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The formation and consolidation of memory play a vital role for survival in an ever-
changing environment. In the brain, the change and stabilization of potentiated and
depressed synapses are the neural basis of memory formation and maintenance.
These changes can be induced by rather short stimuli (only a few seconds or even
less) but should then be stable for months or years. Recently, the neural mechanism
of conversion from rapid change during the early phase of synaptic plasticity into
a stable memory trace in the late phase of synaptic plasticity is more and more
clear at the protein and molecular levels, among which synaptic tagging and capture
(STC) theory is one of the most popular theories. According to the STC theory, the
change and stabilization of synaptic efficiency mainly depend on three processes
related to calcium concentration, including synaptic tagging, synthesis of plasticity-
related product (PRP), and the capture of PRP by tagged synapse. Based on the
STC theory, several computational models are proposed. However, these models
hardly take simplicity and biological interpretability into account simultaneously. Here,
we propose a simplified STC (SM-STC) model to address this issue. In the SM-STC
model, the concentration of calcium ion in each neuronal compartment and synapse
is first calculated, and then the tag state of synapse and PRP are updated, and the
coupling effect of tagged synapse and PRP is further considered to determine the
plasticity state of the synapse, either potentiation or depression. We simulated the
Schaffer collaterals pathway of the hippocampus targeting a multicompartment CA1
neuron for several hours of biological time. The results show that the SM-STC model
can produce a broad range of experimental phenomena known in the physiological
experiments, including long-term potentiation induced by high-frequency stimuli, long-
term depression induced by low-frequency stimuli, and cross-capture with two stimuli
separated by a delay. Thus, the SM-STC model proposed in this study provides an
effective learning rule for brain-like computation on the premise of ensuring biological
plausibility and computational efficiency.

Keywords: synaptic plasticity, synaptic tagging and capture, calcium concentration, plasticity-related product
(PRP), learning and memory
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INTRODUCTION

The human brain contains billions of neurons connected to each
other to form a complex neural network, and the connection
between neurons is called the synapse. Specifically, the strength
of synapses can be changed by perception and cognition
processes, which is necessary and sufficient for the encoding
and trace storage of memory (Takeuchi et al., 2014). The
changes of synaptic strength (i.e., synaptic plasticity) can last for
hours or even longer for memory maintenance. The persistent
strengthening of synapses is termed long-term potentiation
(LTP), and the reduction in the efficacy of neuronal synapses
lasting hours or longer is called long-term depression (LTD). LTP
and LTD could be triggered by a short duration of neural activity.
Generally, high-frequency stimulus triggers LTP, whereas low-
frequency stimulus triggers LTD (Bear and Malenka, 1994). As
synaptic plasticity is essential for the development of the brain,
especially for learning and memory (Martin et al., 2000; Takeuchi
et al., 2014), how to accurately model synaptic plasticity is crucial
for exploring the mechanisms under learning and memory and
key for brain simulation.

In the past few decades, a variety of synaptic plasticity models
represented by Hebbian rule (Hebb, 1949; Fusi, 2002), synaptic
timing dependent plasticity (STDP) (Bi and Poo, 1998; Pfister and
Gerstner, 2006), and the Bienenstock–Cooper–Munro (BCM)
rule (Bienenstock et al., 1982; Shouval et al., 2002) have been
proposed. However, they focus on the description of short-
term plasticity and induction of early phase LTP and LTD; the
maintenance (i.e., conversion from early to late-phase plasticity)
that is critical for continual learning and memory consolidation
was not under consideration.

A well-known theory of conversion from early to late-
phase plasticity is synaptic tagging and capture (STC), which
is supported by evidence both in vitro and in vivo (Frey and
Morris, 1997; Redondo and Morris, 2011; Shires et al., 2012).
The main hypothesis of STC theory is that long-term change
of synaptic strength contains two necessary conditions. First,
the dendritic spine on the postsynaptic neuron is activated
by the presynaptic neuron and causes calcium influx into the
spine, which makes the spine enters a tagged state (early phase
plasticity, the calcium level determines whether the tagged state
is potentiation or depression). The tagged state is a temporary
structural state of the synapse that probably involves a large
number of proteins and their interactions and could last for
approximately 90 min (Redondo and Morris, 2011). Second,
strong activation of a postsynaptic neuron causes the synthesis
of plasticity-related product (PRP) in the soma or local dendritic
domains. The molecular identity of all the PRPs is unknown but
includes proteins such as Glur1, Homer1a, PKMζ, and ArC, and
dendritic mRNAs as diffusible plasticity-related molecules; PRP
could last for several hours (Redondo and Morris, 2011). When
the tagged spine captures the PRP in the dendritic branch, the
early phase plasticity would convert to late-phase plasticity. The
tagging and capture processes exhibit symmetry, and therefore,
PRP can be captured if they are synthesized either before or after
the setting of the tag.

