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The purpose of the present study was to detail the childhood developmental course of different white matter
(WM) characteristics. In a longitudinal diffusion tensor imaging (DTI) study of 159 healthy children between 4
and 11 years scanned twice, we used tract-based spatial statistics as well as delineation of 15 major WM tracts
to characterize the regional pattern of change in fractional anisotropy (FA), mean (MD), radial (RD) and axial dif-
fusivity (AD).We testedwhether therewere decelerations of changewith increasing age globally and tract-wise,
and also illustrated change along medial-to-lateral, posterior-to-anterior and inferior-to-superior gradients. We
found a significant linear increase in global FA, and decrease in MD and RD over time. For mean AD, a weak
decrease was observed. The developmental changes in specific WM tracts showed regional differences. Eight
WMtracts showednon-linear development patterns for one or several DTImetrics, with a deceleration in change
with age. Sex did not affect change in any DTI metric. Overall, greater rate of change was found in the left
hemisphere. Spatially, therewas a posterior-to-anterior gradient of changewith greater change in frontal regions
for all metrics. The current study provides a comprehensive characterization of the regional patters of change in
WMmicrostructure across pre-adolescence childhood.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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White matter (WM) makes up about half the human brain, and
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development of human behavior. WM maturation is known to be
prolonged, yet the specific developmental course of differentWM char-
acteristics remains elusive (Giedd et al., 1999, Lenroot et al., 2007, Lebel
and Beaulieu, 2011). Specifically, how the microstructural connectivity
changes in the preschool and early school years proceed along major
WM tracts, and how they can be described alongmajor spatial gradients
in the brain, i.e. posterior-to-anterior, medial-to-lateral and inferior-to-
superior, have not been thoroughly characterized longitudinally. This
will be addressed in the present study.

WM microstructure has been found to change rapidly in infancy
(Mukherjee et al., 2001, Hermoye et al., 2006, Dubois et al., 2008,
Geng et al., 2012). Concerning late childhood and adolescence, cross-
sectional developmental studies have documented age-related fraction-
al anisotropy (FA) increases and overall diffusivity decreaseswith age in
most WM regions (Lebel et al., 2008, Schmithorst and Yuan, 2010,
Tamnes et al., 2010, Peters et al., 2012). These age-related differences
are thought to relate to neurobiological processes including increased
relative axon caliber and myelin content, as well as changes in fiber
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Participant characteristics and demographics.

Mean Median SD Range

N (females: males) 159 (90: 69)
Age tp1 6.2 6.0 1.1 4.2–9.3
Age tp2 7.8 7.6 1.1 5.8–11.0
Interval days 584 589 52 456–819
Mean scaled score WPPSI tp1a 11.6 11.9 1.9 6–16
Mean scaled score WPPSI tp2b 12.3 12.4 1.3 11–15
Estimated IQ WASI tp1c 109.9 109.0 11.7 77–140
Estimated IQ WASI tp2d 108.8 107.0 12.1 77–141

Participants ≤6.5 years of age completed the vocabulary, similarities, block-design and
matrix subtests of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI–III)
(Wechsler, 2002). Participants N6.5 years of agewere tested using the vocabulary, similar-
ities, block-design and matrix subtests of the Wechsler Abbreviated Scale of Intelligence
(WASI) (Wechsler, 1999). Mean scaled score WPPSI = Mean of available scaled scores
form 4 WPPSI subtests. Number of participants; an = 102, bn = 14 cn = 54, dn = 141.
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packing density (Beaulieu, 2002, Paus, 2010, Simmonds et al., 2014). A
few longitudinal studies are now also confirming widespread WM FA
increases, andmean (MD) and radial (RD) diffusivity decreases through
late childhood and adolescence, but the results for axial diffusivity (AD)
are less consistent (Bava et al., 2010, Giorgio et al., 2010, Lebel and
Beaulieu, 2011, Brouwer et al., 2012). Development of diffusion direc-
tionality and magnitude in WM, possibly related to an underlying in-
crease in the diameter and myelination of axons, among other factors,
may play a role in cognitive development during childhood and adoles-
cence (Johansen-Berg, 2010, Vestergaard et al., 2011, Peters et al., 2014).

While white matter changes with age may be both global as well as
tract-specific, a consideration of regional age changes regardless of the
often long-ranging specific tracts may be of interest. There is evidence
to suggest possibly broad regional differences in brain maturation. For
instance, for cortical gray matter, a posterior–anterior sequence of mat-
uration has repeatedly been identified (Gogtay et al., 2004, Tzarouchi
et al., 2009, Tamnes et al., 2010), andWMdevelopment varies regional-
ly in the brain (Lebel et al., 2012). White matter maturation, including
myelination, starts prenatally and appears to progress in an orderly
manner during infancy from posterior-to-anterior, inferior-to-
superior, and central-to-peripheral regions (Barkovich et al., 1988,
Bendersky et al., 2006, de Graaf-Peters and Hadders-Algra, 2006).
Later systematic regional age-related WM differences have been inves-
tigated in vivo using DTI (Tamnes et al., 2010, Westlye et al., 2010b,
Colby et al., 2011, Lebel and Beaulieu, 2011, Lebel et al., 2012). In a
cross sectional study, Colby et al. (2011) demonstrated gradients in
the developmental timing of white matter maturation, as measured by
FA along inferior-to-superior and posterior-to-anterior directions from
5 to 28 years.Westlye et al. (2010a) showed that intra-cortical T1 signal
intensity followed a posterior-to-anterior gradient from childhood to
adulthood. In adults, age-related changes have been found to increase
gradually by posterior–anterior and inferior–superior gradients
(Sexton et al., 2014). Prefrontal WM has shown reduced FA in aging
(Salat et al., 2005), and an anterior to posterior gradient of degeneration
has been suggested with support from several studies (Pfefferbaum
et al., 2000, Head et al., 2004, Bennett et al., 2010). However, to our
knowledge, no longitudinal studies have systematically described
change-patterns along the primary gradients in the developing brain
as a supplement to the tract specific changes.

