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Abstract

The evolution of resistance in Staphylococcus aureus occurs rapidly, and in response to all known antimicrobial treatments.
Numerous studies of model species describe compensatory roles of mutations in mediating competitive fitness, and there is
growing evidence that these mutation types also drive adaptation of S. aureus strains. However, few studies have tracked
amino acid changes during the complete evolutionary trajectory of antibiotic adaptation or been able to predict their
functional relevance. Here, we have assessed the efficacy of computational methods to predict biological resistance of a
collection of clinically known Resistance Associated Mutations (RAMs). We have found that .90% of known RAMs are
incorrectly predicted to be functionally neutral by at least one of the prediction methods used. By tracing the evolutionary
histories of all of the false negative RAMs, we have discovered that a significant number are reversion mutations to ancestral
alleles also carried in the MSSA476 methicillin-sensitive isolate. These genetic reversions are most prevalent in strains
following daptomycin treatment and show a tendency to accumulate in biological pathway reactions that are distinct from
those accumulating non-reversion mutations. Our studies therefore show that in addition to non-reversion mutations,
reversion mutations arise in isolates exposed to new antibiotic treatments. It is possible that acquisition of reversion
mutations in the genome may prevent substantial fitness costs during the progression of resistance. Our findings pose an
interesting question to be addressed by further clinical studies regarding whether or not these reversion mutations lead to a
renewed vulnerability of a vancomycin or daptomycin resistant strain to antibiotics administered at an earlier stage of
infection.
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Introduction

Within a decade following the accidental discovery of penicillin

G, the majority of known S. aureus isolates produced a ß-lactamase

enzyme mediating resistance to the antibiotic [1]. This led to the

development of a more effective antimicrobial (ß-lactamase-

resistant ß-lactam methicillin), an effort that was counteracted by

methicillin resistant S. aureus (MRSA) [1,2]. The rapid and prolific

emergence of resistance has diminished the effectiveness of every

tested class of antibiotics to date, including vancomycin and

daptomycin [1–3]. And the phenomenon of cross-resistance has

emerged as an important mechanism in the development of pan-

resistance to numerous classes of antimicrobials against S. aureus

[4]. Reports of daptomycin-resistant S. aureus isolates evolving

following exposure to vancomycin treatment are increasing in

prevalence and are of great concern since these drugs are ‘‘last-line

of defense’’ antibiotics against infection [5,6].

Recent studies of several infectious pathogens have revealed

how processes of horizontal gene transfer, recombination, and

parallel evolution can lead to sequence variations that give rise to

the progression of antibiotic resistance [7–10]. The sequential

accumulation of multiple nonsynonymous mutations has also been

described, and these acquired mutations can contribute directly to

increasing virulence by promoting drug evasion or may act to

lower the fitness costs of accumulating such variations (e.g.

compensatory mutations) [7–9]. For example, specific genetic

mutations in S. aureus that are associated with adaptation to

vancomycin or daptomycin exposure have recently been reported,

and these studies have also established that the progression of

resistance in these isolates is accompanied by phenotypic

alterations in virulence [6,11,12]. Lowered daptomycin suscepti-

bility in a set of carefully selected isogenic clinical and laboratory S.

aureus strains has been reported to be the consequence of specific

mutations in the mprF gene encoding a membrane protein, the

(walk (yyG)) gene encoding a sensor histidine kinase, and the rpoB
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gene encoding a RNA polymerase subunit [12]. Amino acid

variants in several other proteins (vraG, agrA, dltA, rpoB, yvqF, and

stp1) acting in multiple genetic pathways have been previously

shown to reduce the susceptibility of S. aureus isolates to

vancomycin treatment [6,11], and are important regulators of

cell wall synthesis and metabolic control [13–16].

Previously identified S. aureus mutations associated with

increased resistance have not been evaluated in the context of

evolution. In general, neutral evolutionary trends over time help to

establish a priori expectations of functional effect because each

position in each protein has undergone functional evaluation

across evolution [17,18]. As such, Evolutionary Permissible Alleles

(EPAs) are predicted as functionally benign whereas damaging

predictions are associated with significant adaptions such as those

required for acquisition of resistance. Determining positional

evolutionary rates of relative allele frequencies constitutes the basis

of several in silico prediction methods that have been developed

and commonly applied to studies of human genomes in order to

provide a diagnosis of a given variation as functionally benign or

damaging [19–21].

We have discovered that these prediction methods are

significantly inaccurate when applied to diagnosing known RAMs.

