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Abstract

Zoonotic diseases spread through pathogens-infected animal carriers. In the case of Ebola

Virus Disease (EVD), evidence supports that the main carriers are fruit bats and non-human

primates. Further, EVD spread is a multi-factorial problem that depends on sociodemo-

graphic and economic (SDE) factors. Here we inquire into this phenomenon and aim at deter-

mining, quantitatively, the Ebola spillover infection exposure map and try to link it to SDE

factors. To that end, we designed and conducted a survey in Sierra Leone and implement a

pipeline to analyze data using regression and machine learning techniques. Our methodol-

ogy is able (1) to identify the features that are best predictors of an individual’s tendency to

partake in behaviors that can expose them to Ebola infection, (2) to develop a predictive

model about the spillover risk statistics that can be calibrated for different regions and future

times, and (3) to compute a spillover exposure map for Sierra Leone. Our results and conclu-

sions are relevant to identify the regions in Sierra Leone at risk of EVD spillover and, conse-

quently, to design and implement policies for an effective deployment of resources (e.g.,

drug supplies) and other preventative measures (e.g., educational campaigns).

Introduction

Ebola Virus Disease (EVD), more commonly referred to as Ebola, is a hemorrhagic fever

pathology that causes multiorganic failure followed by death (average fatality rate *50%) [1,

2]. EVD originates from a virus of the Filoviridae family discovered in 1976 after two consecu-

tive outbreaks in Central Africa [3]. The accumulated evidence suggest that Ebola is a zoonotic

disease with main reservoir hosts being fruit bats and non-human primates [4]. The first EVD

outbreak is thought to have originated in a cotton factory and quickly transmitted to the rela-

tives of first patients [5, 6]. The frequency of subsequent EVD outbreaks, approximately every
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other year since 1976, as well as their locations, overwhelmingly in the sub-Saharian region,

reveals the dimension of a problem that is endemic to the African continent. New evidence

hints at the possibility of latency as one of the mechanisms to explain this endemism [7]. As a

matter of fact, at the time of preparation of this manuscript there were ongoing outbreaks in

Guinea and in the Democratic Republic of Congo. Of all EVD outbreaks, the 2014–2016 one

in West Africa was the most extensive and deadliest recorded ever [8]. The countries most

intensely hit by the outbreak were Sierra Leone, Guinea, and Liberia; the case count of the

West Africa outbreak was more than 27,000, with more than 11,000 deaths on record. This

aggravated the conditions of communities already suffering from political instability, high

rates of poverty, malnutrition, low life expectancy, and weak healthcare systems [9]. The out-

break spread also outside of Africa to Europe and the USA which increased the fear of a global

pandemic and resulted in extensive public and media attention; the recent COVID-19 pan-

demic confirms that a global outbreak in our increasingly interconnected society is a serious

and realistic threat. Indeed, the exponentially growing Ebola Virus epidemic in 2014 alarmed

all the major health institutions, and on August 8th 2014 the World Health Organization

declared the EVD outbreak an international public health emergency [10]. As a result, health

organizations, policy makers, and researchers were urged to understand and model the spread

of Ebola in different contexts. Modeling efforts with a predictive character aimed at mitigating

the effects of the epidemics have focused on Ebola virus pathogenicity from a molecular per-

spective [11, 12], the dynamics of the immune response [13, 14], human-to-human infection

(including vaccination effects) [15–18], the effects of human mobility [19, 20], and also the

ecological viewpoint [21–24].

Interestingly, there is abundant evidence that sociodemographic and economic (SDE) fac-

tors also affect, and can be used to infer, health and health-related behaviors, including disease

propagation [25–27]. In that context, it has been shown that, typically, people with lower socio-

economic status have higher exposure to risk factors than the wealthier segments of the popu-

lation [28]. While a consensus on the relationship between SDE factors and exposure to

infectious diseases has not been reached [29], some modeling studies support the idea that

poverty has an effect on the spread of infectious diseases [30–32]. However, we point out that

this relationship is mostly supported by aggregate data at the country level (e.g., GDP) and not

at the individual level. Still, a number of studies have explored the correlation between disease

transmission and other indicators of the individual socio-economic status [33, 34]. In particu-

lar, Fallah et al. have shown in a study based on Liberia that individuals living in low income

regions are more vulnerable to high rates of transmission and spread of Ebola [35]. Moreover,

other studies concluded that the level of education is consistently associated with EVD epi-

demic size and spread [36], and that occupation is also correlated with the transmission of the

Ebola virus [37].

Notably, only few studies have investigated the factors contributing to the likelihood of

human beings exposed to Ebola virus from animal carriers. A recent study showed that the

prominent behavioral factors associated with the transmission of the disease from animal to

human (i.e., the infection spillover) are eating and/or hunting habits [38, 39]. This supports

previous research that indicates direct contact with body fluids of Ebola infected animals is a

substantial route of transmission [40]. More recently, some surveys led to an Ebola risk score

based on perceptions and knowledge about the disease. In particular, Winters et al. measured

the level of risk perception of survey respondents and aimed at shedding light on the relation-

ship between risk awareness and the exposure to information sources [41]. Also, Wille and

coworkers have recently analyzed the accuracy of assessing the zoonotic risk using virological

data and they concluded that these analyses are incomplete, and that “surveillance at the

human–animal interface may be more productive” [42].
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Altogether, previous works have identified determinants that increase the possibility of

infection, but an association between the risky behavior of individuals and SDE factors has not

been fully established. Herein we aim at bridging this gap of knowledge. To that end, we

designed, collected, and analyzed survey data from one of the regions most affected by the

2014–2016 West African Ebola epidemic. By assessing simultaneously practices known to

potentially cause animal-to-human transmission and socioeconomic/household traits, we

define and measure, quantitatively, a spillover risk index. Since the individuals’ surveyed infor-

mation is regularly measured by Statistics Sierra Leone (SSL) at the nation-wide level, our

model, once calibrated, can be applied to other regions and times. Using this approach, we

extrapolated the results to the entire country of Sierra Leone, see Fig 1. While, as reviewed

above, the mechanisms driving EVD outbreaks are multifactorial, our methodology and results

help to identify regions where spillovers are likely to occur. Thus, we expect our study to be rel-

evant for EVD epidemic control, policy making, and planning of resource allocation (e.g., edu-

cational campaigns).