Here we address longitudinal development of structural brain con-
nectivity in 159 participants from 4 to 11 years.We hypothesized 1) de-
velopmental increases in FA along with decreases in MD, RD and to a
lesser extent in AD throughout the FA skeleton (Bava et al., 2010,
Tamnes et al., 2010, Lebel and Beaulieu, 2011, Simmonds et al., 2014),
2) deceleration of change with increasing age (Lebel et al., 2008, Lebel
and Beaulieu, 2011), 3) some variations in change rates across different
WM tracts due to the rapid development of specific tracts in early post-
natal life (Hermoye et al., 2006, Uda et al., 2015), and 4) increased
change may also be observed along the posterior-to-anterior (Tamnes
et al., 2010, Westlye et al., 2010a, Colby et al., 2011), inferior-to-
superior (Sexton et al., 2014) and medial-to-lateral gradients
(Hermoye et al., 2006).

Methods

Participants

All participants were recruited from the Norwegian Mother and
Child Cohort Study (MoBa) (Magnus et al., 2006) undertaken by the
Norwegian Institute of Public Health to the project, run by the Research
Group for Lifespan Changes in Brain and Cognition (LCBC) at theDepart-
ment of Psychology, University of Oslo, Norway. The project was ap-
proved by the Regional Committee for Medical and Health Research
Ethics. Written informed consent was obtained from the parent/guard-
ian for all participants and oral assent was given by participants at both
time points.
Two hundred and ninety-six children met the inclusion criteria (see
below) and underwent DTI scanning at time point one (tp1). Of these,
173 completed DTI scans at both time points, yielding a total of 123
dropouts from tp1 to time point 2 (tp2). The main reasons for drop
out were the parent's busy schedule (n= 45). Additionally, 21 children
did notwant to participate, 11 of the families hadmoved, 10 parents did
not want their child to undergo magnetic resonance imaging (MRI) a
second time, and 35 were not able to participate due to other circum-
stances. One child did not participate due to undisclosed health reasons
at tp2. Of the 173 that had DTI scans at both time points, 14 participants
(mean age= 5.5, SD= 1.0, 8 females) were excluded based on motion
artifacts (seeMotion parameters section): 10 of whombased onmotion
at tp1 and 4 based on motion at tp2.

A parent of each participant completed a structured interview to as-
certain participant eligibility at both time points. Included participants
were required to be fluent Norwegian speakers and have normal or
corrected-to normal vision and normal hearing. Exclusion criteria
were history of injury or disease known to affect central nervous system
(CNS) function, including neurological or psychiatric illness, serious
head trauma such as been unconscious, being under psychiatric treat-
ment, use of psychoactive drugs known to affect CNS functioning, low
birth weight (b2500 g), andMRI contraindications. Participants recruit-
ed for the study were not excluded based on handedness (left-handed
participants N = 11, mean age = 6.5, SD = 1.2). All participants'
scans were also examined by a neuroradiologist and required to be
deemed free of significant injuries or pathological conditions at both
time points. One participant did not meet this inclusion criterion at tp1.

Briefly, 159 participants (90 females) had longitudinal data and
were included in this study. At tp1 the age range was from 4.2 to 9.3
(Mean = 6.2, Median = 6.0, SD = 1.1), and at tp2 the age ranged
from 5.8 to 11.0 (Mean = 7.8, Median = 7.6, SD = 1.1). Mean interval
between scans was 584 days (SD= 52), ranging from 456 to 819 days.
Interval between scans was not significantly correlated with age at tp1
(r= .12, p= .131), but was at tp2 (r= .24, p = .002), and was not dif-
ferent for females and males (t = −1.88, p = .063). All participants N
6.5 years of age tested within normal range on estimated IQ
(Wechsler, 1999) at tp1 (77–140, M = 109.9, SD = 11.7) and tp2
(77–141,M=108.8, SD=12.1), and participants ≤6.5 years of age test-
ed within normal range on scaled general cognitive measures
(Wechsler, 2002) at tp1 (6–16, M = 11.6, SD = 1.9) and tp2 (11–15,
M = 12.3, SD = 1.3). Participant characteristics for the final sample
are provided in Table 1.

At tp1, all children underwent a practice session in a mock scanner
to get familiarized with the procedures, the small space and the sounds
of theMRI-scanner. Theywere also shown a video recorded at Oslo Uni-
versity Hospital with a child going through each step of theMRI session.
Thiswas also done at tp2 for the children that expressed concern related
to the MRI session.



Fig. 1. Pattern of change for mean FA, MD, RD and AD. Pattern of change controlling for mo-
tion at both time points, sex, age and interval. Regions with a significant (p b 0.05, correc-
tion for multiple comparisons across space) increase (yellow and red) and decrease (blue
and light blue) in FA,MD, RD and AD are overlaid on the FA skeleton (green), displayed on
the FMRIB FA template in MNI space. X, Y and Z are MNI coordinates. P = posterior, A =
anterior, L = left hemisphere and R = right hemisphere.

Table 3
Relationship between FA, MD, RD and AD and age.

Time point 1 Time point 2 Change
(tp2 − tp1)

r p r p r p

FA .34 b .001 .30 b .001 − .05 .516
MD − .27 b .001 − .24 .003 .03 .756
RD − .31 b .001 − .27 b .001 .03 .736
AD − .13 .132 − .13 .104 .02 .814

Table shows partial correlation (r) between FA, MD, RD and AD at tp1, tp2 and change
(time point 2 − time point 1) and age, controlling for motion at each time point and
sex. Additionally,motion at both time points and intervalwere controlled forwhen testing
change. Significant changes at p b 0.05 are shown in italic and significant changes at p b

0.001 are shown in bold.
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MRI acquisition

All MRI data was collected using a 12-channel head coil on a 1.5 T
Siemens Avanto scanner (Siemens Medical Solutions) at Rikshospitalet,
Oslo University Hospital. The same scanner, head coil and sequences
were used at both time-points, though with a software upgrades from
B17 to B19 for most participants at tp2 (n = 136). DTI was performed
with the following parameters: repetition time (TR) = 8200 ms; echo
time (TE) = 81 ms; voxel size = 2.0 mm isotropic; number of
Table 2
Number and percentage of significant voxels.

