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Abstract: There are approximately 1.8 million diagnoses of colorectal cancer, 1 million diagnoses of
stomach cancer, and 0.6 million diagnoses of esophageal cancer each year globally. An automatic
computer-assisted diagnostic (CAD) tool to rapidly detect colorectal and esophagogastric cancer
tissue in optical images would be hugely valuable to a surgeon during an intervention. Based on a
colon dataset with 12 patients and an esophagogastric dataset of 10 patients, several state-of-the-art
machine learning methods have been trained to detect cancer tissue using hyperspectral imaging
(HSI), including Support Vector Machines (SVM) with radial basis function kernels, Multi-Layer
Perceptrons (MLP) and 3D Convolutional Neural Networks (3DCNN). A leave-one-patient-out cross-
validation (LOPOCV) with and without combining these sets was performed. The ROC-AUC score
of the 3DCNN was slightly higher than the MLP and SVM with a difference of 0.04 AUC. The best
performance was achieved with the 3DCNN for colon cancer and esophagogastric cancer detection
with a high ROC-AUC of 0.93. The 3DCNN also achieved the best DICE scores of 0.49 and 0.41 on
the colon and esophagogastric datasets, respectively. These scores were significantly improved
using a patient-specific decision threshold to 0.58 and 0.51, respectively. This indicates that, in
practical use, an HSI-based CAD system using an interactive decision threshold is likely to be
valuable. Experiments were also performed to measure the benefits of combining the colorectal and
esophagogastric datasets (22 patients), and this yielded significantly better results with the MLP and
SVM models.

Keywords: hyperspectral imaging; machine learning; convolutional neural networks; cancer; computer-
assisted diagnosis; image-guided surgery

1. Introduction
1.1. Clinical Context

There are approximately 1.8 million diagnoses of colorectal cancer each year globally
and 0.6 million diagnoses of esophageal cancer with a high mortality (sixth rank among all
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cancer types). There are approximately 1 million diagnoses of stomach cancer reaching the
third rank in terms of mortality [1]. An early diagnosis of these cancer types is essential to
reduce mortality rates and improve treatment options, including surgery. Endoscopy is
crucial to detect these cancers and other abnormalities in tissues [2]. Accurate diagnosis
and staging are fundamental before considering a possible therapeutic strategy. Computer-
assisted diagnostic (CAD) tools are becoming increasingly important to reduce human
subjectivity and cost and to facilitate earlier diagnosis.

CAD tools have great potential to help gastrointestinal endoscopists in various
ways [3], namely to help locate precancerous and cancerous tissue and to ensure neg-
ative margins after the resection of a lesion, hence, allowing for a more accurate diagnosis
and globally improving the oncological outcomes. However, the existing CAD tools for
endoscopic detection of colorectal and esophagogastric cancerous tissues are based ex-
clusively on features recognized on conventional RGB pictures, which poses obvious
limitations. CAD tools allowing for an automatic endoscopic cancer detection, based on
imaging modalities, which can detect features beyond the human eye, could be more
powerful and exhibit increased diagnostic accuracy.

1.2. Hyperspectral Imaging and Medical Applications

Hyperspectral imaging (HSI) is an optical imaging technique that is gaining popularity
in medical image analysis and CAD [4–7]. HSI is a non-invasive and relatively inexpensive
imaging technology that uses a broadband light source to measure optical tissue properties
across different electromagnetic bands. The light interaction (scattering of photons) of tissue
is measured to generate spectral images at narrow spectral bands (typically generating
100 or more images). Each image measures the relative light absorbance or reflectance for a
band that can reveal biological properties, such as chromophores and tissue oxygenation.
This data is assembled into a discrete 3D volume with two spatial dimensions and one
spectral dimension, called a hyperspectral image, hyperspectral cube or hypercube.

One main limitation of HSI is that the hypercube cannot be immediately interpreted
by physicians. Machine learning (ML) is an essential component to learn and automatically
recognize and convey relevant spatio-spectral patterns [8]. In the broader field of CAD,
HSI has been investigated to improve the diagnosis and resection of various types of
cancerous lesions. It has been applied to detect gastrointestinal cancer [9–13,13], tongue
cancer [14] oral cancer [15], skin tumors [16] breast cancer [17], and brain cancer [18]. All of
these approaches use supervised learning, where regions of cancer and healthy tissue are
identified in the training dataset and paired with the histopathology analysis. Supervised
methods can be divided into two groups: traditional (also called the classical method) and
deep learning methods.

Traditional methods include SVMs [9,19], Random Forest [20] and K-nearest-neighbor
(KNN) [4]. Recently, deep learning methods, and particularly convolutional neural net-
works (CNNs) have been considered [21–23]. These have the advantage of automatically
learning relevant spectral or spatio-spectral features encoded in convolutional filters, re-
ducing the need and human effort for designing handcrafted features. However, their main
limitation is that they usually require significantly more data for adequate generalization.
In medical applications, the requirement for large annotated datasets to train such models is
one of the greatest limiting factors to clinical translation. There are also difficulties specific
to HSI, which make it difficult to acquire sufficient and representative data. Currently, HSI
is not used in the standard of care. Consequently, the acquisition of data requires specific
experimental protocols. In addition, a high inter-patient variability is common [24], making
fine-grained diagnoses, such as cancer type differentiation, difficult.

Today, there is an undeniable momentum to translate HSI CAD systems into clinical
use. Recently, HSI systems for open surgery have now become commercially available [25].
To significantly expand the use of HSI in surgery, there is ongoing effort to miniaturize HSI
equipment for use in minimally invasive surgery. The first laparoscopic system with a high-
resolution color video and simultaneous HSI with a high spatial and spectral resolution
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ranging from 500 to 1000 nm was presented in [26]. For use in gastroenterology, flexible
endoscopic prototype systems have recently been proposed [19,27–29].

