@'PLOS ‘ ONE

OPEN 8 ACCESS Freely available online

The Evolutionary History of Amino Acid Variations
Mediating Increased Resistance of S. aureus Identifies
Reversion Mutations in Metabolic Regulators

Mia D. Champion'*"2, Vanessa Gray'>"®, Carl Eberhard®®", Sudhir Kumar'

1 Center for Evolutionary Medicine & Informatics, Biodesign Institute, Arizona State University, Arizona, United States of America, 2 Division of Pathogen Genomics,
Translational Genomics Research Institute, Arizona, United States of America

Abstract

The evolution of resistance in Staphylococcus aureus occurs rapidly, and in response to all known antimicrobial treatments.
Numerous studies of model species describe compensatory roles of mutations in mediating competitive fitness, and there is
growing evidence that these mutation types also drive adaptation of S. aureus strains. However, few studies have tracked
amino acid changes during the complete evolutionary trajectory of antibiotic adaptation or been able to predict their
functional relevance. Here, we have assessed the efficacy of computational methods to predict biological resistance of a
collection of clinically known Resistance Associated Mutations (RAMs). We have found that >90% of known RAMs are
incorrectly predicted to be functionally neutral by at least one of the prediction methods used. By tracing the evolutionary
histories of all of the false negative RAMs, we have discovered that a significant number are reversion mutations to ancestral
alleles also carried in the MSSA476 methicillin-sensitive isolate. These genetic reversions are most prevalent in strains
following daptomycin treatment and show a tendency to accumulate in biological pathway reactions that are distinct from
those accumulating non-reversion mutations. Our studies therefore show that in addition to non-reversion mutations,
reversion mutations arise in isolates exposed to new antibiotic treatments. It is possible that acquisition of reversion
mutations in the genome may prevent substantial fitness costs during the progression of resistance. Our findings pose an
interesting question to be addressed by further clinical studies regarding whether or not these reversion mutations lead to a
renewed vulnerability of a vancomycin or daptomycin resistant strain to antibiotics administered at an earlier stage of
infection.
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Recent studies of several infectious pathogens have revealed
how processes of horizontal gene transfer, recombination, and
parallel evolution can lead to sequence variations that give rise to
the progression of antibiotic resistance [7-10]. The sequential

Introduction

Within a decade following the accidental discovery of penicillin
G, the majority of known S. aureus isolates produced a B-lactamase

enzyme mediating resistance to the antibiotic [1]. This led to the
development of a more effective antimicrobial (B-lactamase-
resistant 3-lactam methicillin), an effort that was counteracted by
methicillin resistant S. aureus (MRSA) [1,2]. The rapid and prolific
emergence of resistance has diminished the effectiveness of every
tested class of antibiotics to date, including vancomycin and
daptomycin [1-3]. And the phenomenon of cross-resistance has
emerged as an important mechanism in the development of pan-
resistance to numerous classes of antimicrobials against S. aureus
[4]. Reports of daptomycin-resistant . aureus isolates evolving
following exposure to vancomycin treatment are increasing in
prevalence and are of great concern since these drugs are “last-line
of defense” antibiotics against infection [5,6].
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accumulation of multiple nonsynonymous mutations has also been
described, and these acquired mutations can contribute directly to
increasing virulence by promoting drug evasion or may act to
lower the fitness costs of accumulating such variations (e.g.
compensatory mutations) [7-9]. For example, specific genetic
mutations in S. aureus that are associated with adaptation to
vancomycin or daptomycin exposure have recently been reported,
and these studies have also established that the progression of
resistance in these isolates 1s accompanied by phenotypic
alterations in virulence [6,11,12]. Lowered daptomycin suscepti-
bility in a set of carefully selected isogenic clinical and laboratory S.
aureus strains has been reported to be the consequence of specific
mutations in the mprF gene encoding a membrane protein, the
(walk (yyG)) gene encoding a sensor histidine kinase, and the 7poB
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A
True * False True * False Total Total Type | error | Type Il error Total
positives | positives | negatives | negatives positives | negatives | Sensitivity Specificity | (Sensitivity) | (Specificity) | Accuracy
Polyphen
(filtered) 2 1 20 43 3 63 0.044 0.952 0.956 0.048 0.333
SIFT 21 6 15 21 27 36 0.500 0.714 0.500 0.286 0.571
| caroL 16 2 17 19 18 36 0.457 0.895 0.543 0.105 0.611 |
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Figure 1. Estimation of the accuracy of predicting RAMs using three methods. The accuracy statistics of three methods in predicting
StaphRAMs (A-C) is compared to the known accuracy of the same methods for predicting Human DAMs [21] (D) Maximum likelihood estimation of a
binormal ROC curve with an asymmetric 95% confidence interval using 3 methods of prediction (B), with CAROL predictions representing the
strongest evidence of a damaging prediction (C). The area of the ROC curve is 0.63 with a standard deviation of 0.06. Accuracy, sensitivity, and
specificity were estimated to be 62.6%, 94.0% and 38.5% respectively. Red and blue represent the fitted ROC curve (B). Grey lines denote the 95%
confidence interval of the fitted ROC curve (B). A boxplot of the spread estimate for all three methods is shown and ROCR curves for each method are