Methods

Geographical scope of the survey

In the summer of 2019 we carried out a survey over 3 weeks in Sierra Leone. Sierra Leone was

selected as the country of study as it is one of the countries most severely impacted by the 2014

Ebola epidemic [43]. The survey was conducted in collaboration with World Hope Interna-

tional (WHI), a NGO that aims at reducing poverty and improving health in Sierra Leone. The

survey covered the district of Bombali, Fig 2. This district is located in the northwest region of

Sierra Leone and was particularly affected by the 2014 Ebola epidemics [44, 45]. We focused

on ten different locations (a city and several villages) that were suggested by WHI authorities

due to their different levels of urbanicity, most common occupation, and other demographic

characteristics of the residents. By doing this, we were able to obtain a diverse and representa-

tive sample of the population in rural areas of the country, which was our main target, due to

their larger probability to have contact with wild-life, and hence increased probability of Ebola

infection due to zoonotic sources. According to the last census conducted by Statistics Sierra

Leone, the population of the district of Bombali is 606,544 (population density of 73/km2):

48.9% males, 71.5% of the population resides in a rural environment, 54.8% of the population

is/was able to attend at least primary school, 63.5% of the population aged 15 years and over is

economically active, and 11.7% of the population aged 10 years and over has access to the

internet. The median age of the population is 18.7 [46]. As for our survey, the sample size was

not defined a priori. As many adult individuals as possible were interviewed, given the time

and resources available in Sierra Leone for the study. Thus, over the course of the 3 weeks, 284

respondents were surveyed. After excluding the first day respondents due to significant revi-

sions to the survey questions (see below), 261 responses were utilized for the subsequent analy-

ses. Guided by our local translators, we chose a random set of locations within driving distance

from our operations center (Makeni). For each surveyed area, two teams went door-by-door

following paths that were not predetermined. The response rate was extremely high and only a

small number of individuals declined to take the survey. Our initial concern that surveying

during working hours could skew the demographics of the respondents (by over-representing

women and unemployed people) was quickly lifted, because we were able to show that the

sample was representative of the demographics of the Bombali district and the rural areas of

the country (see next section).
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Fig 1. Methodological pipeline. We designed a survey that combines questions about behavioral practices that could expose individuals to Ebola

infection and questions to measure sociodemographic and economic (SDE) factors. The survey was administered in Sierra Leone in the Bombali

rural region. We analyzed our data by different means and developed a regression model that measures the spillover risk probability as a function of

a number of SDE features. Once the model was calibrated, we extrapolated the results at the national level using surveyed data from Statistics Sierra

Leone (SSL) to generate the infection spillover exposure map.

https://doi.org/10.1371/journal.pone.0271886.g001
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Survey development and implementation

The survey instrument contained five different sections: i) sociodemographic characteristics,

ii) household characteristics, iii) propensity of the respondents to behavioral practices leading

to some risk of Ebola infection from an animal carrier, iv) environmental characteristics, and

v) perception/knowledge of EVD. Sections i) and ii) measure SDE factors and were designed

to match the data routinely collected by Statistics Sierra Leone (SSL) as part of their Demo-

graphic and Health survey which is conducted once every five years. Section iii) was developed

based on current knowledge about the transmission of Ebola from animal carriers to humans.

Section iv) assessed the presence of bats and other animal carriers in the surrounding environ-

ment. Finally, section v) measured each respondent’s perception and knowledge about Ebola.

In the United States, the survey was reviewed by a native from Sierra Leone, Mr. Vaafoulay

Kanneh, to fine-tune the wording according to cultural practices and language differences. In

addition, two scholars with extensive experience on the country and its culture reviewed the

questionnaire and the survey administration strategy: Prof. Khanjan Mehta, Vice Provost for

Creative Inquiry and Director of the Global Social Impact Fellowship program at Lehigh Uni-

versity, and Dr. Soumyadipta Acharya, Graduate Program Director of the Johns Hopkins Cen-

ter for Bioengineering Innovation and Design, and Instructor of Biomedical Engineering at

Johns Hopkins University. The survey was then reviewed by an independent scholar with

Fig 2. Survey locations in Sierra Leone. The survey was conducted in the district of Bombali over a period of three weeks. Ten different locations (red

dots) were selected to obtain a representative sample of the population in rural areas of the country.

https://doi.org/10.1371/journal.pone.0271886.g002

PLOS ONE Ebola spillover infection exposure in Sierra Leone based on sociodemographic and economic factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0271886 September 1, 2022 5 / 26

https://doi.org/10.1371/journal.pone.0271886.g002
https://doi.org/10.1371/journal.pone.0271886


experience in design and implementation of surveys, Dr. Jessecae Marsh, Cognitive Psycholo-

gist and Director of the Health, Medicine and Society program at Lehigh University, to ensure

that the questions were effectively worded and not misleading.

Once on the ground in Sierra Leone, WHI provided 2 local translators to help with the

administration of the survey. The translators were first surveyed as test subjects to confirm

that the questions were clear from a Sierra Leonean perspective. They then translated the

English version of the survey into Krio, the most commonly spoken language in Sierra Leone.

The responses were then translated in their entirety to the team members from Lehigh Univer-

sity, who then transcribed the response for the questionnaire. The survey was administered in

the form of face-to-face interviews: the translators would ask the questions to the respondent

in Krio, who would respond in Krio, and the responses were transcribed in the questionnaire

by the team members from Lehigh University.

Each survey took approximately 20–30 minutes to administer. Team members used the

application Fulcrum [47] to record the responses, register the geographical location (GPS coor-

dinates), and record the interviewee’s informed consent. Before each day of interviewing in

the rural regions began, the two translators, as well as the team, would meet with the Chief of

the village. This meeting was used to inform the leaders of the village of our presence and our

purpose, as well as to get permission to conduct interviews in the village. In many cases,

referencing this meeting encouraged respondents to take the survey and answer the questions

more honestly.

Ethical permission for the survey (see S1 File) was granted by Lehigh University’s Institu-

tional Review Board (IRB). The project received exempt status from the IRB, and both the

survey and consent statement were submitted and approved prior to the trip and after the

infield changes (see below). All survey participants were also offered paper copies of the

informed consent in both English and Krio with the contact information of the principal

investigators.

On-site fine-tuning of the survey

The first day of surveying took place in the city of Makeni, very close to WHI’s local branch.