1.3. Contribution Summary

There have been some previous works for automatic colorectal cancer tissue detection
with HSI and ML [9,10,19,30,31]. Support vector machines (SVMs) have been used with ex
vivo samples for colon cancer detection [9] and in vivo with a modified laparoscopic system
using multispectral imaging [10]. Other classical models, including linear discriminant
analysis (LDA), have been considered [30]. A flexible HS colonoscopy system was used to
test in vivo colorectal cancer recognition with SVMs [19]. There is only one previous work
that demonstrated the use of HSI to detect esophagogastric cancer with human data [13].
In this study, classical ML models were evaluated to identify tumors in extraluminal HSI.
The current work differs in the fact that intraluminal tissue is imaged.

Additionally, a major open challenge to translate such ML models into routine clin-
ical practice is the lack of large annotated HSI datasets. We explored the possibility to
enlarge training datasets by combining hypercubes of different cancer types (colonic and
esophagogastric). We trained ML models to automatically differentiate healthy mucosa
from cancer, without attempting to differentiate the cancer or tissue types. This differentia-
tion is unnecessary regarding surgical guidance for tumor resection, and it allowed us to
train our models with substantially more data. We showed that, by combining datasets,
the performance of classical ML models could be significantly improved.

We also showed that the test performance of all models could be significantly im-
proved by tuning their classification detection thresholds at test time. We called this
patient-specific decision threshold tuning. In all prior HSI-based cancer detection and classifica-
tion with machine learning, fixed detection thresholds were used, and we showed that this
gave a substantially worse performance with standard metrics, such as the Sorensen–Dice
coefficient (commonly referred to as DICE). This finding has opened the opportunity to
improve results with patient-specific decision threshold fine-tuning at test time. Finding
the optimal patient-specific decision threshold is not trivial, however, and it is an important
technical challenge that requires future work that is justified by the findings of our study.

2. Material and Methods
2.1. Data Collection and Annotation

The clinical study was performed at the University Hospital of Leipzig using a dataset
of 10 patients with esophagogastric cancer and 12 patients with colon cancer. For each
patient, one hypercube was captured using the TIVITA system by Diaspective Vision
GmbH, Pepelow, Germany (Tables 1 and 2). As a result, the dataset had 22 hypercube with
one hypercube per patient. The study was approved by the local ethics committee of the
medical Faculty of the University of Leipzig (026/18-ek), the study was also registered
at Clinicaltrials.gov (NCT04230603) (accessed on 18 July 2021). Resected tissue samples
were imaged under standardized conditions during the surgical procedure within 5 min
after resection. Specifically, esophageal and colonic tracts were cut lengthwise and opened,
and the inside mucous tissue was imaged.

There was no ambient light, the HS camera was located at 50 cm from the sample
(i.e., the calibrated distance), and a spectral range of 500 to 1000 nm was used. Ac-
quisition time was approximately 10 s. Two different objectives were used with image
sizes 280 × 210 mm and 80 × 65 mm. These had a spectral resolution of 640 × 480 pixels
(0.44 mm/pixel and 0.13 mm/pixel, respectively). Standard normalization preprocessing
was applied to each hypercube (Standard Normal Variate [32]) to reduce the variability
from tissue surface orientation and light scattering effects, for instance. An experienced
pathologist and the surgeon then annotated the RGB image (provided with the device and
simulated from the hypercube) based on the comparison with the histopathological slides,
with regions of interest (ROIs) and interactive software (Gimp v. 2.10). ROIs for four classes
were annotated.

Clinicaltrials.gov
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One class corresponded to malignant tissue, macroscopically corresponding to the
center of the tumor. The other three classes were healthy mucosa of colon, stomach,
and esophagus, respectively. We showed representative images from the dataset in Figure 1.
RGB images synthesized from 10 hypercubes are shown side-by-side with the correspond-
ing spatial annotations. There is a clear imbalance in the dataset where the healthy mucosa
is considerably more represented than the cancer tissue. Patients 2 and 6 of the colon
dataset did not have cancer. As a result, only healthy tissue annotations were made for
those patients. We summarized the colon and esophagogastric datasets in Tables 1 and 2.

Figure 1. Example annotated images from the colon and esophagogastric datasets. The top two row shows RGB images
of colon samples with associated annotations side-by-side: purple annotation is for healthy colon tissue, red is for cancer
tissue. The bottom row shows stomach and esophagus samples: green annotation is for healthy esophagus tissue, blue for
healthy stomach tissue and pink is for cancer tissue.
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Table 1. Summary statistics of the colon dataset. There is one hypercube per patient. Each pixel corresponds to 100 hypercube
voxels. These voxels give the relative reflectance at 100 wavelengths for a given pixel. Patients 2 and 6 did not have cancer.

Patient Age Gender
Proportion of

Healthy Tissue
Pixels (%)

Proportion of
Cancer Tissue

Pixels (%)
Tissue Location T Classification Tumor Grade

1 67 f 93.57 6.43 colon pT3b G2
2 68 m 100 0 colon adenoma
3 52 m 91.27 8.73 colon pT2 G2
4 67 f 98.68 1.32 colorectal pT2 G2
5 80 m 92.55 7.45 colorectal pT2 G2
6 80 m 100 0 colon adenoma
7 81 m 56.16 43.84 colorectal ypT3 G1 (mainly cancer)
8 66 m 97.12 2.88 colorectal rpT2 G2
9 66 m 94.62 5.38 colorectal ypT2 G1 (mainly cancer)
10 60 m 90.50 9.50 sigma ypT3 G3
11 79 f 89.63 10.37 ascending colon pT3 G2
12 59 m 96.59 3.41 colon ascendens pT2 G2

Mean 91.72 8.28

Table 2. Summary of the esophagogastric dataset. There is one hypercube per patient. AC, SC and G-E stand for adenoma carcinoma,
squamous cell carcinoma and gestro-esophageal, respectively.