Positive change Negative change

No. of sig. voxels % sig. voxels No. of sig. voxels % sig. voxels

FA 111,907 73 206 0.1
MD 7425 5 77,708 51
RD 2559 2 102,136 67
AD 25,818 17 26,934 18

The table shows number and percentage of significant voxels (p b 0.05, correction for
multiple comparisons across space) in the FA skeleton for both positive and negative
change with age, sex, motion at both time point and interval as confound regressors.
The FA skeleton consisted of 152,284 WM voxels.
slices = 64; FOV = 128; matrix size = 128 × 128 × 64; b value =
700 s/mm; number of diffusion weighted directions = 32; number of
b0 images = 5 (the first 33 participants were scanned with b0 = 1);
A GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA)
factor of 2 was used. Acquisition time was 5 min 30 s.
Motion parameters

Data was corrected for eddy current-induced distortions and subject
movement (Andersson et al., 2012, Sotiropoulos et al., 2013). In short,
this procedure uses all diffusionweighted volumes tomake a prediction
(based on a Gaussian Process) what each volume “should look like” and
then registers the observed volumes to that prediction using a rigid
body model for the movements and assuming a first order eddy
current-induce field. In some of these data sets there was signal drop-
out. This is caused by a rotation (subject movement) coinciding exactly
in time with the diffusion encoding and shows itself as multiplicative
signal dropout across the entire slice that was affected by the move-
ment. It can also be caused by pulsatile movement leading to a local ro-
tation which will then manifest as a local dropout typically around the
brain stemarea. The eddy current correctionmethod has been extended
Fig. 2. Spaghetti plots of change in mean FA, MD, RD and AD with age. Spaghetti plots of
individual participant change in mean FA, MD, RD and AD with age (years). Females are
plotted in red and males in blue. For each measure, an assumption-free general additive
mix model as a function of age was fitted to accurately describe changes across the age
range. Diffusivity values for MD, RD and AD are in 10−3 x mm2/s.
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to also use signal dropouts by comparing the observed slice to the pre-
dicted and deciding if the difference is large enough tomake it an outlier
among all such differences (Andersson and Sotiropoulos, 2014). If a slice
is determined to constitute an outlier it is removed and the prediction is
recalculated without the offending slice and the new prediction is
inserted as a replacement for the removed slice. Only scans deemed to
have no or minimal movement artifacts were included in the analyses.
Based on the eddy outlier report and manual checking, all volumes
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N10 slices of signal dropout detected by the eddy correction method
were deemed bad. For participants (n = 85) with 1–6 bad volumes,
we excluded the bad volumes and re-corrected for eddy current-
induced distortions and subject movement. This was especially done
for participantswith suddenmotion in the scanner. Participants exceed-
ing 6 bad volumes were excluded from the study (see Participants
section).

MRI analysis

Analyses were performed at the Neuroimaging Analysis Laboratory,
LCBC, University of Oslo and at the Oxford Centre for Functional Mag-
netic Resonance Imaging of the Brain (FMRIB), University of Oxford.
Analysis of DTI data was carried out using Tract-Based Spatial Statistics
(TBSS; (Smith et al., 2006)), part of FSL (Smith et al., 2004). All DTI im-
ageswere corrected for eddy-current-induced distortions and headmo-
tion bymeans of an affine registration to the reference (b0) volume (see
Motion parameters) (Andersson and Sotiropoulos, 2014), and brain-
extracted using BET (Smith, 2002). Then, the FA and eigenvalue maps
were computed byfitting a tensormodel to thediffusion data. All partic-
ipants' FA data were then aligned into a common space using the non-
linear registration tool FNIRT in a process where every FA image was
aligned to every other one (Andersson et al., 2007a,b), using a b-spline
representation of the registration warp field (Rueckert et al., 1999).
Next, the mean FA across participants and time points was created
based on the FA image that had the smallest amount of averagewarping
when used as a target. The target was affine-aligned into MNI152 stan-
dard space and this target-to-MNI152 affine transform was combined
with each participant's nonlinear transform to the target. This single
transform was then applied to each subject's FA image bringing each
image into standard space in one transformation. The resulting standard
space FA images were then averaged and thinned to create a mean FA
skeleton which represents the centers of all tracts common to the
group. The threshold for themean FA skeleton was set at 0.25 to reduce
the likelihood of partial voluming in the borders between tissue classes,
yielding a mask of 152,284 WM voxels. Each participant's aligned FA
data was then projected onto this skeleton by searching perpendicular
from the skeleton for maximum FA values. We calculated maps of
change between tp2 and tp1 (tp2 − tp1), and the resulting data was
fed into voxelwise cross-subject statistics. The FA-derived nonlinear
warps were applied to the MD, RD, and AD change maps and values
were projected onto the skeleton from the same voxels as in the FA
analysis (i.e. the voxel with highest FA perpendicular to each point on
the skeleton). MD was defined as the mean of all three eigenvalues
(λ1 + λ2 + λ3/3), RD as the mean of the second and third eigenvalues
(λ2 + λ3/2), and AD as the principal diffusion eigenvalue (λ1).

Two probabilistic WM tractography atlases (the Johns Hopkins Uni-
versity (JHU) and JHU ICBMDTIWhiteMatter Labels) (Mori et al., 2005)
provided with FSL were used to extract diffusivity tract values with a
probability threshold of 5%. The relatively liberal threshold was chosen
to accommodate inter-subject variation in gross WM fiber architecture,
and for the skeleton voxels to intersect the correct tract appropriately
(Smith et al., 2006). DTI indices from the overlap between the FA skele-
ton and the following tracts were extracted: left and right anterior tha-
lamic radiation (ATR), left and right cingulum-cingulate gyrus (CCG),
left and right cingulum-hippocampus gyrus (CHG), corpus callosum
(CC body, CC genu and CC splenium), left and right corticospinal tract
(CST), forceps major, forceps minor, fornix, left and right inferior
Fig. 3. Spaghetti plots of change for FA in specific tracts with age. Spaghetti plots of individual parti
in blue. For each measure, an assumption-free general additive mixed model as a function of a
derings of the probabilistic tracts illustrate fifteen atlas-based probabilistic tracts from theMori
FreeSurfer (fsaverage). The color-coded titles for each scatterplot represent the color of each sp
Cingulum-cingulate gyrus (CCG), Blue: Body of corpus callosum (CC Body), Gray-blue: Genu o
Cingulum-hippocampus gyrus (CHG), Purple: Cortico-spinal tract (CST), Brown: Fornix, Ligh
(ILF), Dark red: Forcepsmajor, Yellow: Superior longitudinal fasciculus (SLF), Dark blue: Superio
ures were made by the use of Slicer (http://www.slicer.org/).
fronto-occipital fasciculus (IFOF), left and right inferior longitudinal fas-
ciculus (ILF), left and right superior longitudinal fasciculus (SLF), left
and right superior fronto-occipital fasciculus (SFOF), left and right unci-
nate fasciculus (UF). The fit of the atlas WM tracts were manually
checked, and deemed satisfactory with only a minimal/negligible
amount of non-tract of interest voxels included.