Furthermore, by tracing the evolutionary history of the false

negative RAMs, we have found that these mutations are genetic

reversions to conserved ancestral alleles that are carried in a

phenotypically methicillin-sensitive isolate (MSSA476). Reversion

RAMs are more prevalent in strains exposed to daptomycin

treatment and show a tendency to accumulate in enzymes

mediating certain reactions of complex biosynthetic pathways.

Our findings should therefore be of interest to clinical researchers

who have the means to evaluate the relevance of genetic reversions

as potential drug targets during the course of treatment.

Results

Failure of Computational Methods to Accurately Predict
Resistance Associated Mutations

Evaluation of whole genome S. aureus sequences includes efforts

to identify non-neutral sequence changes that are adaptive in the

presence of an antibiotic. We therefore adapted popular tools

Figure 1. Estimation of the accuracy of predicting RAMs using three methods. The accuracy statistics of three methods in predicting
StaphRAMs (A–C) is compared to the known accuracy of the same methods for predicting Human DAMs [21] (D) Maximum likelihood estimation of a
binormal ROC curve with an asymmetric 95% confidence interval using 3 methods of prediction (B), with CAROL predictions representing the
strongest evidence of a damaging prediction (C). The area of the ROC curve is 0.63 with a standard deviation of 0.06. Accuracy, sensitivity, and
specificity were estimated to be 62.6%, 94.0% and 38.5% respectively. Red and blue represent the fitted ROC curve (B). Grey lines denote the 95%
confidence interval of the fitted ROC curve (B). A boxplot of the spread estimate for all three methods is shown and ROCR curves for each method are
colorized according to the prediction cutoffs (C).
doi:10.1371/journal.pone.0056466.g001
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(PolyPhen, SIFT, and CAROL [19–21]) commonly used for this

purpose and applied the in silico prediction methods to known

RAMs.

Performance statistics for accurately predicting known S. aureus

RAMs using three commonly used methods (PolyPhen, SIFT, and

CAROL) [19–21] (Figure 1A–C) were compared to the accuracy

statistics for predictions of Human Disease Associated Mutations

(DAMs) [21] using the same computational methods (Figure 1D).

Overall, the accuracy of the available tools in predicting RAMs is

significantly lower in comparison to predictions of human DAMs

(Figure 1D). In order to exclude the possibility that overrepresen-

tation of certain subspecies in the sequence alignments was leading

to allele frequency biases that were resulting in false negative

predictions, the polyphen analysis was also run with a ‘‘filtered

alignment’’ dataset that only included one representative sequence

from each closely related bacterial species (Methods). This

approach did not significantly improve the number of accurate

predictions for the positive control dataset (Table 1). CAROL

provides a weighted prediction dependent on PolyPhen and SIFT

scores and consistent with the analysis of human variations, the

overall prediction accuracy improves when all three tools are used

in combination (Figure 1C), thus minimizing the effect of

significant spread estimates observed when SIFT and PolyPhen

are used independently (Figure 1C) [22,23].

Given the low accuracy of prediction tools in identifying known

RAMs, we traced the evolutionary history of the false negative

cases and discovered that a significant number are reversion

mutations to ancestral alleles, also carried in the genome of the

MSSA476 methicillin-sensitive isolate (Figure 2).

False Negative RAMs are Genetic Reversions to Alleles
Carried in a Methicillin Sensitive isolate

Approximately 33% of the total positive control RAMs studied

are genetic reversions to an allele carried in more ancestral S.

aureus strains, including the MSSA476 isolate (Figure 2). Many

reversions are also shared with another MRSA isolate lineage,

USA300 (FPR3757) (Figure 2, Table 1)). A high percentage

(.70%) of the RAM reversion mutations exhibit a significant

association with non-neutral codons, and therefore are under more

significant selective constraints mediating adaptation and fitness

(Methods). Both polar and non-polar amino acids revert to MSSA

alleles after drug treatment and almost all of them exhibit a neutral

side chain charge (Table 1). Independent of the greater total

number of variations analyzed from daptomycin-exposed strains,

we find a significant presence of reversion allele mutations

associated with daptomycin-exposed strains (Fisher’s exact test,

p-value%0.01) in comparison to vancomycin-exposed strains (p-

value.0.5) (Table I, Figure 2). Reversion mutations accumulate in

protein sequences conserved in all strains examined and also arise

in one copy of multi-copy proteins (e.g. HemL) (Figure 2). Notably,

all of the identified revertant alleles fail to be accurately predicted

as functionally damaging by the three methods (SIFT, PolyPhen,

and CAROL), with the exception of the agrC and SA0248

reversion RAMs that were accurately predicted by PolyPhen (agrC)