Patient Age Gender
Proportion of

Healthy Stomach
Tissue Pixels (%)

Proportion of
Healthy Esophagus

Tissue Pixels (%)

Proportion of
Cancer Tissue

Pixels (%)
Tumor~ Type Tissue Location T Classification

13 83 m 39.65 36.16 24.19 Not determined G-E junction ypT0
14 71 m 0 96.38 3.62 AC G-E junction ypT3
15 72 m 31.77 61.88 6.35 AC G-E junction ypT1b
16 67 m 60.59 31.11 8.30 AC G-E junction ypT1b
17 73 m 32.71 48.31 18.98 AC G-E junction ypT0
18 67 m 6.79 87.02 6.20 AC G-E junction ypT3
19 54 m 36.66 62.15 1.19 AC G-E junction ypT1b
20 65 f 99.13 0 0.87 AC G-E junction pT1b
21 56 m 61.64 16.31 22.06 AC G-E junction ypT2
22 60 m 30.34 67.09 2.57 AC G-E junction ypT0

Mean 39.93 50.64 9.43

2.2. Dataset Analysis with Spectral Curves

The intrinsic difficulty of tissue classification can be gauged by visualizing spectral
curve distributions. Figure 2 shows spectral curves corresponding to the colon (a, b) and
esophagogastric datasets (c, d). In each sub-figure, we have shown mean spectral curves
for cancer and healthy tissue classes. Intra-class variability is represented as solid bands
with a width of ±standard deviation from the mean spectral curve. Spectral curves are
shown with and without SNV normalization, (a, c) and (b, d), respectively. For the colon
dataset (a), we observe relatively low intra-class variability with strong overlap in spectral
curves, indicating a difficult classification problem.

With SNV normalization (b) we observed a narrower intra-class variability, which
was expected. However, we also observed a general increase in inter-class variability.
This suggested that SNV normalization might improve classification performance. For the
esophagogastric dataset we observed a strong class overlap. However, one could generally
observe separation between cancer and healthy tissue without normalization compared to
the colon dataset (650 to 950 nm).
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Figure 2. Spectral curves for colon and esophagogastric datasets with and without SNV normalization. Solid curves show
the mean spectral curves, and filled regions show 1 standard deviation from the mean curve.

2.3. Models, Training Processes and Performance Metrics
2.3.1. Classical Machine Learning Models

We trained and tested the classical ML models applied to HSI data: Random Forest,
logistic regression, multilayer perceptron (MLP) and SVM with linear and radial basis
functions (RBFs). The class imbalance existing in our datasets was handled by random
downsampling. Specifically, the number of samples S from the least represented class
was evaluated, and all other classes were randomly downsampled (uniform probability
without replacement) to have S samples. SNV normalization was used. The classical ML
models were implemented using Python’s scikit-learn library [33]. We used a log-loss
function and a limited Broyden–Fletcher–Goldfarb–Shanno solver. Our activation function
was a hyperbolic tangent and two hidden layers were implemented.

2.3.2. Convolutional Neural Network Models

CNNs have been shown to perform appropriately for the segmentation and clas-
sification of hyperspectral data in spite of limited data [34,35]. To handle limited data,
the best performing methods operated by dividing the hypercube into spatially local-
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ized sub-volumes where each sub-volume was processed independently. This had two
main benefits.

The first was to significantly reduce the size of the CNN and its number of trainable
parameters compared to a much larger CNN for processing the full hypercube at once.
The second benefit lay in the fact that that the CNN could be trained with many sub-
volumes extracted from the same hypercube, which reduces overfitting. State-of-the-art
CNNs can be broadly divided into 1DCNNs, such as Hu et al. [36], which use a spatial
window of only one pixel, and 3DCNNs that use a square or rectangular spatial window
of more than one pixel [37–40].

The advantages of 3DCNNs are to exploit spatio-spectral features to improve clas-
sification performance. We tested the 3DCNN of Hamida et al. [40] (version d), which
was shown to perform well for classifying remote sensing hyperspectral data with small
datasets. We refer the reader to Hamida et al. [40] for precise network architecture de-
tails. The 3DCNN took a hypercube sub-volume of size 5 × 5 × L (a spatial window of
5 × 5 pixels and L frequency channels with L = 100) as input.

The 3DCNN was structured in a series of encoder layers that extracted spatial-spectral
features of different scales using a series of 3D and 1D convolutional layers with max
pooling. The design was inspired by SqueezeNet [41] that decomposed 3D convolutions
into sequences of 1D convolutions, which also reduced the number of weights significantly.
The final layer was fully connected with N output neurons where N denotes the number of
classes. We used the 3DCNN for binary classification with N = 2, and it has 32,232 trainable
weights. We emphasize that this was a relatively light CNN with far fewer parameters
than common CNNs for image segmentation, such as U-Net [42] or its variants that can
have millions of trainable weights. This allowed our 3DCNNs to be trained on a relatively
small cohort.

2.3.3. Leave-One-Patient-Out Cross Validation (LOPOCV)

As the dataset size was limited, all models were trained and tested using the leave-one-
patient-put cross-validation (LOPOCV) strategy. LOPOCV measures the generalizability
of the models to novel patient data, and it is standard practice to evaluate ML models in
medical applications with limited datasets. As one hypercube was acquired per patient,
LOPOCV was implemented by cycling through each hypercube, training the model on all
remaining hypercubes, and testing performance on the held-out hypercubes. This process
was repeated so that each patient’s hypercube was held out and used for testing. We noted
that LOPOCV has not been consistently used in HSI research. Performance has often been
evaluated by testing and training the model on the same hypercube [9,30,43]. This severely
inflates performance and it does not reflect the real expected performance of the model on
new patient data.

2.3.4. Evaluation with the Colon, Esophagogastric and Combined Datasets

We evaluated each model in three settings. In the first setting, we trained and tested
the performance with LOPOCV using images from the colon dataset. This has 12 images in
total. Ten of the images had cancer and healthy colon tissue annotations, and 2 of the images
(patients 2 and 6) had only healthy colon annotations, and there was no cancer tissue. In the
second setting, we trained and tested the performance with LOPOCV using images from
the esophagogastric dataset. All images of the esophagogastric dataset have both cancer
and healthy esophagogastric tissue annotations. In the third setting, we trained and tested
performance with LOPOCV by combining images from the colon and esophagogastric
dataset.