Statistical analysis

Voxelwise statistics were performed on change maps using “ran-
domize” with 5000 permutations to control the family-wise error rate
(Nichols and Holmes, 2002). General linear model (GLM) analyses
were run with age, sex, motion at both time points and interval as co-
variates to investigate change throughout the skeleton for FA, MD, RD
and AD, respectively. We extracted the number of significant voxels
and equivalent percentages (p b 0.05, after correction for multiple com-
parisons across space) in the FA skeleton for FA, MD, RD and AD when
controlling for age, sex, motion at both time points and interval. Next,
we ran the same GLM testing the effect of age on change with sex, mo-
tion at both time points and interval as covariates. All covariates were
demeaned. Global hemisphere differences were also assessed, testing
both left N right hemisphere and left b right hemisphere. Please see Sup-
plementary Fig. 1 for results. In PASW Statistics 22 (SPSS, Chicago, IL),
we ran partial correlations between global FA, MD, RD and AD at both
time points and age, controlling for motion at each time point and sex.
Additionally, to test the relationship between mean change for FA,
MD, RD and AD (time point 2 − time point 1) and age, partial correla-
tions were run with motion at both time points, sex and interval as co-
variates. Possible effects of the different predictors on change were also
tested by running a GLM to test effects of age, sex, interval, motion at
both time points and age x sex interactions on change for FA, MD, RD
and AD, respectively.

To quantify possible outlier values, Studentized Deleted Residuals
(SDR) frommean FA, MD, RD and AD values from both time points pre-
dicted by agewere calculated. The partial correlationswere recalculated
after outlier analysis, excluding individuals exceeding SDR ±3 to make
sure that these participants did not unduly affect our results. Assess-
ment of normality for global change in FA, MD, RD and AD was done
by running the Shapiro–Wilk test, and all the variables were normally
distributed. To illustrate change within individuals, spaghetti plots
were created for mean FA, MD, RD and AD. As global fits, such as linear
and quadratic models, may be affected by irrelevant factors, such as the
sampled age range (Fjell et al., 2010), an assumption-free longitudinal
nonparametric general additive mixed model (GAMM) for each mea-
sure as a function of agewasfitted to accurately describe developmental
trajectories across the studied age range. The model does not assume a
linear relationship. Curve fitting was performed using functions freely
available through the statistical environment R, version 3.0.1 (http://
www.r-project.org/).

For illustration purposes, spaghetti plots of individual participant
change in FA, MD, RD and AD in each specific tract were created and
GAMM used to obtain a fit line combining longitudinal and cross-
sectional information, without the inclusion of any covariates. Annual
percentage change (APC) for global FA, MD, RD, AD and all WM tracts
were calculated. To compare differences between global APC and APC
in WM tracts, paired t-tests for all DTI metrics were performed for
each tract separately. To test effects of sex for change in WM tracts,
the GLM was repeated, controlling for age, motion at both time points
cipant change in FA in specific tracts with age (years). Females are plotted in red andmales
ge was fitted to accurately describe changes across the age range. Three-dimensional ren-
atlas in anterior, left, and dorsal views, displayed on a semitransparent template brain from
ecific WM tract. Color codes refer to: Light green: Anterior thalamic radiation (ATR), Pink:
f corpus callosum (CC Genu), Green: Splenuim of corpus callosum (Splenium CC), Black:
t blue: Inferior fronto-occipital fasciculus (IFOF), Orange: Inferior longitudinal fasciculus
r fronto-occipital fasciculus (SFOF), and Blue-purple: Uncinate fasciculus (UF). The 3D fig-
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Fig. 4. Spaghetti plots of change for MD in specific tracts with age. Spaghetti plots of individual participant change in MD in specific tracts with age (years). Females are plotted in red and
males in blue. For each measure, an assumption-free general additive mixed model as a function of age was fitted to accurately describe changes across the age range. Diffusivity values
for MD are in 10−3 x mm2/s. Diffusivity values for MD are 10−3 xmm2/s. Three-dimensional renderings of the probabilistic tracts illustrate fifteen atlas-based probabilistic tracts from the
Mori atlas as for Fig. 3.

478 S.K. Krogsrud et al. / NeuroImage 124 (2016) 473–486



Fig. 5. Spaghetti plots of change for RD in specific tracts with age. Spaghetti plots of individual participant change in RD in specific tracts with age (years). Females are plotted in red and
males in blue. For each measure, an assumption-free general additive mixed model as a function of age was fitted to accurately describe changes across the age range. Diffusivity values
RD are in 10-3 x mm2/s. Diffusivity values RD are 10−3 x mm2/s. Three-dimensional renderings of the probabilistic tracts illustrate fifteen atlas-based probabilistic tracts from theMori as
for Fig. 3.

479S.K. Krogsrud et al. / NeuroImage 124 (2016) 473–486



Fig. 6. Spaghetti plots of change for AD in specific tractswith age. Spaghetti plots of individual participant change inAD in specific tractswith age (years). Females are plotted in red andmales
in blue. For each measure, an assumption-free general additive model as a function of age was fitted to accurately describe changes across the age range. Diffusivity values for AD are in
10−3 x mm2/s. Diffusivity values for AD are 10−3 x mm2/s. Three-dimensional renderings of the probabilistic tracts illustrate fifteen atlas-based probabilistic tracts from the Mori atlas as
for Fig. 3.
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Table 4
Annual percentage change for FA, MD, RD and AD.

