

(Continued on following page)
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map prediction on new target images. For each channel of
output map ŷ, we suppressed pixel values , η $ max (ŷ),
where η 2 [0,1], and sought local maxima as the detected
nucleus centers, whose labels were determined by finding
the largest value across the 3 channels of ŷ.

Experimental Setup and Evaluation Metrics

We randomly split each data set into training (50%) and
test (50%) sets at the case level, and selected 20% of
training data as the validation set (Fig 1C). We chose the
UF data set as the source because all 114 images were
labeled. The CU data set was the target. We conducted
twofold cross-validation. More training details are explained
in the Appendix.

We evaluated the proposed method for nucleus detection
and classification. For nucleus detection, we merged the 3
channels of the output prediction map by taking the largest
values for each pixel across the channels and found local
maxima as nucleus centers.22 For each annotation point,
we defined its gold-standard area as a circular region with
radius r = 16 pixels centered at that point.22,33 Within gold-
standard areas, the detected nucleus centers were asso-
ciated with corresponding annotations using the Hungarian

algorithm.34 Each annotation had at most 1 detection point
and vice versa. The detection points that matched gold-
standard annotations were considered true positives (TPs),
and all others were false positives (FPs). The annotations
without any associated detections were viewed as false
negatives (FNs). We quantified the nucleus detection
performance with precision (P), recall (R), and F1 score as
follows: P = TP/(TP + FP), R = TP/(TP + FN), and F1 = 2PR/
(P + R). We also reported the area under the precision-
recall curve (AUC), which was generated by varying η from
0 to 1. For nucleus classification evaluation, we calculated
the weighted average precision, recall, F1 score, and AUC
across the 3 categories of nuclei,22,35 and the weight was
the percentage of each nucleus subtype in the test set. In
the experiments, we also evaluated the effects of the radius
r, which is used to define the gold-standard area, on nu-
cleus recognition.

Data Availability Statement

This study was approved by the CU Anschutz Medical
Campus institutional review board (#17-2167). Requests
for the data sets used in this study should be addressed to
the corresponding author. The source codes can be
accessed through GitHub.36

RESULTS

The UF data set consisted of 114 images from 38 patients
with 22,198 nuclei in total (1,217 immunopositive tumors,
15,529 immunonegative tumors, and 5,452 nontumor
nuclei). The CU data set contained 72 images from 72
patients. Twenty CU images were annotated, with 11,780
nuclei annotated (1,519 immunopositive tumor, 7,989
immunonegative tumor, and 2,272 nontumor nuclei).
Although both data sets were Ki-67 IHC stained, they
exhibited significant variability of image appearance
(Appendix Fig A1). Table 1 lists the characteristics of
patients in the CU data set.

Table 2 lists the nucleus detection and classification per-
formance using different models. The reference baseline
(untransformed) is the deep regression model trained with
source data only and tested on target data. The proposed
method outperforms the baseline by a large margin in terms
of recall, F1 score, and AUC while providing a comparable
precision. In particular, our method delivers a much higher

TABLE 1. University of Colorado Data Set Patient and Tumor
Characteristics (Continued)
Characteristic No. (%)

Primary tumor

pT1 28 (38.9)

pT2 22 (30.6)

pT3 19 (26.4)

NA 3 (4.2)

Regional lymph nodes

pNX 3 (4.2)

pN0 43 (59.7)

pN1 23 (31.9)

NA 3 (4.2)

Distant metastasis

MX 66 (91.7)

M1 6 (8.3)

Abbreviations: NA, not applicable; NR, not reported.