We referred to this as the combined dataset with 22 images in total. In the combined
dataset, we combined healthy colon and esophagogastric tissue into one class (the nega-
tive class), and we combined colon and esophagogastric cancer into a second class (the
positive class).
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2.3.5. Training Implementation Details

The 3DCNN was implemented in Pytorch 1.4.0, and it was trained for each LOPOCV
fold as follows. Kaiming initialization was used to randomly initialize the network weights
and the network biases were initialized to zero. The network was trained by minimizing
class-weighted binary cross-entropy with Stochastic Gradient Descent (SGD). This was
implemented using Pytorch’s torch.optim package with a learning rate of 0.01 and a weight
decay of 0.0005. Class weighting was implemented using inverse-frequency weighting to
overcome the fact that the healthy class was significantly more represented than the cancer
class in the training dataset.

Training was run for 200 epochs. At each epoch, batches of size 3000 were used where
each batch consisted of 3000 randomly selected sub-volumes from all training images
drawn with uniform probability without replacement. Training of one LOPOCV fold
took approximately 7 h for the colon dataset, 8 h for the esophagogastric dataset and
15 h for the combined datasets. In addition to using a relatively small 3DCNN, to further
reduce the risk of overfitting, a validation set was used, which is standard practice to
avoid overfitting a CNN. Specifically, a random subset of 10% of the training pixels were
used in the validation set. After each training epoch, the validation set loss was evaluated,
and after all training epochs, the network weights with the lowest validations set loss were
used as the final network weights.

3. Results and Discussion
3.1. Evaluation Metrics

We evaluated performance using three well-established metrics. The first metric is
Receiver Operator Curve Area-Under-Curve (ROC-AUC). ROC-AUC gave the probability
that a random positive example (cancer) was scored higher with a model as compared
to a random negative example (healthy tissue). ROC-AUC was chosen because it sum-
marized recognition performance with a single number that was not tied to a specific
decision threshold. The second metric was the Matthews correlation coefficient (MCC).
This measured the correlation between a model’s predicted classifications as compared
to ground truth, with a value ranging from −1 and +1, where a higher value indicated
better performance.

The third evaluation metric was the Sorensen–Dice coefficient (DICE), also called the
F1 score, which measured the harmonic mean of precision and recall. We used both MCC
and DICE because they were used extensively in the literature on machine learning HSI
classification. Unlike ROC-AUC, MCC and DICE use a decision threshold defined for each
model. We tested two policies in order to specify the threshold. The first policy used a
patient-generic threshold, where for each model, a single threshold was used for all patients,
for each model. The selected threshold was the one that maximized the model’s mean
metric (MCC or DICE) on all test images. The second policy used a patient-specific threshold,
where a different threshold was tuned for each patient. This threshold was found as the
one that maximized the metric (MCC or DICE) for each patient’s image using grid-search.

Performance with a patient-specific threshold would generally be greater than per-
formance with a patient-generic threshold. In clinical application settings, we cannot
usually tune a patient-specific threshold automatically, as this would require knowing the
true tissue class labels. Nevertheless, we compared performance with a patient-specific
threshold to reveal the performance gap that existed between using a patient-specific and
patient-generic threshold, and to see if the gap was similar across models.

3.2. Statistical Tests

Paired two-tailed t-tests were used to assess whether the difference in mean ROC-AUC
scores from two models were significantly different. Colon patients 2 and 6 were excluded
in the statistical analysis because they did not have cancer tissue, and therefore they do not
have ROC-AUC scores. p ≤ 0.05 was considered statistically significant.
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3.3. ROC-AUC Results

ROC-AUC performance is shown in Tables 3 and 4. In Table 3, columns 2, 3 and 4,
we show the ROC-AUC performance for the RBF-SVM, MLP, and 3DCNN models when
trained and tested on the colon dataset using LOPOCV. In Table 3, columns 5, 6 and 7,
we show ROC-AUC performance of the models when trained on the combined dataset
and tested on the colon dataset using LOPOCV. We also include the mean ROC-AUC and
standard deviation in the bottom row.

From Table 3, we can see that the 3DCNN performed better than RBF-SVM and MLP,
with a higher mean ROC-AUC and a lower standard deviation. We observed this both
when the models were trained with the colon dataset and the combined dataset. We did not
see any significant performance difference for any model when they were trained on the
colon or combined datasets and tested on the colon dataset (p = 0.89 for RBF-SVM, p = 0.78
for MLP and p = 0.84 for 3DCNN). There was no statistically significant difference between
the 3DCNN, RBF-SVM and MLP models that were trained on the combined dataset.

In Table 4, columns 2, 3 and 4, we show the ROC-AUC performance for the RBF-
SVM, MLP and 3DCNN models when trained and tested on the esophagogastric dataset
using LOPOCV. The 3DCNN performed the best with a significant difference detected
between MLP versus 3DCNN (p = 0.030) and RBF-SVM versus 3DCNN (p = 0.019)
with the esophagogastric dataset. In Table 4, columns 5, 6 and 7, we show the ROC-AUC
performance for the models when trained on the combined dataset and tested on the
esophagogastric dataset using LOPOCV.

There was a substantial improvement in the RBF-SVM and MLP models, with mean
ROC-AUC approaching that of 3DCNN. This indicated that the RBF-SVM and MLP models
had significantly benefited from the additional trained data provided with the colon cancer
images. In contrast, the performance of the 3DCNN was slightly improved when it
was trained on the combined dataset. The RBF-SVM improvement was significant with
p = 0.0046. The improvement of the other models was not significant (p = 0.074 for the
MLP and p = 0.22 for the 3DCNN models).