or CAROL (SA0248) (Table 1). AgrC encodes a quorum sensing

receptor previously shown to mediate S. aureus resistance to

deformylase by accumulating mutations compensating for fmt

mutations, which reduce bacterial growth rates [15,24]. SA0248

encodes a glycosyl transferase, which transfers sugar moieties to

teichoic acids. Predictions from both SIFT and PolyPhen for the

amino acid change present in SA0248 following drug exposure

Figure 2. Reversion RAMs accumulate in strains exposed to daptomycin and in one copy of a multicopy protein. Ancestor states for
each reversion RAM were determined and mapped onto subspecies phylogenetic reconstructions as described in the methods using MEGA5. Nodes
of the tree where mutations occurred in Parental-MRSA (P-MRSA) isolates from patients prior to exposure to daptomycin or vancomycin treatments
[11,12] and reverted post-drug treatment to an allele also present in a Methicillin-Sensitive isolate (MSSA476) are annotated. A detailed evolutionary
history for protein position 221 of the citZ protein in strain A8796 (treated with daptomycin) is provided as a model case. Evolutionary history analysis
for each of the identified reversion alleles show that although reversion mutation accumulation biases seem to have occurred in certain strains,
reversions to the allele present in a Methicillin-sensitive isolate (MSSA476) has occurred throughout the diversification of the lineage. In the case of
the hemL protein, only one protein copy in strain A6300 has acquired the reversion mutation shown. A second hemL copy has acquired a YRYRD
nonsynonymous mutation (not shown).
doi:10.1371/journal.pone.0056466.g002
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Figure 3. Prevalence of non-reversion and reversion mutations in complex biosynthetic metabolic pathways. Reversion (A) and non-
reversion mutations (B) identified in protein sequences from all MRSA isolates exposed to drug treatment were mapped by homology to the
Staphylococcus aureus metabolome [31] (mutations in compounds acting in Nucleoside/nucleotide Biosynthesis (A, orange) and Amino Acid
Biosynthesis (B, red) are shown). Compounds accumulating mutations interact in complex pathway networks that involve highly conserved proteins
(solid lines) as well as ‘‘pathway-holes’’ (light grey lines) where identified sequence or functional homologs have not yet been identified in the
Staphylococcus aureus genomes. The propensity of different mutant types to accumulate in distinct biological pathways, and significant correlation of
reversions arising in strains exposed to daptomycin, is suggestive of how exposure to different drugs likely presents evolutionary adaptation biases in
metabolic regulation in order to minimize fitness cost while promoting the progression of antibiotic resistance.
doi:10.1371/journal.pone.0056466.g003
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were benign however, together their weighted scores gave a

damaging prediction (Table 1). There were several cases of

prediction conflict between PolyPhen and SIFT, which were more

reliably resolved by implementation of CAROL rather than by

selective filtering of sequence alignments (Methods, Table 1).

Although in these cases, the instance of CAROL resolving to a

deleterious prediction was less than 100% (Table 1). For humans,

the frequency of nSNVs is directly correlated with evolutionary

rate for a given position. The fastest-evolving positions are EPAs

significantly more frequently than slower positions (81% vs. 53%,

P%0.01) [25]. Disease associated mutations in humans are

significantly associated with slower evolving positions and only a

small fraction (,10%) are EPAs [25]. We find that all of the S.

aureus positive control RAMs occur at slower evolving nucleotide

positions, however, 30–40% of these positions are within codons

that are evolving at a faster rate (Methods) [26].

Metabolic Regulators in Specific Biological Pathways
Carry Reversion RAMs

A significant number of proteins carrying known RAMs are

metabolic regulators. Interestingly, reversion mutations accumu-

late in enzymes mediating certain reactions of complex biosyn-

thetic pathways whose intermediates are functionally involved with

those that accumulate non-reversion mutations (Figure 3) [27].

The different reactions identified are involved in the following

complex processes mediating the biosynthesis of: nucleosides/

nucleotides, amino acids, aminoacyl-tRNA (‘‘charged’’ tRNA),

fatty acids and lipids, aromatic compounds, cofactors, prosthetic

groups, and electron carriers (Figure 3). Specifically, reversion

RAMs were identified in the adenylosuccinate synthetase and

phosphoribosylamine-glycine ligase enzymes, both of which are

involved in de novo biosynthesis of purines (Figure 3A).