TABLE 2. Evaluation of Nucleus Recognition in the University of Colorado Data Set
Detection, Mean % (6 SD) Classification, Mean % (6 SD)

Model P R F1 AUC P R F1 AUC

Untransformed 88.7 6 6.1 66.4 6 0.10 75.8 6 2.2 74.0 6 2.3 72.1 6 9.7 48.1 6 0.6 55.8 6 3.7 40.7 6 3.7

Transformed 89.8 6 1.9 74.2 6 0.08 81.3 6 0.8 77.5 6 1.8 72.2 6 7.1 57.7 6 3.9 62.3 6 6.6 46.2 6 7.7

Ideal 82.5 6 1.0 84.3 6 3.20 83.4 6 2.1 85.7 6 2.2 71.4 6 2.9 70.5 6 5.0 69.5 6 5.0 62.7 6 6.2

NOTE. Untransformed and ideal denote deep supervised regression models trained with only original source data and all real target training
annotations, respectively. Transformed represents the proposed method.

Abbreviations: AUC, area under the precision-recall curve; P, precision; R, recall; SD, standard deviation.
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F1 score than the baseline in classification and greatly
closes the gap to the ideal supervised model trained with all
real target annotations only. This suggests that models
trained on one data set might not generalize to another data
set, even though both use Ki-67 IHC staining. Adversarial
image translation followed by deep regression modeling
can improve the performance. Figure 2 shows some
qualitative results of nucleus detection and classification.
Confusion matrices, specificity, sensitivity, and area under
the receiver operating characteristic curve are listed in
Appendix Tables A1, A2, and A3. For object recognition in

images, non-nucleus pixels are a dominant group, and the
majority of them are correctly predicted as non-nucleus
pixels. For a further comparison, we also trained a very
deep regression model with the residual network (ResNet)-
15231 as the backbone, and the results are provided in the
Appendix.

Table 3 lists the proposed method compared with multiple,
popular, fully supervised deep learningmodels such as fully
convolutional network-8s (FCN-8s),37 U-Net,30 fully con-
volutional regression network (FCRN) A/FCRNB,38 and fully
residual convolutional network (FRCN),33 which are trained
only with all real target annotations. Our method out-
performed FCN-8s (by 27.7% and 18.7% in F1 score),
U-Net (by 20.2% and 14.7% in F1 score), and FCRNA (by
17.9% and 6.5% in F1 score) for nucleus detection and
classification, respectively, and it is competitive with FRCN,
a state-of-the-art, fully supervised architecture for nucleus/
cell quantification. Note that our method does not use any
real target training labels for model training.

Figure 3A explores the effects of the amount of annotated
source training data on nucleus recognition. Translation of
more source images improved the nucleus recognition
performance (blue curves); however, the F1 score was
inclined to saturate when using . 40% of source training
data. Of note, training with converted source images always
outperformed learning with original source data alone
(green curves). Figure 3B shows the results from models
using a mixture of 40% converted source training data and
different numbers of real target training annotations (ma-
genta curves). Similarly, using more target training data is
helpful, and a small subset (eg, 4 images) may deliver
equivalent performance to those using the full target
training set. In addition, learning with mixed data seems to
be beneficial compared with training with limited target
data only (cyan curves).

After previous work,39 we evaluated the effects of the radius
parameter r used to define the gold-standard areas. A
smaller r means a more rigorous definition and higher
confidence of nucleus localization. Appendix Figure A2
shows the F1 score with 3 different radii: r = 8, 12, and
16 pixels. We see that radius only affects performance
slightly, which suggests that the proposed method pro-
duces accurate nucleus localization (ie, detected nucleus
centers are close to real ones). Regardless of r used, our
method significantly outperformed the models trained with
original source data only. This confirms that domain ad-
aptation improves performance when no target data labels
are available.

DISCUSSION

This study shows that deep learning–based domain ad-
aptation can be applied to nucleus recognition for Ki-67
LI assessment when no target training annotations are
available. Deep learning represents the state-of-the-art
technology in biomedical image analysis.11,13,14 Many

Nucleus detection
(all classes)