The relatively high ROC-AUC scores from the 3DCNN indicate that it performed very
well at ranking healthy and tissue tumor classes, with a mean ROC-AUC above 0.90 in
the colon and esophagogastric datasets. A ROC-AUC above 0.9 is generally considered an
excellent result [44]. Of note, a ROC-AUC of 0.90 is equivalent to saying that a model has
a 90% chance of attributing a higher classification score to cancer tissue as compared to
healthy tissue. Unlike the RBF-SVM and MLP models, the 3DCNN model did not appear
to benefit from enlarging the number of training images by combining the datasets.

We further investigated the benefit of training models by combining datasets with a cross-
dataset training experiment. Specifically, we trained the MLP and 3DCNN models on the colon
dataset, and we tested them on the esophagogastric dataset. We then repeated this process
by training the models on the esophagogastric dataset and tested them on the colon dataset.
The purpose of this experiment was to investigate whether the models could classify cancerous
and healthy tissue significantly better than chance. If so, then it would tell us that there might
be useful hyperspectral information that could be exploited for training a model with data
from a different tissue and cancer type. We present the results in Table 5 where we report the
ROC-AUC performance.

We observed that the 3DCNN achieved a mean ROC-AUC of 0.78 when trained on the
esophagogastric dataset and tested on the colon dataset. It achieved a mean ROC-AUC of
0.86 when trained on the colon dataset and tested on the esophagogastric dataset. This was
indeed an unusual result. Of note, the 3DCNN model achieved a mean ROC-AUC of 0.91 when
trained and tested on the esophagogastric dataset, which was only marginally better than when
it was trained on the colon dataset. This strongly indicated that there was useful hyperspectral
information for training a model with data from a different tissue and cancer type. Performance
of the MLP was also significantly better than random guessing (equivalent to a ROC-AUC of
0.5); however, its performance was far behind the 3DCNN.
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Table 3. ROC-AUC performance of different models evaluated on the colon dataset.

Train Dataset: Colon, Test Dataset: Colon Train Dataset: Combined, Test Dataset: Colon

Patient ID RBF-SVM MLP 3DCNN RBF-SVM MLP 3DCNN

1 0.97 0.98 1.0 0.98 0.98 0.99
2 / / / / / /
3 0.93 0.96 0.96 0.93 0.97 0.85
4 0.98 1.0 0.99 0.98 1.0 0.87
5 0.86 0.87 0.95 0.87 0.93 0.94
6 / / / / / /
7 0.69 0.66 0.89 0.78 0.87 0.72
8 0.56 0.77 0.93 0.67 0.75 0.96
9 0.95 0.90 0.99 0.94 0.74 0.99
10 0.91 0.92 0.77 0.78 0.68 0.89
11 0.98 0.98 0.93 0.98 0.99 0.98
12 0.94 0.88 0.88 0.89 0.90 1.0

Mean ± S.D. 0.88 ± 0.12 0.89 ± 0.11 0.93 ± 0.069 0.88 ± 0.11 0.88 ± 0.12 0.92 ± 0.088

Table 4. ROC-AUC performance of different models evaluated on the esophagogastric (EG) dataset.

Train Dataset: EG, Test Dataset: EG Train Dataset: Combined, Test Dataset: EG

Patient ID RBF-SVM MLP 3DCNN RBF-SVM MLP 3DCNN

13 0.96 0.96 0.91 0.98 0.99 0.99
14 0.81 0.85 0.99 0.99 0.98 0.98
15 0.91 0.92 0.92 0.87 0.92 0.95
16 0.91 0.87 0.98 0.91 0.96 0.96
17 0.59 0.67 0.89 0.73 0.48 0.89
18 0.53 0.47 0.90 0.80 0.87 0.85
19 0.81 0.93 0.93 0.95 0.99 0.97
20 0.68 0.55 0.71 0.85 0.77 0.79
21 0.91 0.94 0.92 0.99 1.0 0.96
22 0.80 0.79 0.99 0.95 0.98 0.98

Mean ± S.D. 0.79 ± 0.15 0.80 ± 0.17 0.91 ± 0.081 0.90 ± 0.082 0.89 ± 0.124 0.93 ± 0.067

Table 5. ROC-AUC performance of the MLP and 3DCNN models with dataset cross-training.

Train Dataset: EG, Test Dataset: Colon Train Dataset: Colon, Test Dataset: EG

Patient ID MLP 3DCNN Patient ID MLP 3DCNN

1 0.64 0.96 13 0.80 0.99
2 / / 14 0.75 0.77
3 0.34 0.59 15 0.91 0.83
4 0.67 0.61 16 0.84 0.79
5 0.64 0.90 17 0.72 0.68
6 / / 18 0.48 0.78
7 0.79 0.43 19 0.82 0.99
8 0.59 0.89 20 0.49 0.90
9 0.57 0.92 21 0.84 0.95

10 0.87 0.58 22 0.71 0.94
11 0.65 0.98 - - -
12 0.91 0.96 - - -

Mean ± S.D. 0.67 ± 0.16 0.78 ± 0.20 0.74 ± 0.15 0.86 ± 0.11

3.4. MCC and DICE Results

In Table 6, we present the mean MCC and standard deviation for each model trained
either with the colon, esophagogastric or combined datasets. We divided the table into
MCC performance using a patient-generic and patient-specific decision threshold (see
Section 3.1). We first considered test results on the esophagogastric dataset. Both the RBF-
SVM and MLP models improved performance when trained on the combined dataset as
compared to training on the esophagogastric dataset. This was true when we used a patient-
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generic or a patient-specific decision threshold. In contrast, for the 3DCNN model, we did
not see any similar performance improvement. Indeed, its performance was slightly worse
when it was trained on the combined dataset. For all models, the performance was much
better using a patient-specific decision threshold compared to a patient-generic threshold.