colorized according to the prediction cutoffs (C).
doi:10.1371/journal.pone.0056466.9001

gene encoding a RNA polymerase subunit [12]. Amino acid
variants in several other proteins (vraG, agrd, dliA, rpoB, yvgF, and
stpl) acting in multiple genetic pathways have been previously
shown to reduce the susceptibility of S. aureus isolates to
vancomycin treatment [6,11], and are important regulators of
cell wall synthesis and metabolic control [13-16].

Previously identified S. awreus mutations associated with
increased resistance have not been evaluated in the context of
evolution. In general, neutral evolutionary trends over time help to
establish a prior expectations of functional effect because each
position in each protein has undergone functional evaluation
across evolution [17,18]. As such, Evolutionary Permissible Alleles
(EPAs) are predicted as functionally benign whereas damaging
predictions are associated with significant adaptions such as those
required for acquisition of resistance. Determining positional
evolutionary rates of relative allele frequencies constitutes the basis
of several in silico prediction methods that have been developed
and commonly applied to studies of human genomes in order to
provide a diagnosis of a given variation as functionally benign or

damaging [19-21].

PLOS ONE | www.plosone.org

We have discovered that these prediction methods are
significantly inaccurate when applied to diagnosing known RAMs.
Furthermore, by tracing the evolutionary history of the false
negative RAMs, we have found that these mutations are genetic
reversions to conserved ancestral alleles that are carried in a
phenotypically methicillin-sensitive isolate (MSSA476). Reversion
RAMs are more prevalent in strains exposed to daptomycin
treatment and show a tendency to accumulate in enzymes
mediating certain reactions of complex biosynthetic pathways.
Our findings should therefore be of interest to clinical researchers
who have the means to evaluate the relevance of genetic reversions
as potential drug targets during the course of treatment.

Results

Failure of Computational Methods to Accurately Predict
Resistance Associated Mutations

Evaluation of whole genome S. aureus sequences includes efforts
to identify non-neutral sequence changes that are adaptive in the
presence of an antibiotic. We therefore adapted popular tools

February 2013 | Volume 8 | Issue 2 | 56466
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Daptomycin Vancomycin
E AB819 @ citZ 221s>G @ tcaR 691->S
A9719 o0 citZ 222T->A © drp356 83N->S
[ AB224 @® agrC §8P->S purD 389V->A
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MSSA476
FPR3757
A9754
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Figure 2. Reversion RAMs accumulate in strains exposed to daptomycin and in one copy of a multicopy protein. Ancestor states for
each reversion RAM were determined and mapped onto subspecies phylogenetic reconstructions as described in the methods using MEGAS5. Nodes
of the tree where mutations occurred in Parental-MRSA (P-MRSA) isolates from patients prior to exposure to daptomycin or vancomycin treatments
[11,12] and reverted post-drug treatment to an allele also present in a Methicillin-Sensitive isolate (MSSA476) are annotated. A detailed evolutionary
history for protein position 221 of the citZ protein in strain A8796 (treated with daptomycin) is provided as a model case. Evolutionary history analysis
for each of the identified reversion alleles show that although reversion mutation accumulation biases seem to have occurred in certain strains,
reversions to the allele present in a Methicillin-sensitive isolate (MSSA476) has occurred throughout the diversification of the lineage. In the case of
the hemL protein, only one protein copy in strain A6300 has acquired the reversion mutation shown. A second hemL copy has acquired a Y—=>Y—D