STC provides a new perspective for memory association
and consolidation (Frey and Morris, 1998). First, STC greatly
widens the time window of associative memory from short
(less than 1 s) to long term (∼90 min), which enables events
with a long time interval to be associated and helps memory
integration. Second, a weak stimulus that tagged on the synapse
could transform to long-term memory when it captures the PRP
synthesized by strong stimuli, which might be the neural basis
of the "flash memory" phenomenon. Third, due to the locality of
PRP, capture preferentially occurs between stimulated spines that
reside in the same dendritic branch, which affects the synaptic
allocation in memory.

Computational models can bridge the gap between STC
theory at the cellular level and memory at the behavior level. In
recent years, a variety of plasticity models based on STC theory
have been proposed. Clopath et al. (2008) propose TagTriC,
which simulates the synaptic plasticity process of tagged synapse
captures of PRP. TagTriC hypothesizes the formation of the
tag, and PRP is associated with the membrane potential of
neurons, which ignores the critical role of calcium concentration.
Subsequently, Barrett et al. (2009) proposed a state transition
model based on STC theory and simulated a broad range of
experimental phenomena known as tagging experiments. In
their model, the switch of synaptic states is considered as
a Markov process; they use stimulus strength as the driving
force and migrate the system to the next state with a certain
probability. Smolen et al. (2012) propose a cascade model with
the consideration of calcium concentration and a series of
biochemical reactions on both tag and PRP, which simulated
the biochemical mechanisms in the STC process precisely, but
the model is too complex. Kastellakis et al. (2016) propose an
STC model based on calcium concentration with relatively few
equations and build a neural network containing hundreds of
neurons to simulate the phenomenon that memories that occur
closely are more likely to share neurons. In their model, the
plasticity only occurs when both tag and PRP are present. Because
early phase plasticity depends on tag other than PRP (Redondo
and Morris, 2011), the early phase plasticity induced by tag
cannot be simulated in their model, which limits its applications.

Therefore, the long-term plasticity models based on STC
theory still have many shortcomings; it is necessary to propose a
model that considers the biochemical mechanism under tagging
and capture and is relatively easy to implement. To solve this
issue, in this study, we propose a simplified long-term plasticity
model based on STC theory: SM-STC. The SM-STC model
considers the dynamic change of calcium concentration, its
effects on tagged state and synthesis of PRP, and the coupling
effects of tag and PRP on conversion from early to late-phase
plasticity. In addition, the complexity and parameters in the
model were largely reduced on the premise of ensuring biological
plausibility. On this basis, we simulated a broad range of
experimental phenomena known as tagging experiments. The
proposed SM-STC model considers the biochemical mechanism
and implement simplicity simultaneously, which may shed light
on the learning and memory mechanism of the brain and
facilitate the development of brain-like artificial intelligence.
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MATERIALS AND METHODS

Model Description
Presynaptic Plasticity
The SM-STC model considers both presynaptic and postsynaptic
plasticity. The presynaptic plasticity is modulated by the
neurotransmitter release amount and residual calcium level
in the presynaptic neuron (Mongillo et al., 2008). A high
neurotransmitter release amount and high residual calcium level
induce synaptic facilitation, whereas a low neurotransmitter
release amount and low residual calcium level induce synaptic
depression. We define presynaptic efficiency p to describe the
change of synapse induced by presynaptic activity, where p
is multiplied with the synaptic conductance. The presynaptic
efficiency p is defined as

p = xu (1)

dx
dt
=

1− x
τD
− uxδ

(
t − tsp

)
(2)

du
dt
=

U − u
τF
+ U (1− u) δ

(
t − tsp

)
(3)

where x represents the normalized neurotransmitter release
amount (0 < x < 1), u defines the residual calcium level, U is the
baseline level of u, τD and τF are depression and facilitation time
constants, δ is the Dirac delta function, and tsp is the time of the
presynaptic spike.