Classification of
immunopositive
tumor nuclei

Classification of
immunonegative
tumor nuclei

Classification of
non-tumor nuclei

Detection/
classification

Gold standard

A B

C D

E F

G H

FIG 2. Qualitative results of nucleus detection and classification on the
University of Colorado (CU) data. The left and right columns represent
model predictions and gold-standard annotations, respectively. (A and
B) Nucleus detection results, with 374 true positives (TPs), 30 false
positives (FPs), 155 false negatives (FNs), and 354,657 true negatives
(TNs). (C and D) Nucleus classification results for immunopositive
tumor, (E and F) immunonegative tumor, and (G and H) nontumor
nuclei. For the class of immunopositive tumor nuclei, there are 8 TPs,
3 FPs, 3 FNs, and 355,202 TNs. For the class of immunonegative tumor
nuclei, there are 199 TPs, 35 FPs, 98 FNs, and 354,884 TNs. For the
class of nontumor nuclei, there are 110 TPs, 49 FPs, 111 FNs, and
354,946 TNs. Red, green, and yellow dots represent TPs, FPs, and FNs,
respectively. Magenta dots (in the right column) are gold-standard
annotations that are matched with automated (B) detections and
(D, F, and H) classifications.
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neural network architectures are proposed for image
recognition12,31,40,41 and other image computing tasks.10,17,18

Most applications use these architectures as the base
networks and fine-tune them toward specific tasks or
target domains. However, it might be difficult to collect

sufficient target training annotations for proper fine-tuning
in some applications,42 especially in the medical imaging
domain. Our method directly converts annotated source
images into target-like ones and uses the converted images
to train a deep regression model for nucleus recognition on

TABLE 3. Comparison With State-of-the-Art, Fully Supervised Deep Models in the University of Colorado Data Set
Detection, Mean % (6 SD) Classification, Mean % (6 SD)

Model P R F1 AUC P R F1 AUC

FCN-8s37 93.8 6 2.1 37.6 6 2.60 53.6 6 3.0 47.8 6 3.1 78.1 6 0.4 30.6 6 1.3 43.6 6 1.6 29.5 6 0.7

U-Net30 92.8 6 3.8 45.6 6 2.00 61.1 6 2.6 57.4 6 6.3 74.5 6 2.1 35.5 6 0.2 47.6 6 0.1 32.6 6 0.4

FCRNA38 95.4 6 1.0 47.5 6 4.30 63.4 6 4.1 68.2 6 2.8 84.0 6 1.3 42.8 6 4.8 55.8 6 4.3 49.7 6 3.6

FCRNB38 95.2 6 0.2 53.2 6 4.10 68.2 6 3.4 75.5 6 2.4 83.9 6 0.6 48.2 6 3.9 60.6 6 3.4 52.6 6 3.7

FRCN33 85.3 6 0.4 78.6 6 5.50 81.7 6 2.8 79.1 6 3.2 74.8 6 2.6 69.0 6 3.6 70.7 6 0.2 60.8 6 1.7

Transformed 89.8 6 1.9 74.2 6 0.08 81.3 6 0.8 77.5 6 1.8 72.2 6 7.1 57.7 6 3.9 62.3 6 6.6 46.2 6 7.7

NOTE. Transformed represents the proposed method.
Abbreviations: AUC, area under the precision-recall curve; FCN-8s, fully convolutional network-8s; FCRN, fully convolutional regression

network; FRCN, fully residual convolutional network; P, precision; R, recall; SD, standard deviation.
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real target data. This is important for Ki-67 counting be-
cause individual nucleus annotation for deep supervised
model training is labor intensive. Our approach can transfer
learned knowledge from one data set to another to address
the issue of stain variation in Ki-67 IHC images. These
experimental results show the great potential of deep
learning–based domain adaptation in Ki-67 counting and
can promote re-use of deep models designed for down-
stream supervised learning tasks.

Our study also quantifies the effects of the number of
source data annotations on image translation for nucleus
identification. We show that a subset of source training data
(eg, 40%) can deliver competitive performance with the full
data set probably because 40% of the data are sufficient to
cover enough diversity of the nucleus appearance. This
experiment is helpful because some data sets might be
easy to collect and annotate, and a sensitivity analysis
would potentially provide a guideline for data preparation.
We also explored how the amount of target training data
affect the performance because large-scale target data
annotations are more difficult to obtain than a small subset.
We find that learning with a mixture of converted source
images and limited real target training annotations can
compete with training on the full target data set only, which
suggests that image translation is also beneficial when only
limited target data are available.