nonsynonymous mutation (not shown).
doi:10.1371/journal.pone.0056466.9g002

(PolyPhen, SIFT, and CAROL [19-21]) commonly used for this
purpose and applied the i silico prediction methods to known
RAMs.

Performance statistics for accurately predicting known . aureus
RAMs using three commonly used methods (PolyPhen, SIFT, and
CAROL) [19-21] (Figure 1A-C) were compared to the accuracy
statistics for predictions of Human Disease Associated Mutations
(DAMs) [21] using the same computational methods (Figure 1D).
Overall, the accuracy of the available tools in predicting RAMs is
significantly lower in comparison to predictions of human DAMs
(Figure 1D). In order to exclude the possibility that overrepresen-
tation of certain subspecies in the sequence alignments was leading
to allele frequency biases that were resulting in false negative
predictions, the polyphen analysis was also run with a “filtered
alignment” dataset that only included one representative sequence
from each closely related bacterial species (Methods). This
approach did not significantly improve the number of accurate
predictions for the positive control dataset (Table 1). CAROL
provides a weighted prediction dependent on PolyPhen and SIFT
scores and consistent with the analysis of human variations, the
overall prediction accuracy improves when all three tools are used
in combination (Figure 1C), thus minimizing the effect of
significant spread estimates observed when SIFT and PolyPhen
are used independently (Figure 1C) [22,23].

Given the low accuracy of prediction tools in identifying known
RAMs, we traced the evolutionary history of the false negative
cases and discovered that a significant number are reversion
mutations to ancestral alleles, also carried in the genome of the
MSSA476 methicillin-sensitive isolate (Figure 2).

PLOS ONE | www.plosone.org

False Negative RAMs are Genetic Reversions to Alleles
Carried in a Methicillin Sensitive isolate

Approximately 33% of the total positive control RAMs studied
are genetic reversions to an allele carried in more ancestral S.
aureus strains, including the MSSA476 isolate (Figure 2). Many
reversions are also shared with another MRSA isolate lineage,
USA300 (FPR3757) (Figure 2, Table 1)). A high percentage
(>70%) of the RAM reversion mutations exhibit a significant
association with non-neutral codons, and therefore are under more
significant selective constraints mediating adaptation and fitness
(Methods). Both polar and non-polar amino acids revert to MSSA
alleles after drug treatment and almost all of them exhibit a neutral
side chain charge (Table 1). Independent of the greater total
number of variations analyzed from daptomycin-exposed strains,
we find a significant presence of reversion allele mutations
associated with daptomycin-exposed strains (Fisher’s exact test,
p-value «0.01) in comparison to vancomycin-exposed strains (p-
value>0.5) (T'able I, Figure 2). Reversion mutations accumulate in
protein sequences conserved in all strains examined and also arise
in one copy of multi-copy proteins (e.g. HemL) (Figure 2). Notably,
all of the identified revertant alleles fail to be accurately predicted
as functionally damaging by the three methods (SIFT, PolyPhen,
and CAROL), with the exception of the agrC and S40248
reversion RAMs that were accurately predicted by PolyPhen (agrC)
or CAROL ($40248) (Table 1). AgrC encodes a quorum sensing
receptor previously shown to mediate S. aureus resistance to
deformylase by accumulating mutations compensating for fmt
mutations, which reduce bacterial growth rates [15,24]. S40248
encodes a glycosyl transferase, which transfers sugar moieties to
teichoic acids. Predictions from both SIFT and PolyPhen for the
amino acid change present in SA0248 following drug exposure