We found that differences in African and Western cultures about the perception of “income”

led to confusion. We also realized that our initial strategies to test the respondents’ knowledge

about EVD were flawed. For instance, asking them to list potential mechanisms of EVD conta-

gion often led to single answer responses and rarely to an elaborate list. Providing a list of

actual transmission mechanisms and asking the interviewee to select if the option was correct

or not led to many of respondents systematically accepting all options without thinking. To

test each respondent’s knowledge more accurately, wrong answer choices were added to the

survey’s final version. For example, in the final survey we added “witchcraft” as a possible

answer choice when asking of a question about possible ways to get Ebola. The team also

found that mentioning Ebola prior to asking questions about the disease resulted in some dis-

comfort that might have affected the responses, presumably due to the stigma surrounding the

disease throughout Western Africa. As a result of the first day of in-field experience, further

changes needed to be made to the survey, and therefore the 27 interviews conducted that day

are not used in future analyses. The questions regarding income were reworded to further

reflect Sierra Leonean culture, the word Ebola was deliberately removed from the survey until

it was specifically asked about. These changes resulted in the survey’s final form (Supplemen-

tary Material) which was administered starting the second day of surveying.
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Data preprocessing

Survey data was a combination of quantitative and qualitative (i.e., categorical) answers as a

result of the nature of our questions (see S3 File). To incorporate all qualitative answers into

our quantitative model (see Results), the former were associated with binary variables as fol-

lows. The answers to qualitative questions were grouped into categories. Then, one category,

or one option in the multiple-choice questions, was chosen as the baseline. Each other option

was associated with a binary variable (1 or 0). As a result, the number of variables used for

each question was one fewer than the number of possible categories/options, to avoid redun-

dancy. For example, under the work environment question, option ‘outdoors’ was chosen as

the baseline and the other option (‘indoors’) was associated with a binary variable. So, for this

specific question, value ‘1’ of the binary variable meant an ‘indoors’ occupation, and value ‘0’

meant an ‘outdoors’ occupation. Reference (i.e., baseline) categories/options were chosen to

be either the one having largest number of responses (e.g, “Water from a well/pump” in the

“ways for water acquisition” question), or the very first level of the answer options (e.g, “no for-

mal education” in the “education level” question).

We set a threshold of 10 respondents for each possible answer category for each question to

consider that category statistically significant. When this criterion was not satisfied, we merged

answers into broader categories. For example, for the “water acquisition method” question,

only four participants declared to purchase their water, so “Purchase” was put under the cate-

gory “water_acquisition_other”. Similarly, all the other options with fewer than 10 responses

were assigned to the “water_acquisition_other” category (see Table 1). For the question on the

education level, as some choices had fewer than 10 responses (e.g., completed bachelors), but

education levels are characterized by a clear rank, we regrouped the variables by similar levels.

For example, “some primary school” had fewer than 10 responses and “completed primary

school” had more than 10 responses, but, as they reveal a similar educational background, we

grouped them in the same category. We used similar approaches while categorizing the other

educational options and ended up with three categories (see Table 2).

For the question aiming to know the respondent’s occupation, the answers were spread

over 22 different options, which did not reveal a clear grouping by sector. Since their combina-

tion would lead to too broad categories, which could harm the predictive capability of our

model, these specific answers were ignored, and only the answers to the indoors/outdoors

question (Question A7) were used to describe the occupation. For the question asking the dis-

trict of birth, 84% of the responses were “Bombali”, as expected. Thus, the significance of the

question was deemed minimal and so we did not include it in our analysis.

Some questions implied time frequencies, such as the question about the average internet

usage. In this case, the responses were converted into numerical values (between 0 and 1) that

describe the number of occurrences per day, e.g. “at least once a week” was converted to 1/7

(see Table 3). Numerical variables (e.g., age) were divided by their corresponding maximum

values to make them dimensionless.

Table 1. Water acquisition before and after data preprocessing.

Water Acquisition Ways Assigned Categories

Purchase water_acquisition_other

Running water in the house water_acquisition_other

Water from a well/pump� water_acquisition_water_from_a_well/pump

Water from a natural source water_acquisition_water_from_a_natural_source

� Reference

https://doi.org/10.1371/journal.pone.0271886.t001
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Finally, regarding location information, the GPS coordinates are available in Fulcrum rec-

ords. We noticed large variability in the “average time to highway” responses, and measuring

the distance (in miles) from households to the nearest highway indicated the responses to this

question were generally inaccurate. In particular, we expected that the average time to highway

from similar locations (i.e., same villages) to be similar and we compared the responses with

our distance measurements. We found that the coefficient of variation of the “average time to

highway” responses located in same villages was larger than 1 in most cases. Hence, we omitted

this variable (“average time to highway”) from the final data set that we used in our analyses.

In summary, taking into account the references/baselines, the final data set included 1

option for gender, 3 options for the education level, 1 variable for religion, 1 variable for work

environment, 2 variables for relative income, 2 variables for water acquisition ways, 2 variables

for ownership of cell phone as binary variables; and included the frequency of internet usage,

age, the number of rooms in house, the number of people in household, average time to school,

average time for fuel, and average time for water as numerical variables (See S4 Data).

Evaluation of the reliability of the data

Our collected data shares sociodemographic and economic information with one of the sur-

veys regularly performed by SSL (Sierra Leone Integrated Household Survey: SLIHS) [48]. On

the one hand, this allowed us to check if our survey was representative to capture the sociode-

mographic statistical data of the Bombali district where we ran our survey, and also of Sierra

Leone in rural areas. On the other hand, as shown below, this provides the means to extrapo-

late the applicability of our quantitative regression model to the whole country.

For this comparison, we used the 6 features (variables) that were deemed as representative

in our regression analysis (see Results) as well as “Gender” and “Age” (Fig 3) because they are

prominent demographic characteristics. Also, to compare our survey with the SLIHS 2018 at

the country level, we filtered out from the data from the Western Area Urban district (i.e., the

capital Freetown). In fact, including such data would consider individuals with SDE character-

istics that differ significantly when compared to rural areas, which are the focus of our

research. Fig 3 shows that the overall trends of the demographic features are qualitatively

matched. For a quantitative comparison of continuous variables (e.g., age), the Kolmogorov-

Table 2. Education levels before and after preprocessing.