This implied that it is difficult to obtain a single decision threshold that worked well
for all test images. We could see very similar performance trends for the DICE metric
as with the MCC metric in Table 7: The 3DCNN performed significantly better than the
other models without training on the combined dataset. When training on the combined
dataset, much better results were obtained by the RBF-SVM and MLP models for the
esophagogastric dataset. In contrast, those models had very similar performance on the
colon dataset when they were trained with the colon or combined datasets.

Table 6. Matthews correlation coefficient (MCC) performance of different models evaluated on the colon and esophagogastric
(EG) datasets.

Mean MCC ± S.D. Patient-Generic Decision Threshold Patient-Specific Decition Threshold

RBF-SVM MLP 3DCNN RBF-SVM MLP 3DCNN

Train dataset:
colon,
test dataset:
colon

0.37 ± 0.22 0.22 ± 0.26 0.49 ± 0.22 0.57 ± 0.31 0.53 ± 0.25 0.58 ± 0.23

Train dataset:
combined,
test dataset:
colon

0.35 ± 0.23 0.29 ± 0.24 0.42 ± 0.16 0.57 ± 0.31 0.53 ± 0.28 0.55 ± 0.20

Train dataset:
EG,
test dataset:
EG

0.27 ± 0.27 0.26 ± 0.26 0.41 ± 0.18 0.39 ± 0.30 0.34 ± 0.26 0.60 ± 0.25

Train dataset:
combined,
test dataset:
EG

0.37 ± 0.23 0.33 ± 0.22 0.41 ± 0.22 0.63 ± 0.28 0.54 ± 0.29 0.51 ± 0.25

Table 7. DICE performance of different models evaluated on the colon and esophagogastric (EG) datasets.

Mean DICE ± S.D. Patient-Generic Decision Threshold Patient-Specific Decision Threshold

RBF-SVM MLP 3DCNN RBF-SVM MLP 3DCNN

Train dataset:
colon,
test dataset:
colon

0.39 ± 0.24 0.36 ± 0.22 0.50 ± 0.24 0.52 ± 0.25 0.58 ± 0.24 0.61 ± 0.24

Train dataset:
combined,
test dataset:
colon

0.38 ± 0.24 0.32 ± 0.25 0.44 ± 0.18 0.56 ± 0.25 0.57 ± 0.28 0.59 ± 0.20

Train dataset:
EG,
test dataset:
EG

0.30 ± 0.29 0.29 ± 0.26 0.41 ± 0.20 0.49 ± 0.31 0.38 ± 0.26 0.62 ± 0.26

Train dataset:
combined,
test dataset:
EG

0.38 ± 0.25 0.34 ± 0.24 0.40 ± 0.13
0.56 ± 0.30

0.60 ± 0.24 0.52 ± 0.26
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3.5. Results Visualization

We visualized the results from the 3DCNN model for the colon and esophagogastric
datasets in Figures 3 and 4, respectively. In each figure, results with four different patients
are shown. In Figure 3 we observed that healthy tissue pixels were generally correctly
classified in all images, as is the tumor class in patients 4 and 3 (rows 1 and 2). For patient
9, there were two regions in the image that corresponded to the tumor class and both
regions were mostly correctly classified by the 3DCNN. For patient 5, the 3DCNN failed to
correctly classify the tumor.

Regarding the esophagogastric dataset shown in Figure 4, we observed that healthy
tissue pixels were also generally well classified in all images, as was the tumor class in
patients 21, 19 and 14 (rows 1, 2 and 3). For patient 20, the 3DCNN failed to correctly
classify the tumor. The fact that the tumor regions were relatively small could partially
explain the low DICE and MCC scores, because a small number of false positives had a
large influence on the DICE and MCC coefficients.

3.6. Discussion

HSI is emerging as a powerful and non-invasive imaging modality for detecting and
diagnosing cancer [4,24]. Cancer tissue is associated with morphological and biochemical
alterations that lead to changes in the tissue’s optical properties, in particular how light is
reflected, absorbed, scattered and emitted as it passes through tissue [4,6]. Light scattering
is related to the tissue microstructure, and absorption is related to the molecular composi-
tion. An HSI camera measures an aggregate signal of these optical properties in specific
light wavelength bands in the NIR and visible light range, generating spectral profiles (also
called spectral signatures [45]) of healthy and diseased tissue.

The HSI camera used in this study has wavelengths bands in the range of 500 to
1000 nm. In this range, the spectral profile can be understood at the molecular level. The
spectral profile of hemoglobin (Hb) is very different in its oxygenated and deoxygenated
states, and it strongly contributes to the overall spectral profile of tissue [46]. Changes in
metabolic activity and physiology, such as angiogenesis, are associated with cancer [47],
which alters hemoglobin concentration and oxygen saturation and can, therefore, be mea-
sured in HSI [48]. Furthermore, changes in water content (peaking at about 980 nm) and fat
content (peaking at about 740 nm) also contribute to the spectral profile [25]. Specifically
for esophagus and colon cancer, healthy mucosa showed less oxygenation than cancer and
the water content of cancer was higher than the water content of healthy mucosa [31].