February 2013 | Volume 8 | Issue 2 | 56466
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Figure 3. Prevalence of non-reversion and reversion mutations in complex biosynthetic metabolic pathways. Reversion (A) and non-
reversion mutations (B) identified in protein sequences from all MRSA isolates exposed to drug treatment were mapped by homology to the
Staphylococcus aureus metabolome [31] (mutations in compounds acting in Nucleoside/nucleotide Biosynthesis (A, orange) and Amino Acid
Biosynthesis (B, red) are shown). Compounds accumulating mutations interact in complex pathway networks that involve highly conserved proteins
(solid lines) as well as “pathway-holes” (light grey lines) where identified sequence or functional homologs have not yet been identified in the
Staphylococcus aureus genomes. The propensity of different mutant types to accumulate in distinct biological pathways, and significant correlation of
reversions arising in strains exposed to daptomycin, is suggestive of how exposure to different drugs likely presents evolutionary adaptation biases in
metabolic regulation in order to minimize fitness cost while promoting the progression of antibiotic resistance.
doi:10.1371/journal.pone.0056466.9g003
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were benign however, together their weighted scores gave a
damaging prediction (Table 1). There were several cases of
prediction conflict between PolyPhen and SIFT, which were more
reliably resolved by implementation of CAROL rather than by
selective filtering of sequence alignments (Methods, Table 1).
Although in these cases, the instance of CAROL resolving to a
deleterious prediction was less than 100% (Table 1). For humans,
the frequency of nSNVs is directly correlated with evolutionary
rate for a given position. The fastest-evolving positions are EPAs
significantly more frequently than slower positions (81% vs. 53%,
P«0.01) [25]. Disease associated mutations in humans are
significantly associated with slower evolving positions and only a
small fraction (<10%) are EPAs [25]. We find that all of the S.
aureus positive control RAMs occur at slower evolving nucleotide
positions, however, 30-40% of these positions are within codons
that are evolving at a faster rate (Methods) [26].

Metabolic Regulators in Specific Biological Pathways
Carry Reversion RAMs

A significant number of proteins carrying known RAMs are
metabolic regulators. Interestingly, reversion mutations accumu-
late in enzymes mediating certain reactions of complex biosyn-
thetic pathways whose intermediates are functionally involved with
those that accumulate non-reversion mutations (Figure 3) [27].
The different reactions identified are involved in the following
complex processes mediating the biosynthesis of: nucleosides/
nucleotides, amino acids, aminoacyl-tRNA (“charged” tRNA),
fatty acids and lipids, aromatic compounds, cofactors, prosthetic
groups, and electron carriers (Figure 3). Specifically, reversion
RAMs were identified in the adenylosuccinate synthetase and
phosphoribosylamine-glycine ligase enzymes, both of which are
mvolved in de novo biosynthesis of purines (Figure 3A).

Non-Reversion RAMs were not identified in enzymes primarily
mediating nucleoside/nucleotide biosynthesis, but rather, accu-
mulated in reactions central to amino acid synthesis (Figure 3B). It
should be noted, however, that intrinsic to the nucleotide and
amino acid biosynthetic metabolic processes are complex inter-
connected pathways that frequently share several key intermedi-
ates of reactions involving the transfer of nitrogen or one-carbon
groups [28]. For example, purines and pyrimidines incorporate
certain amino acids, or amino acid functional groups, and histidine
synthesis requires part of a purine ring [28].