Education Levels Assigned Categories

Arabic education_primary

Completed Bachelors education_high

Completed Diploma or Postsecondary Training education_high

Completed Junior Secondary School (JSS) education_secondary

Completed Masters or Doctorate education_high

Certificate education_high

Completed Primary School education_primary

Completed Senior Secondary School (SSS) education_secondary

Mason education_primary

No Formal Education� education_no_formal_education

Some primary school education_primary

Trade school education_primary

� Reference

https://doi.org/10.1371/journal.pone.0271886.t002
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Smirnov (KS) test was used to examine the similarity of the distributions from our survey and

from the Bombali district data, as well as the whole nation. The KS index measures the degree

of uniform converges of the two distribution functions, so it is a particularly difficult discrep-

ancy metric to minimize. The results indicated that the age distribution was captured very well

Table 3. Internet use before and after preprocessing.

Internet Use Assigned Categories

At least once a day 1

At least once a week 1/7

At least once a month 1/30

Less than once a month 1/60�

Not at all 0

� This was set as the average of the values in answers “At least once a month” and “Not at all”.

https://doi.org/10.1371/journal.pone.0271886.t003

Fig 3. Comparison of the distributions in rural areas between our survey (Bombali district), SLIHS 2018 in rural areas at the country level, and

SLIHS 2018 in the Bombali district. From top to bottom and from left to right: education level, relative income, cell phone ownership, gender, work

environment, water acquisition method, internet use, and boxplot of age (median: central red line; bottom and top box edges: 25th and 75th percentiles,

respectively; outliers: plus symbols).

https://doi.org/10.1371/journal.pone.0271886.g003
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both in the Bombali district and entire nation, with a maximum discrepancy of 4.8% and 4.5%,

respectively. Time to school was captured sufficiently well both at the district and country

level, with maximum discrepancies of 18% and 15%, respectively. The number of rooms in the

house was also represented sufficiently well, with KS statistics of 25% and 35%. The time

required to collect water was not captured well (maximum discrepancy 54% and 56%), but we

had noticed that this metric was affected by a large degree of subjectivity in its assessment

(answers varied significantly among respondents residing in the same area). For this reason,

we judged it as unreliable and we did not use it in our final model. The categorical variables

(e.g., gender, work environment, religion, relative income) were tested for similarity by com-

puting the dissimilarity index (i.e., total variation distance), the distributions overlap, the Bhat-

tacharyya coefficient, and the Hellinger’s distance. Alike distributions yield values of the

dissimilarity index and the Hellinger’s distance close to zero and values of the distributions

overlap and the Bhattacharyya coefficient close to 1. The results for the distributions of the

most important categorical variables are given in Table 4. Table 4 shows similarity of the distri-

butions coming from our survey and the SSL survey both for the district of Bombali, and the

whole country. Overall, the analyses suggest that our survey was representative of the Bombali

district demographics and, more importantly, that our extrapolation to capture the spillover

risk at the national level is meaningful (with the exception of the Western Area Urban district

that we excluded from our analysis).

Risk index assessment

An important quantitative output of our survey was the Ebola spillover risk index, RI, a num-

ber that measures the likelihood of an individual to engage in behaviors that can lead to con-

tracting Ebola virus from an animal host. The risk index was calculated for each individual

respondent using nine questions from the section specifically related to these behaviors and

five questions from the Ebola perception section. The contributions to the risk index resulting

from these questions were assessed in different ways (see below) and provided the partial

indexes RI1 and RI2 that were combined to obtain the value of RI for each respondent. Table 5

collects the questions that were used to estimate RI1 and the scores ri1 associated with each of

the possible answers: RI1 ¼
P

ri1 . As shown in the table, the score for each question lies within

the [−1, 1] range.

Specifically, every answer gets a score of −1, −0.5, 0, 0.5 or 1 depending on the level of expo-

sure to infection. If an action reveals a risky behavior, we assigned a score of 1, and if the

behavior decreases the likelihood of infection, then −1 was assigned. For questions where

answers imply a time frequency (e.g., “every day”), the score of the riskiest answer was given 1

and the score of −1 was assigned to the least risky answer (intermediate answers were given

one of the other 3 possible values mentioned above). The second contribution to the risk

Table 4. Results of marginal distributions of categorical variables.

Variable Dissimilarity Index (range 0–1,

lower is better)

Overlap between distributions

(range 0–1, higher is better)

Bhattacharyya coefficient

(range 0–1, higher is better)

Hellinger’s distance (range 0–1,

lower is better)

Bombali Country Bombali Country Bombali Country Bombali Country

Gender 0.028 0.022 0.97 0.98 0.99 0.99 0.019 0.016

Religion 0.25 0.23 0.75 0.77 0.96 0.97 0.20 0.18

Work environment 0.38 0.43 0.62 0.56 0.92 0.89 0.29 0.32

Relative income 0.10 0.21 0.90 0.79 0.99 0.97 0.093 0.16

Education 0.16 0.15 0.84 0.85 0.98 0.98 0.15 0.13

https://doi.org/10.1371/journal.pone.0271886.t004
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Table 5. Risk scores ri1 .

Question # Question Answer ri1
C2b� How often do you go to caves? Never -1.0

Every few years -1.0

Every few months 0.0

Every few weeks 1.0

Every few days 1.0

Every day/more than once per day 1.0

Declined to answer 0.0

C3 How often do you wash with soap? At least once a day -1.0

At least once a week 0.0

At least once a month 0.0

Less than a month 1.0

Never 1.0

C5 When you eat fruit, do you check if it has been bitten by animals? Always -1.0

Sometimes 0.0

Never 1.0

I don’t eat fruit 0.0

C9 How often do you eat bushmeat? Every Meal 1.0

Once a day 1.0

At least once a week 1.0

At least once a month 1.0

At least once per year 0.5

Never -1.0

I used to, but no longer -1.0

C11 Do you clean your hands before eating? Always -1.0

Sometimes 0.0

Never 1.0

C13 How often do you spend time in places where bats nest? Never -1.0

Every few years 0.0

Every few months 0.5

Every few weeks 1.0

Every few days 1.0

Every day/more than once per day 1.0

C14 How often do you have contact with someone else’s blood or bodily fluids? At least once a day 1.0

At least once a week 1.0

At least once a month 0.0

Less than a month 0.0

Never -1.0

C15 Do you believe that touching raw meat or any live animal could spread disease? Yes -1.0

No 1.0

I don’t know 0.5

C16 Do you believe that eating bushmeat could spread disease? Yes -1.0

No 1.0

I don’t know 0.0

E2 Do you think a person could get Ebola from an animal, dead or alive? Yes -1.0

No 1.0

I don’t know 0.5

(Continued)
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index, RI2 ¼
P

ri2 , was determined based on “check all that apply” type of questions (ques-

tions E1, E2b, and E3 of the survey, Table 6). The possible options for these three questions

included both correct and wrong answers on mechanisms of human-to-human Ebola infec-

tion, animal-to-human Ebola infection, and strategies to prevent Ebola. As mentioned above,

wrong answers were included in these questions after we evaluated the conducted interviews

of the first day and we noticed that a number of respondents checked all choices. We then

modified the questions by providing multiple options that included both correct and wrong

answers. Using the modified survey, the scores ri2 were assigned using the following

procedure.