FA MD RD AD

Mean % Mean % Mean % Mean %

L R L R L R L R

Global 1.80 −0.73 −1.49 −0.02
ATR 2.24* 1.94* −1.28* −0.66 −2.33* −1.52 −0.34* 0.13*
CCG 1.50* 1.43* −0.82 −0.23* −1.54 −0.79* −0.17 0.32*
CHG 3.84* 1.75 −1.80* −0.76 −3.29* −1.47 −0.30* −0.07
CST 1.38* 0.61* −0.89 0.42* −1.76 0.24* −0.24* 0.60*
IFOF 2.15* 1.76 −1.30* −0.59 −2.32* −1.46 −0.37* 0.20*
ILF 2.13* 1.81 −1.29* −0.69 −2.25* −1.54 −0.40* 0.10
SLF 1.96* 1.42 −1.27* 0.21* −2.15* −0.43* −0.44* 0.83*
SFOF 3.85* 0.98* −1.88* 0.98* −3.82* 1.38* −0.23 1.09*
UF 2.79* 3.32* −1.74* −1.02* −2.92* −2.00* −0.60* −0.06
CC Body 0.88* −0.13* −1.33 0.55*
CC Genu 0.91* −0.78 −2.44* −0.03
CC Splenium 0.05* 0.77* 0.89* 0.78*
Forceps major 1.13* −0.35* −1.03* 0.22*
Forceps minor 1.76 −1.14* −2.24* −0.25*
Fornix 0.53* 0.21 1.12* −0.39

Annual percentage change for global FA,MD, RD and AD and allWM tracts. L= left hemisphere and R= right hemisphere. ATR=Anterior thalamic radiation, CCG=Cingulum-cingulate
gyrus, CHG = Cingulum-hippocampus gyrus, IFOF = Inferior fronto-occipital fasciculus, ILF = Inferior longitudinal fasciculus, SLF = Superior longitudinal fasciculus, SFOF = Superior
fronto-occipital fasciculus, UF = Uncinate fasciculus and CC= corpus callosum. Numbers in bold signify greater APC relative to global APC. * signify that APC for the tract is significantly
(p b 0.05) different from global APC (see Supplementary Table 1).
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and interval on change, and was Bonferroni-corrected by a factor of 15
(reflecting the fifteen extracted WM tracts). Paired-samples t-tests
were performed to compare change in all bilateral tracts (left hemi-
sphere–right hemisphere) in FA, MD, RD and AD, and were
Bonferroni-corrected by a factor of 9 (reflecting the nine bilateral WM
tracts).

To illustrate how developmental change rates varied along medial-
to-lateral, posterior-to-anterior or inferior-to-superior gradients, mean
change (tp2 − tp1) for FA, MD, RD and AD were extracted across all
skeleton voxels for each coronal, sagittal and axial slice, excluding the
most distal slices with b 500 voxels. The aim was not to test whether
WM microstructure change primarily along major WM tracts versus
along major spatial gradients. We then plotted the z-transformed
change values across x, y and z co-ordinates in MNI space using robust
LOESS (rLOESS) fitting in Matlab (Mathworks, Inc.) with span of 30%.
We tested whether change was significantly different along gradients
by creating a set of ROIs. We tested the medial-to-lateral gradient by
averaging the most distal 25 x-coordinates in both left and right hemi-
sphere (lateral), and contrasted this ROI with the remaining x-
coordinates (medial). The posterior ROI and anterior ROI was split at
y = 90 and averaged, and the inferior ROI and superior ROI was split
at z = 73 and averaged. Paired t-tests were run to test for differences
in change between ROIs. In addition, mean change for each gradient
was calculated and t-tests were run to test for differences between
mean change and change along each gradient (please see Fig. 7).
Results

Pattern of change

Voxelwise analyses showed mainly significant increase in global FA,
and decreases in global MD and RD between time points throughout
most of the skeleton (see Fig. 1), controlling for age, sex, motion at
both time points and interval. For global AD, the patternwasmore com-
plex. APC for global mean FA, MD, RD and AD were 1.80%, −0.73%,
−1.49% and−0.02%, respectively (Table 4), and the significant increase
in FA and decrease in MD, RD and AD covered 73%, 51%, 67% and 18% of
the skeleton, respectively (Table 2). Opposite effects, with a decrease in
FA and increase inMD and RD,were observed to a small extent covering
0.1%, 5% and 2% of the skeleton, respectively. For AD, however, the
numbers of voxels showing decrease vs. increase were almost equiva-
lent (17% vs. 18%). Increase for FA was especially evident in association
tracts (SLF, ILF, IFOF and UF), while some callosal fibers (CC splenium
and parts of the forceps major) only showed significant increase in
parts of the tracts. Also, a decrease in FA was found in small parts of
the right CST. ForMD, bilateral decrease was found for CHG, UF and for-
ceps minor, while decrease in the left hemisphere and no change or in-
crease was found in the right hemisphere for someWM tracts (CST, SLF
and IFOF). The change pattern for RD was overall similar to that of MD,
although with less hemisphere differences. AD showed strong laterali-
zation patterns with mainly increases in the right hemisphere and de-
crease in the left hemisphere.
Age-related patterns of change

There was no effect of age on change in any DTI metric in the skele-
ton, controlling for sex, motion at both time points and interval (see
table 3). In cross-sectional analyses, a significant positive cross-
sectional correlation with age was found for mean FA at tp1 (r = .34,
p b .001) and tp2 (r = .30, p b .001), and significant negative correla-
tions for mean MD at tp1 (r = − .27, p b .001) and tp2 (r = − .24,
p = .003), mean RD at tp1 (r = − .31, p b .001) and tp2 (r = − .27,
p ≤ .001), controlling for motion at each time point and sex. There
were no significant correlations with age for mean AD at tp1
(r=− .13, p= .132) or tp2 (r=− .13, p=104) controlling formotion
at each time point and sex.

Results from the GLM showed no significant (p b 0.05) effect of age,
sex, or motion at either time point, or age x sex interactions (ranging
from p = .310 to p b .999) for change in FA, MD and RD. For MD,
there was a trend toward an association between change and motion
tp1 (F = 3.52, p ≤ .062) where less decrease in MD was associated
with more motion, and motion at tp2 (F = 2.92, p ≤ .090) where
more decrease in MD was associated with more motion, and for AD,
therewas an effect ofmotion at tp1 (F=11.51, p ≤ .001)where less de-
crease in ADwas associated with more motion, and motion at tp2 (F=
10.72, p ≤ .001) where more decrease in AD was associated with more
motion.