Enzymes with transferase activities required for amino group
transfer (glutamate-1-semialdehyde-2,1-aminomutase) and amino
acid metabolism (putative 8-amino-7-oxononanoate synthase) also
carry reversion RAMs (Figure 3A). UDP-N-acetylglucosamine 2-
epimerase and citrate synthase II enzymes both carry multiple
reversion RAMs. In bacteria, UDP-N-acetylglucosamine 2-epim-
erase enzymes catalyze the reaction producing UDP-ManNAc,
which is critical to the formation of the antiphagocytic capsular
polysaccharide in pathogens such as Streptococcus pneumoniae [29].
Citrate synthases catalyze a condensation reaction involving acetyl
coenzyme A, an important intermediate molecule of the Krebs
Cycle and precursor of lipids and steroids [28]. Likewise, non-
reversion RAMs were identified in enzymes involved in other
reactions mediating fatty acid and lipid metabolism (Figure 3).
Recent studies have shown that phospholipid synthesis in S. aureus
accounts for their sensitivity to FASII inhibitors, which is unique in
comparison to other pathogens such as S. preumoniae [30].

Discussion

In response to drug treatment, it is known that bacterial
pathogens acquire multiple nonsynonymous mutations in proteins
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that either contribute directly to increasing virulence by promoting
drug evasion or may act to lower the fitness costs of accumulating
such variations (e.g. compensatory mutations) [7-9]. Our studies
show that resistance associated mutations carried in either
daptomycin or vactomycin insensitive isolates are in fact reversion
mutations to alleles carried in a methicillin sensitive isolate. These
reversion RAMs, therefore play a role (compensatory or otherwise)
in mediating the continual progression of resistance to different
antibiotic treatments. Our positive RAM control group does
include reported compensatory mutations encoded by the agrC,
teaR and walk genes [6,11]. Using our methods, two mutations in
walk homologous protein sequences yielded different predictions
regarding their functional relevance (Table 1). In a laboratory-
derived strain exposed to vancomycin, a R263C mutation is
predicted as damaging, whereas in a daptomycin-exposed strain
the I471T change is benign. The variation that occurs at position
471 in the walk protein is a reversion to the MSSA476-allele. We
also find that a K468Q) RAM arising in the r7poB gene following
daptomycin exposure is a reversion to the MSSA476-allele and is
predicted as benign, in comparison to two RAMs in rpoB
homologous translations that are accurately predicted as damaging
in strains following either exposure to daptomycin or vancomycin
(Table 1). Point mutations in the B subunit of RNA polymerase
encoded by 7poB are known to render bacterial pathogens, such as
S. awreus and  Mpycobacterium tuberculosis, resistant to rifampin
treatment [31,32]. Similar to studies of E. coli, a recent study of
rifampin-resistant clinical M. tuberculosis isolates has shown that
compensatory evolution in other RNA polymerase subunits
encoded by 7pod and 7poC, reduces fitness cost in comparison to
their susceptible counterparts [9,33-33]. In both E. coli and M.
tuberculosis, mitigation of the deleterious effects of a RAM by
accumulation of compensatory mutations at independent sites has
been established, however, it is not known whether these
compensatory mutations are genetic reversions to more ancestral
alleles present in the population [9,33].

Similar to agrC, it is possible that other reversion RAMs
identified in our studies are also compensatory in function, or
general suppressors that may reduce fitness costs, even though
their role has mainly been previously described relative to the
progression of resistance [11,12]. A previous study of clinical
menadione-auxotrophic small-colony variant isolates of S. aureus
that exhibit reduced gentamicin susceptibility, identified several
sequence variations in the menB gene [36]. In one studied strain,
growth-compensated mutants carrying genetic reversions and
Intragenic second-site mutations arose in the SCV population [36].
Compensatory roles of reversion mutations may also extend
beyond one gene, or protein complex, and include functional
pathways. For example, additional candidate compensatory
mutations in S. aureus may include mutations in proteins with
closely related dependencies in the same biological pathway (pgsA
and cls2, Table 1). Or, may depend on more complicated
interactions such as those we observe with the accumulation of
reversion mutations in enzymes mediating certain reactions of
complex biosynthetic pathways whose intermediates are function-
ally involved with those that accumulate non-reversion mutations
(Figure 3). In addition, the significant correlation of reversions
arising in strains exposed to daptomycin is suggestive of how
exposure to a new antibiotic treatment may introduce reversion/
non-reversion mutation acquisition biases in biological pathways
important for fitness maintenance while promoting the progression
of antibiotic resistance. It is unknown whether or not the reversion
mutations identified by our studies also confer phenotypic
sensitivity to antibiotics administered at an earlier stage of
infection. In conclusion, future studies of RAMs in the context
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of evolution might therefore be applied to prioritize genetic
variations for further clinical studies by profiling those that likely
contribute to the progression of resistance by mediating adaptation
to drug-exposure from reversion mutations acting to maintain the
overall fitness of the organism. This type of approach would allow
for the analysis of all predicted functional effects of genome-wide
variations over the course of antibiotic treatments and therefore,
would be advantageous in comparison to current prediction
methods. Our findings that adaptation to incremental drug
exposures includes the accumulation of methicillin-sensitive
reversion mutations suggest the potential effectiveness of select
multi-drug cocktails that target both resistance and fitness during
the course of S. aureus adaptation.