1. If a respondent gave more than one wrong answer to a question, then ri2 ¼ 1.

2. If a respondent gave only one wrong answer to a question and could not provide at least

half of the reasonable answers, then ri2 ¼ 1.

3. If a respondent gave only one wrong answer to a question but provided at least half of the

reasonable answers, then ri2 ¼ 0:5.

4. If a respondent gave only correct answers, then ri2 ¼ � 1.

5. If a respondent answered “I don’t know”, then ri2 ¼ 0:5.

Regression analysis and machine learning techniques

One goal of our study was to develop a methodology able to determine the risk index R not

just for individuals that took our survey, but also for individuals for which SDE information is

part of the publicly available data from Statistics Sierra Leone (SSL). To that end, we calibrated

a model that takes as input the answers to the same SDE questions from the survey of SSL and

returns as output the risk index, RI. We calibrated and tested multiple models via regression

analysis and supervised machine learning, in which the risk index was used as a response vari-

able for training and the other answers were used as features. For the regression analysis, we

tested a multiple linear model, a second order multivariate polynomial model, and a logistic

model. In linear and polynomial regression, the output of the models was chosen to be the risk

index, RI. On the other hand, when using the logistic regression approach and machine learn-

ing classification techniques, the model was not trained using the actual value of the RI, but a

binarized description (RIb) of the continuous risk index by classifying the respondents into

“high risk of spillover exposure” and “low risk of spillover exposure” (based on whether RI was

above or below the average risk index). In this way, we simplified the output of the predictive

algorithm, settling for a classification of high or low risk, rather than a full quantification of RI.

Table 5. (Continued)

Question # Question Answer ri1
E7 Do you believe that you can get Ebola from bushmeat? Yes -1.0

No 1

I don’t know 0.5

� This question was asked only to the participants who answered “Yes” to question C2, “Do you know any caves?”.

https://doi.org/10.1371/journal.pone.0271886.t005
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Multiple linear regression model. In this case, a full regression model would read,

RI ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn

where RI is the spillover risk index, and X1, X2, . . ., Xn are the predictor variables. Since the

data set includes 19 sociodemographic features, a full regression analysis would result in 20

parameters to be calibrated (i.e., β0, β1, . . ., β19). However, we deemed this amount to be too

large for an effective calibration, considering that the total number of observations was 261,

Table 6. Risk scores ri2 .

Question # Question Answer

E1 What are the ways in which a person gets Ebola?(Check all that apply) (Open Question) By air

Bad odor or smell

Preparing bushmeat as a meal

Eating bushmeat

Eating fruits likely to have bitten by bats

Eating with an infected person

The saliva of an infected person

Blood of an infected person

The sweat of an infected person

The urine of an infected person

Feces of an infected person

Living with an infected person

Working with an infected person

God’s will

Witchcraft

Government hoax

Ebola does not exist

I do not know

Declined to answer

E2b How could a person get Ebola from an animal? (Check all that apply) (Read options) Having an animal as a pet

Eating any meat

Eating bushmeat

Watching an animal

Eating fruits bitten by an animal

Hunting

Preparing bushmeat as a meal

E3 In general, how do you think a person avoids Ebola? (Check all that apply) (Read Options) Brushing their teeth

Sleeping under a mosquito net

Avoiding contact with blood and bodily fluids

Drinking tea

Staying inside when it rains

Not touching anyone with the disease

Cleaning themselves with soap and water

Avoiding funerals or burial rituals

Drinking only tap water

Avoiding the forest/woods

I don’t know

Declined to answer

https://doi.org/10.1371/journal.pone.0271886.t006
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and this was confirmed by the the adjusted R2 values. In order to overcome this problem, we

implemented a dimensionality reduction approach (feature selection) by exhaustive search,

forward/backward stepwise, and sequential replacement (regsubsets function of the R package

‘leaps’) [49]. This provided the best subsets of the variables in the dataset in terms of predicting

capabilities for the continuous RI. The best model was found to have only 6 variables. In partic-

ular, the model performance was evaluated by computing the adjusted R2 value, but even for

the best model we obtained a value of 0.073, which was clearly too low.

Second order multivariate polynomial regression model. In this model, the linear

behavior is extended with second order interactions among predictor variables,

RI ¼ b0 þ b1X1 þ b2X2 þ b3X2
1
þ b4X2

2
þ b5X1X2 þ . . .

Regardless of its simplicity, this kind of models have been shown to capture complex inter-

actions satisfactorily, such as those of enviroclimatic features to determine the carrying capac-

ity of bat species [24]. We used the same approach described for the linear regression model

and performed a dimensionality reduction to investigate the best subset of predictors (regsub-
sets function of the R package ‘leaps’). The best model in this case includes 9 variables but the

accuracy as measured by the adjusted R2 was still very poor: 0.076. The logistic regression

model, which was eventually selected as the best model, is discussed in the next section.

Machine learning techniques. In addition to the aforementioned regression techniques,

we tested also machine learning techniques. In particular, we used the gradient boosting deci-

sion tree (GBDT) because it is a supervised model that is particularly good at handing datasets

where features span over different scales, as is the case for our survey answers [50, 51]. We

implement our GBDT based on the Xgboost algorithm in Python [52]. A randomly selected

20% of the dataset set was used for testing and the rest as a training set. We performed a grid

search of the number of estimators using a range of 2n with n 2 [1, 10], and set a max depth of

the tree in the range of [1, 6]. As shown in the supplementary figure (see S1 Fig), the best

achieved accuracy was 66%. We argue that the low results obtained when using machine learn-

ing to analyze our data was due to the small number of observations. While this level of accu-

racy may be acceptable, especially considering the typical needs of large training datasets of

machine learning approaches and the small dataset available to us, it is lower than the level of

accuracy obtained with the simple logistic regression presented in the next section.