Six participants had SDR values exceeding ±3 (SDR ranged from
−4.07 to 4.44) on mean FA, MD, RD or AD values. Outlier analyses
showed that exclusion of these 6 participants did not affect the results



Fig. 7. Slice-by-slice profiles ofmean change for FA,MD, RDand AD. Slice-by-slice profiles ofmean change for FA,MD, RD andAD, plotted for each coronal, sagittal and axial slice. X, Y and Z co-
ordinates inMNI Space. Change for FA,MD, RD and AD are z-transformed change values. The FA skeleton (green) displayed on the FMRIB FA template inMNI space illustrate the principal
gradients. L = left hemisphere, R = right hemisphere, P = posterior, A = anterior, I =inferior and S = superior. Significant (p b 0.05) differences between mean change and change for
each slice are marked at the x axis. Red signifies greater positive change relative to mean change and blue signifies greater negative change relative to mean change. Slices marked are N5
continues significant (p b 0.05) slices showing difference in change relative to mean change.
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much (partial correlations with age, controlling for motion at both time
points, sex and interval tp1/tp2 for; FA: r = .37; p = .001/r =.29; p =
.001, MD: r = − .28; p = .001/r = − .21; p = .009, RD: r = − .32;
p = .001/r = − .25; p = .002, AD: r = − .12; p = .134/r = − .11;
p = .177).

Fig. 2 shows the relationship betweenmean FA/MD/RD/AD and age,
when both cross-sectional and longitudinal information is taken into ac-
count by use of GAMM. The spaghetti plots indicated a linear increase
for mean FA and linear decrease for meanMD, RD and AD. The decrease
in mean AD was weak compared to RD and MD.
WM tracts

Spaghetti plots of individual participant change from tp1 to tp2 in
FA, MD, RD and AD in WM tracts are displayed in Figs. 3, 4, 5 and 6, re-
spectively. Ten out of fifteenWM tracts showed linear development for
FA, fourteen for MD, and twelve for RD and AD. Specifically, non-linear
trajectories were found for FA in forceps minor, left IFOF, left ILF, left
SFOF, and left and right UF, for MD in left UF, for RD in left IFOF, left
SFOF, left UF and for AD in left CHG, right CST and right SLF. These tracts
all showed a deceleration of change with age.
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APC (Table 4)was positive for FA in allWM tracts (ranging from0.05
to 3.85), negative in thirteen out of fifteen tracts for MD (ranging from
−0.13 to −1.88) and RD (ranging from −0.24 to −3.8). For AD, APC
was negative in nine tracts in the left hemisphere (ranging from
−0.17 to −0.60) and positive in seven tracts in the right hemisphere
(ranging from 0.10 to 1.09). The APC forWM tracts also showed region-
al differences between linear developmental patterns; FA in CC
splenium (APC = 0.05) and AD in CC genu (APC = −0.03) showed
the lowest APC among all WM tracts. Small positive APC (b1.0%) was
found for FA in right CST, right SFOF, CC body, CC genu and fornix, for
MD in right CST, right SLF, right SFOF, CC splenium and fornix, and for
RD in right CST and CC splenium. Small negative APC (N−1.0%) was
found for MD in right ATR, left and right CCG, right CHG, left CST, right
IFOF, right ILF, CC body, CC genu and forceps major, and for RD in right
CCG and right SLF. For AD, APC N1.0%/≥1.0% was only found in right
SFOF (APC = 1.09). Larger changes with APC N2% were found for FA
(ranging from 2.13 to 3.85) in left ATR, left CHG, left IFOF, left ILF,
left SFOF and left and right UF, and APC ≥2.0% for RD (ranging from
−2.00 to −3.82) in left ATR, left CHG, left IFOF, left ILF, left SLF, left
SFOF, left and right UF, CC genu and forceps minor. No APC ≥2.0%
was found for MD or AD in tracts. Results from the paired t-tests
comparing differences between APC in tracts and global APC showed
significant regional differences in change rates (see Online Supple-
mentary Table 1).
WM development across gradients

Z-transformed change values for each metric across x, y and z co-
ordinates are plotted in Fig. 7. The posterior-to-anterior gradients
displayed a lesser-to-greater change for FA, MD, RD and AD, and greater
change in anterior compared to posterior regions was seen for all
metrics (FA: t = −5.82/MD: t = 8.33/RD: t = 8.23/AD: t = 7.48, all
p's b 0.001). The inferior-to-superior gradient displayed aU-shaped pat-
tern for FA, and invertedU-shapedpatterns forMD, RDandAD, illustrat-
ing greater change in specific superior and inferior regions. Significant
(p b 0.001) differences were found between change in inferior and su-
perior ROIs for all DTI metrics (FA: t = 4.97/MD: t = −5.21/RD:
t =−5.00/AD: t =−4.98), where all showed greater change in the in-
ferior region compared to the superior region. No consistent medial-to
lateral pattern was observed for any of the metrics. Further statistical
testing was therefore not performed.
Table 5
Hemisphere differences for all WM tracts.