Non-Reversion RAMs were not identified in enzymes primarily

mediating nucleoside/nucleotide biosynthesis, but rather, accu-

mulated in reactions central to amino acid synthesis (Figure 3B). It

should be noted, however, that intrinsic to the nucleotide and

amino acid biosynthetic metabolic processes are complex inter-

connected pathways that frequently share several key intermedi-

ates of reactions involving the transfer of nitrogen or one-carbon

groups [28]. For example, purines and pyrimidines incorporate

certain amino acids, or amino acid functional groups, and histidine

synthesis requires part of a purine ring [28].

Enzymes with transferase activities required for amino group

transfer (glutamate-1-semialdehyde-2,1-aminomutase) and amino

acid metabolism (putative 8-amino-7-oxononanoate synthase) also

carry reversion RAMs (Figure 3A). UDP-N-acetylglucosamine 2-

epimerase and citrate synthase II enzymes both carry multiple

reversion RAMs. In bacteria, UDP-N-acetylglucosamine 2-epim-

erase enzymes catalyze the reaction producing UDP-ManNAc,

which is critical to the formation of the antiphagocytic capsular

polysaccharide in pathogens such as Streptococcus pneumoniae [29].

Citrate synthases catalyze a condensation reaction involving acetyl

coenzyme A, an important intermediate molecule of the Krebs

Cycle and precursor of lipids and steroids [28]. Likewise, non-

reversion RAMs were identified in enzymes involved in other

reactions mediating fatty acid and lipid metabolism (Figure 3).

Recent studies have shown that phospholipid synthesis in S. aureus

accounts for their sensitivity to FASII inhibitors, which is unique in

comparison to other pathogens such as S. pneumoniae [30].

Discussion

In response to drug treatment, it is known that bacterial

pathogens acquire multiple nonsynonymous mutations in proteins

that either contribute directly to increasing virulence by promoting

drug evasion or may act to lower the fitness costs of accumulating

such variations (e.g. compensatory mutations) [7–9]. Our studies

show that resistance associated mutations carried in either

daptomycin or vactomycin insensitive isolates are in fact reversion

mutations to alleles carried in a methicillin sensitive isolate. These

reversion RAMs, therefore play a role (compensatory or otherwise)

in mediating the continual progression of resistance to different

antibiotic treatments. Our positive RAM control group does

include reported compensatory mutations encoded by the agrC,

tcaR and walk genes [6,11]. Using our methods, two mutations in

walk homologous protein sequences yielded different predictions

regarding their functional relevance (Table 1). In a laboratory-

derived strain exposed to vancomycin, a R263C mutation is

predicted as damaging, whereas in a daptomycin-exposed strain

the I471T change is benign. The variation that occurs at position

471 in the walk protein is a reversion to the MSSA476-allele. We

also find that a K468Q RAM arising in the rpoB gene following

daptomycin exposure is a reversion to the MSSA476-allele and is

predicted as benign, in comparison to two RAMs in rpoB

homologous translations that are accurately predicted as damaging

in strains following either exposure to daptomycin or vancomycin

(Table 1). Point mutations in the b subunit of RNA polymerase

encoded by rpoB are known to render bacterial pathogens, such as

S. aureus and Mycobacterium tuberculosis, resistant to rifampin

treatment [31,32]. Similar to studies of E. coli, a recent study of

rifampin-resistant clinical M. tuberculosis isolates has shown that

compensatory evolution in other RNA polymerase subunits

encoded by rpoA and rpoC, reduces fitness cost in comparison to

their susceptible counterparts [9,33–35]. In both E. coli and M.

tuberculosis, mitigation of the deleterious effects of a RAM by

accumulation of compensatory mutations at independent sites has

been established, however, it is not known whether these

compensatory mutations are genetic reversions to more ancestral

alleles present in the population [9,33].

Similar to agrC, it is possible that other reversion RAMs

identified in our studies are also compensatory in function, or

general suppressors that may reduce fitness costs, even though

their role has mainly been previously described relative to the

progression of resistance [11,12]. A previous study of clinical

menadione-auxotrophic small-colony variant isolates of S. aureus

that exhibit reduced gentamicin susceptibility, identified several

sequence variations in the menB gene [36]. In one studied strain,

growth-compensated mutants carrying genetic reversions and

intragenic second-site mutations arose in the SCV population [36].