Methods

Positive and negative control groups of amino acid
variations

A total of 47 amino acid variations previously identified as
conferring lowered susceptibility or resistance of MRSA isolates
following exposure to either vancomycin or daptomycin were used
as positive controls for testing computational prediction algorithms
[11,12] (Table 1). A total of 21 nonsynonymous Single Nucleotide
Variations (nSNVs) between Parental-MRSA (P-MRSA) isolates
from patients prior to exposure to daptomycin or vancomycin
treatments [11,12] and FPR3757 (MRSA) isolates at homologous
positions not indicated by previous studies to mediate resistance
were used as the negative control group for testing the efficacy of
the prediction algorithms for bacterial mutations (Figure 1A—C).

Predicting the functional effects of amino acid variations

Amino acid variations identified in resistant clinical and
laboratory isolates and the susceptible strain pair allele (reference
sequence) were used to assay for damaging predictions (Table I).
Additional and independent analysis runs were done using either
the FPR3757 USA300 MRSA whole genome sequence corrected
for sequencing errors [37], or the publicly available MSSA476
genome as a reference [38] (data not shown). Closely related
homologous protein sequences were retrieved from the NCBI
database (unfiltered) and aligned using MUSCLE [39]. Compar-
1son PolyPhen predictions were also done using alignments of one
representative sequence from each publicly available species of
Staphylococeus, Listeria, Macrococcus, and Bacillus (filtered). Custom
python scripts were used to run a prediction pipeline including
PolyPhen, SIFT, and CAROL and predictions were calculated as
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was done as described in [21] (Figure 1A), and using JROCFIT
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Evolutionary Rates and Phylogenetic Analysis
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RAM positions and codons with 2- or 4-fold degenerate sites in
MEGA) [26]. Ancestor states for each reversion RAM were
determined and mapped onto subspecies phylogenetic reconstruc-
tions using MEGA) [26]. Genome alignments of homologous
coding sequences were used to identify four-fold degenerate sites.
These sites were used to build a tree using the Maximum
Likelihood method based on the data specific model using
MEGA)S [26,40]. The bootstrap consensus tree inferred from
1000 replicates is taken to represent the evolutionary history of the
taxa analyzed. Unimetric branch lengths are shown to optimize
visualization of ancestral relationships. Initial tree(s) for the
heuristic search were obtained as described in the MEGAS5
program [26]. A discrete Gamma distribution was used to model
evolutionary rate differences among sites (5 categories (+G,
parameter = 0.1000). The rate variation model allowed for some
sites to be evolutionarily invariable ([+/], 73.6551% sites). The tree
is drawn to scale, with branch lengths measured in the number of
substitutions per site. The analysis involved 18 nucleotide
sequences. All positions containing gaps and missing data were
eliminated. There were a total of 50440 positions in the final
dataset. Evolutionary analyses were conducted in MEGA) [26].
Homologous sequence alignments for each individual protein were
mapped onto the subspecies tree to trace the ancestral states for
the reversion RAMs.
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