Hemisphere difference (L-H)

FA MD RD AD

t p t p t p t P

ATR 3.93 b .001 −6.79 b .001 −6.33 b .001 −6.65 b .001
CCG 1.68 .095 −5.02 b .001 −4.25 b .001 −1.14 .257
CHG 6.75 b .001 −3.99 b .001 −5.37 b .001 −1.14 b .001
CST 5.29 b .001 −6.27 b .001 −6.26 b .001 −5.89 b .001
IFOF 3.35 b .001 −5.74 b .001 −5.10 b .001 −6.34 b .001
ILF 2.26 .025 −3.89 b .001 −3.37 b .001 −4.55 b .001
SLF 4.73 b .001 −8.05 b .001 −7.55 b .001 −8.42 b .001
SFOF 6.16 b .001 −7.08 b .001 −7.20 b .001 −4.13 b .001
UF 4.35 b .001 −6.49 b .001 −6.12 b .001 −5.75 b .001

The significance of hemisphere differences in change in FA, MR, RD and AD in all bilateral
tracts were tested with paired-samples t-tests. L = left hemisphere; R = right
hemisphere. ATR = Anterior thalamic radiation, CCG = Cingulum-cingulate gyrus, CHG
=Cingulum-hippocampus gyrus, IFOF= Inferior fronto-occipital fasciculus, ILF= Inferior
longitudinal fasciculus, SLF = Superior longitudinal fasciculus, SFOF = Superior fronto-
occipital fasciculus and UF = Uncinate fasciculus. Significant changes at p b 0.05 are
shown in italic and significant changes at p b 0.001 are shown in bold.
Influence of sex and hemisphere

The GLMs showed no significant (p b 0.05) effect of sex on change
for global FA, MD, RD, AD or in specific WM tracts (ranging from p =
.101 to p b .999), when controlling for age, motion at both time points
and interval. For RD in forceps minor there was a trend toward and in-
teraction of change and sex (F = 3.30, p ≤ .084) with more change for
female compared tomales. To test for hemisphere differences in chang-
es in FA, MD, RD and AD for bilateral tracts, we performed paired-
samples t-tests (Table 5). Significantly corrected (p b 0.006) greater
change for left hemisphere was seen for almost all WM tracts. FA in
ILF was significant at p b 0.05 (t = 2.26, p = .025), but would not sur-
vive a strict correction for number of comparison.WM tracts not signif-
icant at p b 0.05 were: FA in CCG (t = 1.68, p = .095), and AD in CCG
(t = −1.14, p = .257), showing no significant difference in change
between hemispheres. Also, table 4 shows APC for left and right hemi-
sphere for all bilateral WM tracts and indicates hemisphere differences
with an overall greater change in left hemisphere.

Discussion

We found significant increase in global FA and decreases in global
MD and RD over time in 4–11 year olds, and these global changes did
not vary as a function of age. For global AD, the development of WM
was more complex. Importantly, eight specific WM tracts showed
non-linear developmental patterns for one or several diffusion metrics.
There were differences in change rates betweenWM tracts. In addition,
the results suggested that WM development follows major gradients in
the brain in addition to these regional changes in WM tracts.

Our main results are consistent with the few available previous lon-
gitudinal developmental studies also finding FA to increase andMD and
RD to decrease through childhood and adolescence, while reporting less
consistent findings for AD (Bava et al., 2010, Lebel and Beaulieu, 2011,
Brouwer et al., 2012, Simmonds et al., 2014). As noted by Concha
(2014), the interpretation rests on knowledge of what is known to
drive diffusion anisotropy, namely axonal membranes, density and co-
herence, aswell asmyelin sheaths. FA andMD reflect a variety ofmicro-
structural features, including the relative alignment of individual axons,
their diameter and thickness of the myelin sheath, as well as axonal
density (Beaulieu, 2002). Animal studies indicate that RD is related to
myelination and axonal packing (Beaulieu, 2002, Song et al., 2002), and
RD has been found to positively correlate with the mean axon diameter
while correlating negatively with AD (Barazany et al., 2009). Although
biophysical processes associated with normal human development are
more complex than in these animal models (Schmierer et al., 2007,
Concha et al., 2010), the myelination process in children may lead to de-
crease in RD along with an increase in FA (Bonekamp et al., 2007,
Eluvathingal et al., 2007, Lebel et al., 2008, Faria et al., 2010, Rose et al.,
2014, Uda et al., 2015). Neural activity together with experiences during
development may influence myelination and possibly contribute to the
observed diffusion parameter changes (Demerens et al., 1996, Ishibashi
et al., 2006, Sampaio-Baptista et al., 2013).

Age-related change

Results showed no effect of age on global change within the current
age span. Non-linear relationships between different DTI metrics and
age have been found in longitudinal data (Lebel and Beaulieu, 2011),
and cross-sectional studies have shown nonlinear grown patterns for
several WM tracts in participants 0 to 11 years of age (Mukherjee
et al., 2001) and 5 to 30 years of age (Lebel et al., 2008). The present
studywas focused on pre-adolescence childhood, with very dense sam-
pling from 4 to 11 years. Most likely, the global changes in WMmicro-
structure in this age period are rather stable. With the relatively short
age-range, this did not allow reliable detections of deviations from line-
arity. For instance, inspections of the curves from Lebel and Beaulieu
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(2011) show that even though highly non-linear relationships are
found for the wider age-range of 5 to 32 years, the curves for the pre-
adolescence period seem mainly linear, in accordance with the present
findings. Also, the steep nonlinear increase with age from Mukherjee
et al. (2001) wasmostly observed before the age of four. Thus, the pres-
ent study indicates that 4–11 years is a period of rapid development of
WM, with the gradual reduction in rate of change expected later in ad-
olescence not yet being observed in global measures.

Despite the linear changes in the global measures, non-linear trajec-
tories with a deceleration of change with age were observed for a num-
ber of specific WM tracts. This was found for FA in forceps minor, left
CHG, left IFOF, left ILF, left SFOF, and left and right UF, MD in left UF,
RD in left IFOF, left SFOF and left UF, and AD in left CHG, right CST and
right SLF. Here, greater APC was observed relative to global APC for FA,
MD and RD. The small APC found in CC splenium for all DTI metrics
are supported by previous autopsy studies showing early maturation
in this specific WM tract before the age of four. Association tracts have
been suggested to develop later and are in accordance with the greater
APC found in CHG, ILF, IFOF, SLF, SFOF and UF relative to global APC for
all DTI metrics in the current study (Brody et al., 1987, Kinney et al.,
1988). Some developmental studies have investigated the relationships
betweenWMmicrostructure and cognitive function longitudinally (see
e.g (Yeatman et al., 2012, Treit et al., 2013, Gautam et al., 2014, Ullman
et al., 2014)), and to some extent, there is evidence that observed re-
gional difference in developmental patterns for WM tracts might be as-
sociated with development of higher level cognitive functions (Nagy
et al., 2004, Walsh et al., 2011, Østby et al., 2011, Yeatman et al., 2012,
Klarborg et al., 2013, Treit et al., 2013, Gautam et al., 2014, Peters
et al., 2014, Ullman et al., 2014).