In addition to the adversarial domain adaptation framework,
we also present an efficient deep pixel-to-pixel network for
nucleus identification, which is more streamlined than
typical computerized Ki-67 scoring methods that use
a multistage image processing pipeline.43,44 Our previous
study suggested that nucleus recognition can be achieved
by using an end-to-end deep neural network.22 Here, we
tailored the previous network architecture22 to fit a single
task, which did not require additional ROI annotations for
model training. We also truncated the network into
a compact and concise model such that the training
process was sped up and exhibited lower memory usage.
The modified network is naturally suitable for regression
modeling, which has shown better performance than pixel-
wise classification in nucleus localization.38,39 Compared
with other automated methods as well as eyeball estimation

and manual counting, our pixel-to-pixel model is more
efficient and reproducible. Our method also provides better
nucleus recognition than a previous very deep network,
ResNet-based FCN,30,31 for most metrics.

Although WSI is widely used in digital pathology, it is far
more common for pathologists to manually count Ki-67 LI in
small, selected regions. However, quantitative analysis of
WSI images can provide a detailed characterization of
the entire tumor morphologic landscape.45 WSI produces
gigapixel-scale images, and these images are commonly
divided into a large number of small tiles that can be easily
loaded for graphics processing unit computation.10 In the
experiments, we evaluated our method on only pancreatic
NET image data sets from only 2 different institutions, but
this work will be expanded to include more interinstitutional
data sets in the future. We do not provide uncertainty
estimation of nucleus recognition in the experiments. An-
other potential limitation of this study might be that the gold
standard was provided by a single pathologist.

In the experiments, we empirically set the hyperpara-
meter values (eg, learning rate, batch size) for model
training on the basis of a balance of model complexity,
performance, and time cost. Meanwhile, we conducted
only twofold cross-validation because of expensive com-
putation for model training. However, we followed state-
of-the-art methods22,25 to select and design network
architectures. We believe that our model is effective in
nucleus quantification and comparable to state-of-the-
art, fully supervised models, but we are also aware that
our model can be improved with the advancement of
deep learning.11,46

In conclusion, we have developed an automated deep
learning–based domain adaptation framework to quantify
different types of nuclei for Ki-67 LI assessment in pan-
creatic NETs. It is able to provide competitive performance
with state-of-the-art, fully supervised learning models and
thus demonstrates the great potential of deep domain
adaptation in Ki-67 counting, which can significantly re-
duce human effort for data annotation. Future work will
focus on optimizing network architectures and applying the
method to WSI analysis and more interinstitutional data.
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APPENDIX

Mathematical Modeling for Cycle-Consistent Generative

Adversarial Network

Mathematically, the cycle-consistent generative adversarial network
(GAN) can be formulated as follows (Eqs A1-A4)25:
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where λ ≥ 0 is a hyperparameter to weight the cycle consistency,
E represents the expectation, and ‖$‖1 denotes the I1 norm. During the
optimization of Equation A1, the generators and discriminators are
alternatively updated until a balance is achieved.

Mathematical Modeling for Deep Regression

Mathematically, the deep regression model R can be formulated as
follows (Eq A5):
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where the label ys is a 3-channel proximity map that measures the
proximity of pixels to their closest same-class nucleus centers, with 1
channel for each nucleus subtype.22 ȳ s represents the channel-wise
mean of ys, and 1 is a 3-dimensional matrix with all elements being 1.
α = 5 is a contribution controller for different image regions, ‖$‖F
denotes the Frobenius norm applied to each channel, and⊙ indicates
the element-wise multiplication.

Training Details

For the University of Colorado (CU) data set, we had 28 training images
with 8 annotated, 8 validation images with 2 annotated, and 36 test
images with 10 labeled. The CU images (40× magnification) were
resized by a factor of 0.5 to match the 20× magnification of the
University of Florida (UF) images for deep regression model training
and testing. Within each iteration of regression model training, we
randomly cropped and fed 220 × 200 × 3 patches into the proposed
U-Net–like network.