Postsynaptic Plasticity
In the SM-STC model, the potentiation or depression induced
by postsynaptic activity is determined by the tagged state of
the dendritic spine and the PRP level of the corresponding
dendritic branch. The tagged state of synapse Tag is related to
the calcium ion concentration

[
Ca2+]

s in the spine, the sign of
Tag determines the direction of synaptic weight change, where
positive Tag drives the synapse to potentiation, and negative Tag
drives the synapse to depression, as shown in Figure 1. The
evolution of Tag is defined, as

d
(
Tag

)
dt

= −αTTag + βT
(
TagFlag − Tag

)
(4)

where αT is constant andTagFlag is an instantaneous variable and
determined by the calcium concentration

[
Ca2+]

s in the spine.
If
[
Ca2+]

s is below Ca0s, the synapse cannot be tagged, and the
synaptic weight does not change; the TagFlag is set to 0. If

[
Ca2+]

s
is higher than Ca1s (Ca1s > Ca0s), then the synapse is tagged
and enters an early phase LTP; TagFlag is set to 1. If

[
Ca2+]

s is
between Ca0s and Ca1s, the synapse is tagged and enters an early
phase LTD; TagFlag is set to -1 as follows:

TagFlag =


0
−1
1

[
Ca2+]

s < Ca0s
Ca0s ≤

[
Ca2+]

s ≤ Ca1s[
Ca2+]

s > Ca1s
(5)

[
Ca2+]

s is modeled as the average calcium concentration
through the NMDA receptor

[
Ca2+]

NMDA within a time window

of tCa as follows:[
Ca2+]

s =
1
tCa

∑[
Ca2+]

NMDA (6)

where
[
Ca2+]

NMDA is the concentration of calcium in the spine
via NMDA receptor, and the process of calcium ion accumulation
rather than transient effects is considered. βT is a constant related
to the state of synapse. βT is defined as

βT =


0

βT, LTD
βT, LTP

if TagFlag = 0
if TagFlag = −1
if TagFlag = 1

(7)

where βT, LTD and βT, LTP are constant.
The synthesis of PRP is related to calcium concentration in

the dendritic branch:
[
Ca2+]

d, as shown in Figure 1.
[
Ca2+]

d
is modeled as the average calcium concentration through the
calcium channel

[
Ca2+]

channel on the membrane within a time
window of tCa as follows:[

Ca2+]
d =

1
tCa

∑[
Ca2+]

channel (8)

When
[
Ca2+]

d exceeds Ca0d, PRP begins synthesis. Due to
the local effect of PRP (Govindarajan et al., 2011), we assume that
PRP could not spread to other compartments. The change of PRP
is modeled by a dual exponential function as follows:

PRP =
∑
i

(
exp

(
−
t − ti
τr

)
− exp

(
−
t − ti
τd

))
(9)

where τr is the PRP rise time constant, τd is the PRP decay
time constant, and ti is the time when the calcium concentration
in the dendrite meets the condition under which PRP can be
synthesized (i.e.,

[
Ca2+]

d ≥ Ca0d ).
We define synaptic weight factor z to describe the change of

synapse induced by postsynaptic activity, in which z is multiplied
with the synaptic conductance. The synaptic weight factor z is
determined as follows:

z =
(1− zl) zheµy + zl (zh − 1) e−µy

(1− zl) eµy + (zh − 1) e−µy (10)

dy
dt
=


d(γTag)

dt
, if PRP = 0

Tag · PRP
τy

, if PRP > 0
(11)

where zl and zh are the minimum and maximum weights that
the synapse can achieve, and µ is the scale constant of z. y is
an implicit variable; γ is scale constant of y. The calculation of
y in early and late-phase plasticity are different. In early phase
plasticity, the synapse enters a tagged state that is PRP synthesis
independent (PRP = 0), and the change of y is only related to the
tag. In late-phase plasticity, the change of y is proportional to the
combined effects of tag and PRP (PRP>0) with a time constant
of τ y .