WM development across gradients

Within the age range from 4 to 11 years, we found more change in
anterior than posterior regions for all metrics. This suggests that devel-
opment of WMmicrostructure may followmajor gradients in the brain
in addition to individual WM tracts. The developmental pattern ob-
served across posterior-to-anterior gradients is in agreement with a
cross sectional DTI finding (Colby et al., 2011), a developmental study
examining WM development (Tzarouchi et al., 2009), and Westlye
et al. (2010a) showing that intra-cortical T1 signal intensity follows a
posterior-to-anterior gradient from childhood throughout life. The larg-
er anterior changemay indirectly be related to early and primary neuro-
biological mechanisms such as synapse elimination and maturational
myelination at different stages in development (Huttenlocher, 1990,
Huttenlocher and Dabholkar, 1997). White matter development,
includingmyelination has been found to start prenatally, during infancy
it develops fromposterior-to-anterior, inferior-to-superior, and central-
to-peripheral regions (Barkovich et al., 1988, Bendersky et al., 2006, de
Graaf-Peters and Hadders-Algra, 2006), and it continues into adulthood
(Paus et al., 1999, Bartzokis et al., 2001, Sowell et al., 2002). Basic neuro-
biological mechanisms such as myelination and axonal development
may have brain correlates that can be detected by DTI, and as such
these principles could partly impact the maturational changes in WM
DTI metrics observed in the present study. In an adult longitudinal DTI
study, posterior–anterior gradients were found to increase gradually
but the gradients were anatomically specific rather than global, and
age-related changes appeared to be principally governed by inferior-
to-superior gradients (Sexton et al., 2014). The current results does
not suggest thatWMdevelopment from 4 to 11 years proceeds in a con-
tinuous fashion from inferior to superior regions, but indicate greater
anterior changes. While we have mentioned some possible neurobio-
logical mechanisms that might underlie changes in DTI metrics
(Barkovich et al., 1988, Song et al., 2002, Bendersky et al., 2006, de
Graaf-Peters and Hadders-Algra, 2006, Barazany et al., 2009), we do
not believe that sufficient evidence exists to enable direct interpretation
of the causes of changes along these gradients specifically.
Influence of sex and hemisphere

The results showed no significant sex differences in change for glob-
al FA, MD, RD, AD or in specificWM tracts. DTI studies showmixed find-
ings on the interaction between age and sex, and this is an area for
future research (Bava et al., 2010, Giorgio et al., 2010, Lebel and
Beaulieu, 2011,Wang et al., 2012, Simmonds et al., 2014). The lateraliza-
tion analyses showed a greater change for FA, MD, RD and AD in allWM
tracts in left hemisphere. Hemisphere effects were also illustrated by
APC for bilateral tracts indicating hemisphere differences with an over-
all larger change in the left hemisphere for most tracts. In the literature,
reports on hemispheric specificity of DTI parameters have been incon-
sistent (Park et al., 2004). Lateral asymmetry in FA has been reported
with greater FA values of the left hemisphere (Eluvathingal et al.,
2007) but also greater FA values of the right hemisphere (Uda et al.,
2015).

Limitations and future directions

Participants generally performed above average on tests of cognitive
functioning, and may not be representative of the general population.
With regard to data acquisition and analysis, the study benefitted
from the same scanner and sequence being used at both time points. Al-
though drift in scanner performance over time is possible, andmeasures
could be affected by MRI software upgrades, it is unlikely that such fac-
tors could explain the pattern of our findings. Because DTI measures are
highly sensitive tomotion artifacts, only participants deemed to have no
orminimalmovement artifacts at both time points were included in the
analyses. Excluding participants not able to complete the scan or not
being able to lie still in the scanner may have impact upon our results.
In the current study, the threshold for the mean FA skeleton was set at
0.25 and the nonlinear alignment was deemed successful. Even so,
there are limitations regarding partial voluming in the borders between
WMand subcortical areas such as thalamus (Smith et al., 2006). Further,
care must be taken as the alignment between the study data and the
template/atlas space may be inaccurate, possible leading to incorrect
conclusions about location (Johansen-Berg and Behrens, 2013). All
WM tracts were therefore manually checked and deemed satisfactory
at probability threshold of 5%.

In regions with crossing fibers, FA may be influenced by the number
and direction of these fiber tracts, complicating the biological interpre-
tations. Even though some methods do estimate and differentiate mul-
tiple fibers in each voxel (Tuch et al., 2003,Wedeen et al., 2005, Behrens
et al., 2007), this was not done for the current study. It must also be
noted that the results from the spatial gradient are not independent of
the developmental patterns for specificWM tracts. For instance, associ-
ation fibers tend to occupy most lateral regions, while callosal projec-
tions occupy medial regions. This must be taken into account when
interpreting the gradient results. Gradients were measured from the
FA skeleton, which means that only a fraction of the WM is included
in these analyses. Further, limitations regarding partial voluming, in-
cluding some gray matter in the skeleton might also influence the re-
sults of gradients. Alternative approaches including a larger part of
WM could conceivably have given partly different results. The gradients
were raw average change scores, and we did not test for potential ef-
fects of covariates of no interest. Although we believe these effects to
be relatively small, based on the others analyses performed, interpreta-
tions should be made with this limitation in mind. Further longitudinal
investigations should also explore WMmicrostructure development in
relation to change in cognitive abilities and between-subject variability
in pre- and postnatal environmental factors and genotypes.

Conclusion

In conclusion, we have shown extensive longitudinal changes in
WM microstructure in a large pre-adolescence sample. Interestingly,
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for the most part, the global changes observed seem to be of equivalent
magnitude at different ages from 4 to 11 years, indicating that this is an
age period of rapid and rather constant WM change. It should be noted,
though, that non-linear trajectories with a deceleration of change with
age were observed for a number of specific WM tracts. The most wide-
spread developmental changes in the WM skeleton were found for FA
and RD, with even greater change in the anterior compared to the pos-
terior region, and in the inferior compared to the superior region. The
present study hence shows both age-invariant global patterns and con-
siderable regional differences in white matter change in the age range
4–11 years.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.09.017.
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