We set λ = 10 in Equation A1 and η = 0.5 for pixel suppression during
testing. We used the Adam algorithm (Kingma DB, et al: Proc Int Conf
Learn Representations, 2015) to train the cycle-consistent GAN, with
learning rate = 2 × 10−4 and number of epochs = 170. We trained the
deep regression model with stochastic gradient descent with Nesterov
momentum (Sutskever I, et al: Proc Int Conf Mach Learn, 2013) and
set the parameter values as momentum 0.99, learning rate = 10−3,
batch size = 4, weight decay = 10−6, and number of iterations = 105.
We scaled the proximity map by a factor of 5 to facilitate training33 and
stopped the training if the performance on the validation set did not
improve for 2 × 104 iterations. We implemented the proposed method
with PyTorch (PyTorch: https://pytorch.org) on a workstation with
a GeForce GTX 1080 Ti graphics processing unit (Nvidia, Santa
Clara, CA).

Comparison With Deep Residual Networks

Following the work of fully convolutional networks (FCNs),37 we used
residual network (ResNet)-152 as the backbone to generate a pixel-to-

pixel FCN by removing the global average pooling layer and the final
fully connected layer and then adding an upsampling layer (imple-
mented as bilinear interpolation) to produce dense prediction. We
trained this very deep ResNet-based FCNwith the proposed regression
loss (ie, Eq A5). The performance of this network on the test set is
93.8%precision, 51% recall, 66% F1 score, and 69.5%area under the
precision-recall curve (AUC) for detection and 79.2% precision,
44.4% recall, 55.8% F1 score, and 49.7% AUC for classification. Most
of these metric values are lower than that of our U-Net–like archi-
tecture. This might be a result of our network having long-range skip
connections, which can take advantage of high-resolution information
in low layers for precise nucleus localization, and multilevel context
aggregation connections, which can handle scale variation of nuclei.

Data Collection

The 2 data sets were collected from 2 separate institutions, UF and
CU Anschutz Medical Campus. UF is a public, land-grant, sea-grant,
and space-grant research university. It is home to 16 academic col-
leges and . 150 research centers and institutes. Currently, UF has
. 55,000 students enrolled. The CU Anschutz Medical Campus is
the largest academic health center in the Rocky Mountain region and
a world-class medical destination at the forefront of transformative
education, science, medicine, and health care. The campus includes
the CU health professional schools; multiple centers and institutes;
and 2 nationally ranked hospitals, CU Hospital and Children’s Hospital
Colorado, which treat nearly 2 million patients each year. The campus
currently has 4,500 students enrolled.

For the CU data set, cases from CU were identified by searching the
anatomic pathology laboratory information system for the date range
January 1, 2006, to January 30, 2018, which met the following criteria:
Ki-67 immunostain was performed, part type of pancreas resection or
Whipple resection, and diagnostic text that included “neuroendo-
crine.” Slides were requested from the CU Biorepository Core Facility.
Of note, some cases were incomplete or not available from the archive.
Ki-67 slides from the retrieved cases were digitized on an Aperio
ScanScope AT2 slide scanner (Leica Biosystems, Vista, CA) at ×40
equivalent magnification (0.252 µm/pixel) and eventually scaled by
50%. Only cases with 3′-diaminobenzidine (DAB; brown) detection of
Ki-67 were included in the study (eg, 3-amino-9-ethylcarbazole/
AEC-red detection was excluded). Ki-67 whole-slide images were
reviewed in ImageScope (Leica Biosystems) by an expert GI pathol-
ogist, and a single region of interest (ROI) measuring 300 × 300 µm
was drawn to include the hot spot (ie, the area of tumor estimated to
have the highest Ki-67 labeling index). Custom software written in
Python 2 and using the Openslide library (Goode A, et al: J Patho
Inform 4:27, 2013) was then used to read the annotation file and
extract the ROIs from the wholes-slide image base layer as uncom-
pressed tagged image file format files. Twenty of the ROIs were then
chosen to provide a range of Ki-67 labeling indices.