Tumor tissue, which tends to have a higher tissue blood flow than normal tissue,
can be altered significantly after neoadjuvant therapy [49], which may, consequently, induce
additional spectral changes. Light penetration in tissue depends on the wavelength and
amount of light absorption. Most tissue, including mucosa, is a relatively weak absorber,
leasing to strongly diffuse reflectance and a significant depth penetration in the visible
and near infra-red spectra. Penetration is, therefore, governed mainly by the wavelength
and tissue type. Typical optical penetration in tissue is up to a few mm, with higher
penetration in the NIR range [50]. Thus, the ability to use HSI to differentiate healthy and
cancerous mucosa by HSI is restricted to tissue at this depth range. Further background
on the spectral properties of tissue and cancer can be found in dedicated articles on this
topic [25,51,52].
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Figure 3. Visualization of results of the 3DCNN model on the colon dataset. Each row of images represents a patient (from
top to bottom, patients 4, 3, 9 and 5). Each row of images shows four images. From the left, these are: (1) The RGB image
synthesized from the hypercube. (2) The ground truth tissue class annotations provided by the surgeon. (3) The predicted
tissue classes predicted by the 3DCNN. (4) The error map. Colored pixels in the error map indicates pixels where the
3DCNN prediction differed from ground truth. The displayed color is the color of the incorrect prediction from the 3DCNN.
Pixels in red correspond to the tumor class, and pixels in purple correspond to the healthy tissue class.
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Figure 4. Visualization of results of the 3DCNN model on the esophagogastric dataset. Each row of images represents a patient
(from top to bottom, patients 21, 19, 14 and 20). Each row of images shows four images. From the left, these are: (1) The RGB
image synthesized from the hypercube. (2) The ground truth tissue class annotations provided by the surgeon. (3) The predicted
tissue classes predicted by the 3DCNN. (4) The error map. Colored pixels in the error map indicates pixels where the 3DCNN
prediction differed from ground truth. The displayed color is the color of the incorrect prediction from the 3DCNN. Pixels in red
correspond to the tumor class, and pixels in purple correspond to the healthy tissue class.
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The presented ML models were trained using all spectral data from the camera
(100 values corresponding to wavelengths in the range of 500 to 1000 nm at each pixel).
Therefore, the ML models had full access to all available data to make a fair comparison.
We recall that the 3DCNN model was trained with deep learning, and therefore, during the
training process, it automatically learned the relevant spatio-spectral features contained in
the hypercube required for classification in its network weights.

The performance of the 3DCNN may be harmed if we pre-process the spectra by, e.g.,
selecting certain spectral bands or using perfusion parameters, such as tissue water index
(TWI) or St02 (which are derived from the original spectral data), as we may lose important
information. In contrast, the ML models that do not involve deep learning (RBF-SVM
and MLP) may benefit from specific pre-processing to supply them with relevant features.
In future work, we aim to study this aspect to see if their performance can rival the 3DCNN.
Furthermore, we aim to analyze the features learned by the 3DCNN using ‘explainable AI’
techniques [53], especially to determine the spectral bands that had the strongest influence
on the prediction. This could be achieved using GradCAM [54].

We aimed to create a machine learning model that could recognize cancer automati-
cally to avoid the need for a highly skilled human expert to be present in the OR. The same
model could be used to help in the case of known and localized cancer to establish clear
margins. However in this setting, we believe the model should be adapted or fine-tuned to
incorporate data that is specific to the patient, using HSI data from the known cancer sites.
This additional data will likely improve classification performance. It may be possible to
combine approaches. Specifically, a general cancer recognition model, such as this work,
could be used to detect cancer during the procedure, and it could then be adapted to the
patient’s specific cancer in order to achieve precise margin prediction. We aim to develop
such an approach in future work.

The results of our study showed that the combination of datasets from different
anatomic regions could well improve the performance of the classification. The combination
of the both datasets increased the ROC-scores, especially for esophagusgastric cancer, using
the MLP (0.09 higher AUC) and RBF-SVM (0.11 higher ROC-AUC) models. Only the RBF-
SVM improvement was found to be statistically significant (p = 0.0046). A larger dataset is
required to have greater statistical power and validate if the performance improvements
found with the esophagogastric patients are statistically significant with other models.

We believe that the findings of this study will motivate follow-up research to further
explore combining data from different types of healthy and cancer tissue, to combat the
pervasive challenges associated with acquiring large datasets. Especially in the medical
field, it is still a problem to annotate tissue, since a precise annotation would require an
extensive histopathological mapping to ensure the accuracy of the ground truth. However,
this is incompatible with the clinical practice. Hence, combining datasets could help to
achieve a robust classifier. In hyperspectral imaging, a high inter-patient variability of the
spectra is a drawback to classify tissue correctly.

Consequently, largeer amounts of data from different patients are necessary to train a
robust classifier. Using several anatomical regions with similar tissue types could facilitate
data acquisition and help to acquire larger scale training datasets. The performance benefit
that we observed might be explained in the context of multi-task learning (MTL). In MLT,
a model is trained to perform different, yet related tasks simultaneously using training
datasets specific to each task. The additional training data from the different tasks can help
to prevent overfitting when data is limited, and to also learn useful model parameters that
can be reused for the tasks [55].

In our case, we trained models to solve a combined task of differentiating healthy
intestinal mucosa from adenocarcinoma tissue (cancer arising from the epithelial tissue
of the intestinal mucosa). The large improvement in the RBF-SMV and MLP models by
combining datasets suggests that they learned to generalize better using training samples
from different mucosal regions (colon, esophagus and stomach). The benefit of combining
healthy and cancer tissue datasets for training more robust classifiers could have a signifi-
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cant impact in the future to reduce the burden of collecting large datasets with HSI cameras
specific to to particular cancer types. We aim to investigate if this effect is present in further
studies to combine less similar tissue types, such as the liver and brain.

In our study, the trained model of the esophagogastric set was tested to classify colon
cancer and achieved an ROC-AUC score of 0.67. The trained model of the colon dataset
was tested to classify esophagogastric cancer. A higher ROC-AUC score was achieved with
0.74. As a result, the colon model seems to be more robust for the classification of cancer
and healthy mucosa. We assume that the lower performance of the models are caused by
the missed spectra of the tested tissue. Consequently, the combination of datasets from
several tissue structures is an important step to achieve a high quality performance of
models, which can be used in clinical practice. In future studies, more patients have to be
included. Additionally, an enhancement of the models can be achieved by using multitask
learning (MTL) approaches. MTL can improve outcomes by sharing knowledge among
related tasks [56]. This approach can be proven in further studies.

Gastric cancer was previously detected in a dataset of 14 patients [57] with a reported
accuracy of 79%. Multispectral imaging has been combined with various machine learn-
ing models to recognize gastric cancer [10]. The compared models include SVMs with
linear and Gaussian kernels, Ada-Boost, RobustBoost and Random Forest-walk. The best
algorithms were RobustBoost and linear SVMs, where RobustBoost achieved an averaged
AUC of 70. In contrast to [57], LOPOCV evaluation has been performed [10]. Furthermore,
it was mentioned that the inter-patient variability had a high impact on the results, and the
ROC-curves of the RB showed a high variance.