Compensatory roles of reversion mutations may also extend

beyond one gene, or protein complex, and include functional

pathways. For example, additional candidate compensatory

mutations in S. aureus may include mutations in proteins with

closely related dependencies in the same biological pathway (pgsA

and cls2, Table 1). Or, may depend on more complicated

interactions such as those we observe with the accumulation of

reversion mutations in enzymes mediating certain reactions of

complex biosynthetic pathways whose intermediates are function-

ally involved with those that accumulate non-reversion mutations

(Figure 3). In addition, the significant correlation of reversions

arising in strains exposed to daptomycin is suggestive of how

exposure to a new antibiotic treatment may introduce reversion/

non-reversion mutation acquisition biases in biological pathways

important for fitness maintenance while promoting the progression

of antibiotic resistance. It is unknown whether or not the reversion

mutations identified by our studies also confer phenotypic

sensitivity to antibiotics administered at an earlier stage of

infection. In conclusion, future studies of RAMs in the context

S. aureus Reversion RAMs in Metabolic Regulators
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of evolution might therefore be applied to prioritize genetic

variations for further clinical studies by profiling those that likely

contribute to the progression of resistance by mediating adaptation

to drug-exposure from reversion mutations acting to maintain the

overall fitness of the organism. This type of approach would allow

for the analysis of all predicted functional effects of genome-wide

variations over the course of antibiotic treatments and therefore,

would be advantageous in comparison to current prediction

methods. Our findings that adaptation to incremental drug

exposures includes the accumulation of methicillin-sensitive

reversion mutations suggest the potential effectiveness of select

multi-drug cocktails that target both resistance and fitness during

the course of S. aureus adaptation.

Methods

Positive and negative control groups of amino acid
variations

A total of 47 amino acid variations previously identified as

conferring lowered susceptibility or resistance of MRSA isolates

following exposure to either vancomycin or daptomycin were used

as positive controls for testing computational prediction algorithms

[11,12] (Table 1). A total of 21 nonsynonymous Single Nucleotide

Variations (nSNVs) between Parental-MRSA (P-MRSA) isolates

from patients prior to exposure to daptomycin or vancomycin

treatments [11,12] and FPR3757 (MRSA) isolates at homologous

positions not indicated by previous studies to mediate resistance

were used as the negative control group for testing the efficacy of

the prediction algorithms for bacterial mutations (Figure 1A–C).

Predicting the functional effects of amino acid variations
Amino acid variations identified in resistant clinical and

laboratory isolates and the susceptible strain pair allele (reference

sequence) were used to assay for damaging predictions (Table I).

Additional and independent analysis runs were done using either

the FPR3757 USA300 MRSA whole genome sequence corrected

for sequencing errors [37], or the publicly available MSSA476

genome as a reference [38] (data not shown). Closely related

homologous protein sequences were retrieved from the NCBI

database (unfiltered) and aligned using MUSCLE [39]. Compar-

ison PolyPhen predictions were also done using alignments of one

representative sequence from each publicly available species of

Staphylococcus, Listeria, Macrococcus, and Bacillus (filtered). Custom

python scripts were used to run a prediction pipeline including

PolyPhen, SIFT, and CAROL and predictions were calculated as

described in [19–21]. Performance statistics for the three methods

was done as described in [21] (Figure 1A), and using JROCFIT

and JLABROC4 (Figure 1B), as well as customized R scripts for

the ROCR package (Figure 1C) for comparative calculations of

Receiver Operating Characteristic (ROC) curves [21,23].

Evolutionary Rates and Phylogenetic Analysis
Sequence alignments were used to assess overlap of homologous

RAM positions and codons with 2- or 4-fold degenerate sites in

MEGA5 [26]. Ancestor states for each reversion RAM were

determined and mapped onto subspecies phylogenetic reconstruc-

tions using MEGA5 [26]. Genome alignments of homologous

coding sequences were used to identify four-fold degenerate sites.

These sites were used to build a tree using the Maximum

Likelihood method based on the data specific model using

MEGA5 [26,40]. The bootstrap consensus tree inferred from

1000 replicates is taken to represent the evolutionary history of the

taxa analyzed. Unimetric branch lengths are shown to optimize

visualization of ancestral relationships. Initial tree(s) for the

heuristic search were obtained as described in the MEGA5

program [26]. A discrete Gamma distribution was used to model

evolutionary rate differences among sites (5 categories (+G,

parameter = 0.1000). The rate variation model allowed for some

sites to be evolutionarily invariable ([+I], 73.6551% sites). The tree

is drawn to scale, with branch lengths measured in the number of

substitutions per site. The analysis involved 18 nucleotide

sequences. All positions containing gaps and missing data were

eliminated. There were a total of 50440 positions in the final

dataset. Evolutionary analyses were conducted in MEGA5 [26].

Homologous sequence alignments for each individual protein were

mapped onto the subspecies tree to trace the ancestral states for

the reversion RAMs.
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