Our conclusion was that all machine learning approaches were inconclusive, arguably due

to the small number of observations available for training. Additionally, data visualization

techniques, including principal component analysis (PCA) and uniform manifold approxima-

tion and projection (UMAP) to reduce dimensionality were applied. However, no distinct

clusters were observed (see S2 and S3 Figs in supplementary materials).

Logistic regression. For the logistic regression, the value of the risk score, RI, had to be

converted into a dichotomous variable (RIb) that describes if respondent either does or does

not engage in behaviors that leads to risk of Ebola infection. Thus, we first scaled and normal-

ized RI with respect to its minimum and maximum values:

RIn ¼
RI � min ðRIÞ

max ðRIÞ � min ðRIÞ

Second, by using this normalized value of the risk index, RIn 2 (0, 1), we set a cutoff value

of 0.5 that allowed us to classify individuals in a binary way: individuals that engaged in a risky

behavior (RIn> 0.5, high risk (RIb = 1)) and individuals that did not engage in a risk behavior

(RIn< 0.5, low risk (RIb = 0)) from the viewpoint of a possible Ebola infection.
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In our logistic regression model, the outcome variable, Y, is described as,

Y ¼ logitðRInÞ ¼ log
RIn

1 � RIn

� �

¼ b0 þ b1X1 þ b2X2 þ . . .þ bnXn ð1Þ

As shown in the Results section, this regression model provided satisfactory predictive

capabilities.

Results

Sociodemographic and economic factors underlying the Ebola spillover

risk

Following a classification of the spillover risk index into a binary class (high/low risk), we were

able to implement a logistic regression (Methods) and investigated both its predictive accuracy

and the optimal subset of features to be included. The feature subset was found based on the

Akaike Information Criterion (AIC), which estimates the prediction error, therefore the

model giving the smallest AIC value was selected [53]. Forward and backward stepwise logistic

regression through AIC were applied to select the optimum number of independent variables

and to eliminate the variables not contributing significantly to the exposure to risk of spillover.

Our analyses concluded that a model with six (out of nineteen) features provided a global

minimum for the AIC value (Fig 4A and Table 7). Since the adjusted R2 cannot be used as indi-

cator of the goodness of fit using a logistic regression, we used instead the model accuracy,

defined as the percentage of cases where the binary output variable (high/low risk) is correctly

predicted by the model. We point out that to measure the model accuracy and robustness we

performed a 10-fold cross-validation that was repeated three times with different data parti-

tioning, for a total of 30 analyses using 10% of the data as test samples each time. The accuracy

level ranged from 0.5 to 0.81, with an average accuracy of 0.657±0.07. Based on these results,

we concluded the model is accurate and robust.

As shown in Table 7 and Fig 4B, SDE factors able to best indicate(or capture) the Ebola

spillover risk are features related with education level, work environment, income (including

measures of purchasing power), and access to information.

The sign of the coefficient associated with each feature is indicative of the feature being

associated with high (positive sign) or low (negative sign) Ebola spillover risk. In that regard,

our results revealed that work conditions that decrease possible contact with animals, better

educational background, and access to information are factors that decrease the spillover risk.

On the other hand, a worse economic status and activities that imply contact with the natural

environment increase the chances of infection from a zoonotic source (Fig 4B). To investigate

the possible interdependence among predictor variables, we computed their correlation matrix

(Fig 4C). No strong correlation between any pairs was found, and the more significant ones

are consistent with our expectations (e.g., highest correlation coefficient: 0.63 between “people

in household” and “rooms in house”).

We further tested the validity of our logistic model in terms of its predictive capability by

different means. To assess the goodness of fit, we used the Hosmer-Lemeshow test [54] that

calculates the discrepancy between the predicted and observed risk indexes. The result from

the test was not significant (χ2 = 2.8848) and indicated a satisfactory predictive power

(p = 0.9414 > 0.05). The successful calibration of predictions was confirmed by analyzing the

predicted versus observed risk score (Fig 5B). To that end, we ordered the interviewees by

their predicted spillover risk and divided the sorted data into ten equal sets (deciles or bins).

For each of these sets we compared the predicted versus observed spillover risk. This analysis

confirmed that the regression model is reliable (Fig 5B). Also, given that our model aims at
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Fig 4. A: AIC values as a function of the number of variables (features). Either starting from a null model and

increasing the number of features (forward stepwise logistic regression) or from a complete model and decreasing the

number of features (backward stepwise logistic regression), we consistently found that a model with six variables shows

a global minimum for AIC (minimum prediction error). B: Graphical representation of the logistic regression

coefficients. Magnitude of the βi coefficients (normalized to the maximum) and their sign (positive/negative: red/
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discriminating between the values of a binary outcome (i.e., high risk or low risk), we com-

puted the Receiver Operating Characteristic (ROC) curve [55] in Fig 5C. Our model deviates

from a random classifier in a satisfactory way, and the restult of this analysis contributes to jus-

tifying the value of the threshold used in the logistic classification (i.e., 0.5). As a way to mea-

sure the goodness of the predictive character of our model, we computed the area under the

ROC curve (AUC): a perfect classifier would give a value of 1 for this measure and a random

classifier a value of 0.5. In our case, we obtained 0.69, which was considered acceptable.

In summary, our logistic regression model is able to identify a reduced set of SDE features

to quantify with enough accuracy and in a robust way the Ebola spillover risk in individuals.

As shown below, this calibrated model was subsequently used to extrapolate the analysis to the

entire country.

Application of the risk model nation-wide: Infection spillover exposure

map

Once our predictive model was properly calibrated and deemed reliable, we aimed at applying

it to the entire nation of Sierra Leone. To that end, we used data from the broader survey

(SLIHS) conducted by SSL in 2018 and for which responses of individuals are publicly avail-

able (*4 � 104 interviewees). We designed our survey to include some of the SDE questions in

the SLIHS survey. Consequently, we were able to use the SLIHS data set as input in our model

and estimate the risk scores of each respondent. Our analysis indicated that the data set was

representative of the demographics of rural areas of Sierra Leone (see Methods), which justifies

this extrapolation to the rural areas of the country as a whole.