In our study, a LOPOCV was also implemented, and we achieved a higher ROC-
AUC of at least 0.09 higher than [10]. Since the datasets are different, it is impossible to
categorically pinpoint the reason for the performance improvement, which could be a
combination of the broader wavelength range used by us (from 500 to 1000 nm), higher
quality images and more advanced machine learning models, in particular 3DCNNs
as compared to SVMs used in Hohmann et al. [10]. The authors in Hohmann et al. [10]
assumed that the mucus and the inflammation had an influence on the classification results.

Colon cancer detection was described using a quadratic SVM by [9], and an SVM with
unknown kernel were used by [30]. Ref. [9] achieved an AUC of 0.87 and a MCC of 0.59 in
a wavelength range from 400 to 1000 nm with 32 patients using simple cross validation. In
our study, higher performance scores were achieved with LOPOCV. The clearly higher AUC
scores especially for esophagus cancer detection by using the 3DCNN showed that this
kind of method succeeds better in the case of large inter and intra-patient variability. Recent
studies [58,59] showed that the inclusion of spatial information improved the accuracy
especially in the case of 3DCNNs [60].

The 3DCNN model showed the highest ROC-AUC score in all evaluation studies,
whereby the difference between the 3DCNN and MLP or RBF-SVM was less important
for the colon dataset (the difference was 0.04 ROC-AUC). Additionally, the 3DCNN and
RBF-SVM showed a more constant ROC-AUC score over all patients as opposed to the
MLP model. We assume that that the spatial information used by the 3DCNN can analyze
the spectral information more accurately and robustly than the other models, in addition
to its ability to automatically learn relevant hierarchical spatio-spectral features.

The 3DCNN classifies each pixel in the hypercube using a 5 × 5 spatial window
surrounding the pixel. Therefore, unlike the MLP and RBF-SVM models, the 3DCNN
incorporates spatial context information. As the window is relatively small, the spatial
context information is restricted to neighbouring pixels. Its main purpose is to provide
better robustness to signal noise (because spectra at neighbouring pixels tend to be highly
correlated) and to reduce errors made at pixels with strong specular reflections. In future
research, we aim to investigate the value of using greater spatial context information.
On the one hand, a larger spatial window would allow more spatial context information,
e.g., to include spatial patterns associated with the tumor borders as features that can be
automatically learned by the 3DCNN.
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However, a larger spatial window would increase the number of trainable weights
in the 3DCNN and may consequently lead to overfitting and worse generalization perfor-
mance. Furthermore, in a real clinical setting, the surgeon may only see a small portion
of the tumor, which limits the value of larger spatial context information. An interesting
follow-up study would involve identifying the optimal amount of spatial context informa-
tion by varying the window size (a hyper-parameter of the 3DCNN model). This could be
implemented by optimizing the window size using a validation set (a part of the training
dataset that is held out from training and used to automatically establish the optimal
window size).

There are several factors that may contribute to inter-patient variability. Cancer stage
variability and pre-therapy especially chemotherapy may be important factors. In our
study, we used patients with several tumor T-grades and pre-therapies. The T-grade defines
the extent of the tumor (e.g., the size and penetration depth). For example, T4 defined
the highest infiltration into the tissue and a large size. Due to the light interaction with
the tissue, different spectra for T-grades of tumors may be present. For example, with a
superficial tumor with low penetration depth (T1), the light may pass through the tumor
tissue and healthy mucosa. In contrast, with a high penetration depth (T4) the light may
pass only through tumor tissue.

We aim to study spectral differences according to tumor grade in follow-up work,
which would require a substantially larger dataset. Furthermore, pre-therapy can influence
the tissue and its chemical components. Inter-patient variability can also be caused by the
biological variability of human tissue and measurement noise of the HSI system. The Signal-
to-Noise Ratio (SNR) of the HSI system was calculated in [26] with values between 30 and
50 dB.

4. Conclusions

In this work the 3DCNN model achieved a more accurate performance than classical
machine learning models (MLP and RBF-SVM) to detect esophagogastric and colon cancer.
Despite the small sample size, the results of this study are promising. We demonstrated
that the MLP and RBF-SVM models can achieve substantially better results by combining
datasets. However, the performance of the 3DCNN model was not improved by combining
datasets, which goes against the general assumption that CNNs require more data to train
as compared to the other methods. This can partially be explained by the fact that we used a
relatively shallow 3DCNN with substantially fewer parameters (32,232) compared to CNNs
used for image classification for instance, which may be of the order of millions. In future
studies, we will aim to test whether deeper 3DCNNs also benefit from the additional
training data by combining datasets.

The clinical application of this support technology is still not yet ready due to the
relatively low DICE and MCC scores; where, when using a fixed decision threshold, they are
below 60%. This is likely to be inacceptable for clinical use. There are two paths forward.
The first path is to study the improvement in classification performance with more data
and study whether the benefit of combining datasets from different cancer/tissue types
is apparent with larger datasets. The second path stems from our observation that the
DICE and MCC scores of all classification models were substantially improved using a
patient-specific decision threshold.

This aspect has not been discussed in previous related works in HSI-based cancer
classification with machine learning where fixed decision thresholds have been used.
This finding provides an opportunity to improve the results with decision threshold fine-
tuning at the test time. Its implementation would require the integration of additional
medical knowledge. For instance, this could be achieved with an interactive software
tool where a surgeon can tune the decision threshold so that classification results match
the surgeon’s existing knowledge about the tissue characteristics that they have already
acquired during the procedure.
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This would use visual feedback similar to images shown in Figure 3 as a function of
the decision threshold. For future research, we will conduct a study to evaluate whether
surgeons can tune the detection thresholds with this approach in order to improve the
classification performance.
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