Gold-Standard Generation

We developed a computer-aided annotation tool for individual nucleus
labeling using the MATLAB (MathWorks, Natick, MA) programming
language. The tool provides a user interface such that the user can use
the mouse to label nuclei by clicking a point at the center of each
nucleus. Different types of nuclei are labeled with different colors.
T.C.C., who is a board-certified and practicing GI pathologist, selected
the regions of hot spots and conducted the nucleus annotation in
Ki-67–stained images.

Explanation of Terminology/Algorithms

Domain adaptation. Given a source domain and a target domain,
domain adaptation aims to improve the learning of the target predictive
function using the knowledge from the source domain.

Generative adversarial network. A GAN24 is a neural network
architecture that typically consists of a generator and a discriminator.
The generator learns to create images to fool the discriminator, while
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the discriminator is optimized to distinguish between real and gen-
erated images.

Cycle-consistent GAN. Cycle-consistent GAN25 is a neural net-
work architecture that consists of 2 generator-discriminator pairs,
each corresponding to 1 domain or data set. It introduces a cycle-
consistent loss into the standard GAN framework such that the
reconstructions of converted images are identical to their original
versions.

PatchGAN. PatchGAN29 is a traditional convolutional neural net-
work used as a discriminator in adversarial learning, which aims to
classify whether image patches are real or fake. The network is
run convolutionally across the entire image and can be applied to

arbitrary-sized images. Compared with a full-image discriminator,
PatchGAN has fewer parameters and runs faster.

Residual learning block. Residual learning block31 is a building
unit used to construct deep neural networks. The block consists of
a small feedforward neural network, which fits a residual mapping, and
a shortcut connection, which realizes an identity mapping. These 2
mappings are summed to recast the original, underlying mapping. In
our architecture, the decoder consists of 4 stacked residual blocks,
and each block contains 2 sets (the first block has only 1) of con-
volution-bn-elu operations, where bn and elu denote batch normali-
zation and exponential linear unit, respectively. A stride-2 convolution
is used to connect 2 residual blocks for feature map down-
sampling. The decoder is also composed of 4 residual blocks, but
a transposed convolution is exploited to upsample feature maps.

A B

C D

FIG A1. Examples of color variability in images from (A and C) the University of Florida and (B and D) the
University of Colorado.
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FIG A2. F1 score of nucleus detection and classification with different values of radius r used to define
gold-standard areas. The blue lines denote the standard deviation of the F1 score.

TABLE A1. Confusion Matrix of Nucleus Recognition: Detection
Gold Standard, No.

Detection Nucleus Non-Nucleus

Nucleus 4,372 498

Non-nucleus (prediction) 1,519 3,544,581
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TABLE A2. Confusion Matrix of Nucleus Recognition: Classification
Gold Standard, No.

Classification IPT INT NT Non-Nucleus

IPT 214 3 29 24

INT (prediction) 277 2,706 208 282

NT 105 355 476 193

Non-nucleus 164 931 424 3,544,581

Abbreviations: INT, immunonegative tumor nucleus; IPT,
immunopositive tumor nucleus; NT, nontumor nucleus.

TABLE A3. Comparison With State-of-the-Art, Fully Supervised Deep
Models on the University of Colorado Data Set

Detection, Weighted % Classification, Weighted %

Model SPE SEN ROC AUC SPE SEN ROC AUC

FCN-8s37 99.996 37.6 0.005 99.995 30.6 0.004

U-Net30 99.994 45.6 0.020 99.993 35.5 0.009

FCRNA38 99.996 47.5 0.019 99.995 42.8 0.010

FCRNB38 99.996 53.2 0.060 99.995 48.2 0.025

FRCN33 99.978 78.6 0.030 99.982 69.0 0.014

Proposed 99.986 74.2 0.064 99.982 57.7 0.017

Abbreviations: FCN-8s, fully convolutional network-8s; FCRN, fully
convolutional regression network; FRCN, fully residual convolutional
network; ROC AUC, receiver operating characteristic area under curve;
SEN, sensitivity; SPE, specificity.
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