We performed our calculations at the district, d, level by computing for each individual, i,
the spillover risk index using our logistic model: RIn|i,d. By setting a threshold of 0.5 (Methods,

see also Fig 5C), the fraction of surveyed individuals at risk of infection in a district reads:

pd ¼
1

Nd

XNd

i¼1

yðRInji;d � 0:5Þ; ð2Þ

where θ(�) is the Heaviside step function and the sum runs over the Nd individuals that were

surveyed in the district. Thus, the density of individuals at risk of being exposed to spillover

green). The selected features balance SDE factors that increase or decrease the spillover risk. C: Graphical

representation of the correlation matrix among variables. Our analysis indicates that there is no significant

correlation among variables (red text stand for the selected features in the logistic regression).

https://doi.org/10.1371/journal.pone.0271886.g004

Table 7. Selected SDE features with the best predictive capabilities in the logistic regression model.

Feature βi p-value

education: high −1.4±0.8 0.07239

work environment: indoors −0.6±0.4 0.09749

internet use −1.1±0.8 0.1763

relative income: lower than average 0.5±0.3 0.1185

water acquisition: natural source 0.8±0.4 0.04261

own cell phone: no 0.5±0.3 0.09444

Value of the coefficients βi for the logistic model shown in Eq (1). ± ranges show the standard error of the

corresponding coefficients.

https://doi.org/10.1371/journal.pone.0271886.t007
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infection in a district,rI
d, is

rI
d ¼ pdrd; ð3Þ

ρd being the population density in the district [56]. Thus, the infection spillover exposure map

is, effectively, the population density map modulated by the spillover risk probability.

Fig 6 shows the infection spillover exposure maps, rI
d, by taking into account the values of

βi in the logistic regression (Table 7) and also the worst-case scenario. To compute the worst-

case scenario, we used as model coefficients the values βi + �i, �i being the error of the coeffi-

cient βi. We point out that the best-case scenario computed by using βi − �i predicts no spill-

over infection, so the associated maps are not included (see Discussion). The maps were

created based on publicly available shape files with country profiles and MATLAB scripts were

used to generate all figures containing maps [57, 58].

Our data and analyses suggest that Kailahun and Kambia are the rural districts in Sierra

Leone with the highest density of individuals exposed to an infection spillover due to SDE fac-

tors. This is a combined effect of both high risk spillover probabilities and high population

densities. Kailahun is in fact the district where the 2014 Ebola epidemics originated [59]. Koi-

nadugu and Moyamba are two districts with a spillover risk probability that is significantly

large. However, their low population density contributes to decrease their spillover exposure.

A similar behavior was observed in Bonthe. However, in Port Loko and Bo, the districts the

opposite behavior was found: not excessively large risk probabilities combined with high popu-

lation densities modulate each other and contribute to leave the spillover exposure at average

levels. The district of Kenema, which was one of the most severely affected by the 2014 epidem-

ics [60], is not revealed as one of the districts with higher exposure. However, as our model

does not account for human-human infective processes and, this result is not particularly

Fig 5. A: Box plot of the accuracy of the logistic model. The accuracy, measured as the fraction of correctly predicted spillover risk, is 0.657±0.07. In

the plot the wide black line indicates the median. The box delimits the (25%, 75%) percentile interval, and the whiskers represent the minimum and

maximum values (no outliers were present in this case). The accuracy analysis was performed repeating a 10-fold cross validation three times (see text).

B: Predicted versus observed spillover risk scores. The green dotted line is the expected behavior of a perfect classifier and the circles represent the

results obtained from our model (see text). The black dotted line is the linear fitting of the points. C: ROC curve. As a function of the classifier threshold

(color scale) the true versus false positive rate is plotted. The model deviates clearly from a random classifier (red dotted line). Analyses with a threshold

larger/smaller than 0.73/0.02 accumulate in top left/bottom right corner of the plot.

https://doi.org/10.1371/journal.pone.0271886.g005
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surprising. Still, we point out that Kenema neighbors Kailahun, which as mentioned above has

one of the largest spillover exposure risks. Arguably, the combined effect of spillover exposure

due to zoonotic sources with mobility and human-human infection would have contributed in

the past to the large levels of EVD in Kenema. As for the district of Bombali where we ran our

survey, average risk probability and population density lead to average spillover risk. Our

results also suggest that there is no significant clustering among districts. In order to estimate

spatial data clustering, we computed the Moran index (i.e., Moran’s I): a correlation indicator

to assess spatial similarity (-1 if there is a perfect dissimilarity, 1 if data are perfectly clustered,

and 0 in the case of spatial white noise) [61, 62]. Table 8 shows Moran’s I’s, and the corre-

sponding p-values, for the maps shown in Fig 6. On the one hand, the spillover exposure maps

(best fit and worst-case scenario) and the population density map have indexes close to zero

(randomness) and data revealed p-values greater than 0.05. On the other hand, the Moran

indexes of the spillover risk probability maps indicate a slightly larger degree of clustering that

Table 8. Results of Moran’s test.

Map Moran’s I p-value

Spillover risk probability (Best fit) -0.10 0.0025

Spillover risk probability (Worst-case scenario) 0.11 0.00059

Population density -0.088 0.26

Spillover exposure density (Best fit) 0.034 0.061

Spillover exposure density (Worst-case scenario) 0.033 0.060

https://doi.org/10.1371/journal.pone.0271886.t008

Fig 6. Estimation of the infection spillover map in Sierra Leone by districts. From left to right the figure shows the spillover risk probability (pd), the

population density (ρd), and the infection spillover exposure (rI
d) respectively. In the case of pd and ρd the maps showed on the top stand for the cases of

the best fit logistic model and on the bottom the worst-case scenario (see text). District color codes (as shown on top left): Bo (purple), Bombali (white),

Bonthe (cyan), Kailahum (red), Kambia (orange), Kenema (pink), Koinadugu (yellow), Moyanba (green), and Port Loko (blue).

https://doi.org/10.1371/journal.pone.0271886.g006
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might be significant (p-values smaller than 0.005). This moderate clustering is explainable

with demographic trends that go beyond the district boundaries and tune the spillover risk

probability.

Finally, we did not observe significant qualitative changes in the spillover risk probability

between the best model and the worst-case scenarios. Nonetheless, we stress the noticeably

large levels of spillover risk probability in many districts of the country even in the best model

scenario. This points out the necessity, according to our study, of implementing measures that

could contribute to lower the spillover risk probability (see Discussion).

Discussion and conclusions

Herein we have proposed for the first time, to the best of our knowledge, a methodological

pipeline to quantify the infection spillover risk probability in individuals and the spillover

exposure map at the country level due to SDE factors. Our research contributes to the recent

interest in understanding the complexity of epidemic propagation due to confluent effects and

for which SDE factors have been proved to be relevant and yet often disregarded. In that

regard, previous approaches have focused on evaluating and weighting these factors globally

(e.g., at the country level). We instead have focused on the individual level. The advantage of

our approach is that it allows scholars and decision makers to obtain a deeper understanding

of the social and economic circumstances of individuals to develop a predisposition for risky

behaviors in the context of a zoonotic spillover. Thus, our approach can be used to design bet-

ter targeted campaigns and can help to prioritize resources in space and time (e.g., vaccination,

information).

Our results reveal the SDE factors most correlated with the infection spillover probability

for individuals (Fig 4). As expected, the educational level, economic level, working conditions,

and information access contribute to modulate the risk probability of individuals. Those fac-

tors are captured by a reduced number of indicators: work environment, internet use, educa-

tional background, relative income, water acquisition source, and cellphone ownership. Our

findings showed that gender, religion, and age do not have a major role in modeling the spill-

over risk probability. Still, some results about these demographic indicators are worth men-

tioning. Young adults (ages between 18–34) and adults (ages between 34–50) constituted 77%

of the investigated sample, but they constitute 86% of the respondents at risk. Also, 50% of the

study respondents have an agriculture-related occupation, but when computing the percentage

within respondents at risk we obtained 79%. Thus, our model reveals some small biases that

suggest that those age ranges and occupations are more susceptible to risky behaviors related

to an Ebola infection spillover. Still, we notice that the size of our sample was relatively small

and that a larger sample would be required to show that these biases are significant. Related to

this last comment, our methodology leverages efforts made regularly in Sierra Leone to mea-

sure the demographics. Ideally, in future survey campaigns additional questions to measure

risk predisposition could be included by SSL, similar to those included in our local survey. An

increased sample size would allow us to refine our results, increase the accuracy, and possibly

analyze using by other quantitative methods that were deemed as inaccurate in our study (i.e.,

machine learning). The findings of the logistic regression model indicate that the only statisti-

cally significant variable, using the p-value as a metric, is “water acquisition: natural source”

(p< 0.05, Table 7). However, there has been an ongoing debate about the possibility of misin-

terpretation of the p-value with strictly defined thresholds [63, 64]. Some statisticians argue

that the interpretation of the p-value is vague and the information coming from p-values of

0.04 and 0.06 is essentially the same [65]. Yet, the former is interpreted to be statistically signif-

icant, and the latter is non-significant. The vague classification led us to not consider the p-
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value of 0.05 as a primary criterion for model selection, since our essential aim was to perform

as accurately as possible the classification of the spillover risk. As for how representative is our

study to capture the spillover risk probability in rural areas at the national level, the evaluation

of the reliability of our data revealed that similar trends were obtained in Bombali and the rest

of the country. However, some differences were also observed (Fig 3) that might raise ques-

tions about the ability to extrapolate our model. This is one of the reasons underlying the

exploration of different scenarios (Fig 6). In that regard, our results are qualitatively robust

and show a similar relative risk among districts. Nonetheless, we point out that it is certainly

possible that if larger surveys are executed in the future, other SDE features could be identified

as more representative in terms of their predictive capabilities, following the methodology that

we propose. As a possible criticism, the upper and lower bounds of our prediction for the spill-

over risk probability maps could be considered as too broad: taking as a reference the best fit

model, the resulting probability at a given district is approximately four times larger when the

worst case scenario is considered. Once more, larger data sets would reduce this variability.

In our study, two different factors are integrated when computing the infection spillover

exposure map in Sierra Leone: the spillover risk probability and the population density map.

Some districts can actually have a large spillover probability but their low population density

helps to diminish their exposure (e.g. Koinadugu). The opposite (relative small spillover prob-

ability, and large population density) can lead to similar spillover exposure levels (e.g. Port

Loko). Thus, actions should be taken considering the spillover probability as well as the popu-

lation density of each district. In any case, our model has identified two districts that because

of both individual risk and population density are particularly exposed: Kailahun and Kambia.

Taking into account that the 2014 epidemics started in Kailahun, more efforts are still needed

to lower the spillover exposure there. This study shows the spillover risk probability and spill-

over risk exposure density without integrating our analysis with the possible spatial relation-

ship among districts. In fact, our analysis revealed lack of clustering among districts. Our

results offer simple, easy to interpret and direct conclusions, but in the future, integration of

spatial analysis would help to obtain more comprehensive results. In that regard, Bayesian

methods are a popular tool to conduct spatial analysis, as they offer a flexible and robust

approach, primarily in disease mapping and decision making. [66–69] As a matter of discus-

sion, we stress that our study aims at understanding how SDE factors are related with the

Ebola spillover risk. However, a more complete picture of the infection spillover map would

require additional drivers (e.g. ecology effects and bat migration habits). In fact, recent studies

have established Ebola spillover risk maps in different regions of the African continent where

environmental, climatic, and some anthropogenic factors were considered [39]. Still, the

authors pointed out that there are still important gaps in the knowledge about the factors lead-

ing to infection spillover. We believe that our study accounts for some of those factors and

envision that the combination of compartmental models able to provide the density of infected

animal host driven by enviroclimatic cues [24] with our approach would lead to a comprehen-

sive assessment of the risk of spillover. In this sense, one of the major contributions of this

work is the fact that the complete raw data resulting from our survey campaign in Sierra Leone

is provided as additional material to this manuscript, which allows other scholars to perform

additional analyses.

Effective allocation of resources is necessary to hinder global epidemics, given the limited

health care infrastructure in Sierra Leone and other West African nations. This requires an

established priority of what regions are most at risk and therefore most in need of resources.

In that regard, our methodology and findings hopefully help to identify the districts which are

more susceptible to an infection spillover of Ebola.
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