Among the constants mentioned above, αT , τy, βT, LTD,
βT, LTP, τr and τd are time constant. Biologically, the dynamic
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FIGURE 1 | Schematic diagram of synaptic dynamics of STC theory. The activation of the presynaptic neuron induces calcium ion influx from the calcium channel
and neurotransmitter release from the axon terminal. Then, the neurotransmitter binds the NMDA and AMPA receptors on the dendritic spine of the postsynaptic
neuron. The activation of AMPA receptors causes an influx of sodium ions and cell membrane depolarization. NMDA receptors are voltage-gated receptors, which
could be opened by neurotransmitter and cell membrane depolarization, causing the influx of sodium and calcium ions. The calcium ion influx through NMDA
receptors enters the dendritic spine, which is

[
Ca2+]

s. When
[
Ca2+]

s meets the condition of Eq. 5, the dendritic spine is tagged. The depolarized dendritic branch
causes calcium influx through the calcium channel on the dendritic branch, which is

[
Ca2+]

d . When
[
Ca2+]

d exceeds Ca0d , PRP begins synthesis. The potentiation
or depression of the synapse occurs if the tagged dendritic spine captures PRP in the corresponding dendritic branch.

change of tag and PRP takes time, so in our subsequent
simulations, these time constants are set consistent with the
biological time scale. Nevertheless, it is possible to adjust these
time parameters to achieve accelerated learning. The values of
the constant in both presynaptic and postsynaptic plasticity are
shown in Table 1.

Simulation Experiments
To verify the performance of the proposed SM-STC model,
we focus on the synapses onto the CA1 pyramidal cell in

TABLE 1 | Parameter values of SM-STC.

Symbol Description Value

U Baseline level of u 0.2

τD Presynaptic depression time constant 0.2 s

τF Presynaptic facilitation time constant 1.5 s

αT Tag related time constant 0.0007 s−1

βT, LTD LTD-tag related time constant 0.2 s−1

βT, LTP LTP-tag related time constant 1 s−1

Ca0s LTD calcium threshold of spine 0.01 µmol/L

Ca1s LTP calcium threshold of spine 0.2 µmol/L

tCa Calcium time window 0.1 s

τr PRP rise time constant 80 s

τd PRP decay time constant 9,000 s

Ca0d Calcium threshold of dendrite 0.025 µmol/L

zl Minimum weight the synapse can achieve 0.5

zh Maximum weight the synapse can achieve 2

µ Scale constant of z 0.1

γ Scale constant of y 10

τy Time constant of y 30 s

the hippocampus via Schaffer collaterals (Figure 2A), which
is a typical plasticity system and has been well-studied in
physiological experiments for synaptic plasticity (Dunwiddie
and Lynch, 1978; Dudek and Bear, 1995). We designed two
kinds of simulation experiments. The first one is a single-
pathway experiment, which simulates early and late-phase
plasticity by a single stimulus source (i.e., one presynaptic
neuron). The second one is a two-pathway experiment, which
simulates the conversion from early to late-phase plasticity as
the PRP could be shared by different stimulus sources (i.e., two
presynaptic neurons).

Neuronal and Synaptic Model
The neural activity of a CA1 pyramidal cell is simulated by
a three-compartment ion-channel model (Wang et al., 2004),
and the presynaptic neuron is simulated by Poisson spike
trains. The synaptic connections between the presynaptic and
the CA1 pyramidal cell contain AMPA and NMDA receptors.
Changes in synaptic receptor conductance are modeled by
the alpha function.

The calcium influx from NMDA receptors
[
Ca2+]

NMDA is
described as follows:

d
([
Ca2+]

NMDA
)

dt
=

INMDA (t)−
(

1
τCaNMDA

) [
Ca2+]

NMDA (12)

INMDA (t) = gNMDA

[∑ t − ts
τNMDA

exp
(
−

t − ts
τNMDA

)]
B (V) (V − ENMDA) (13)
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B (V) =
1

1+ exp (−0.062V)
( [Mg2+]

3.57

) (14)

where τCaNMDA is the time constant of calcium influx through the
NMDA receptor, INMDA is the current via the NMDA receptor,
gNMDA is the conductance of the NMDA receptor, ENMDA is
the reversal potential of the NMDA receptor, τNMDA is the
time constant of the NMDA receptor, ts is the spike time of
the presynaptic neuron, V is the membrane potential of the
postsynaptic neuron, and [Mg2+

] is the magnesium ion constant.
Calcium influx from calcium channels on the dendritic branch[

Ca2+]
channel is described as follows:

d
([
Ca2+]

channel
)

dt
= −αCaICa (t)−

[
Ca2+]

channel
τCachannel

(15)

where αCa is the calcium correlated constant, ICa is the
calcium ion current, and τCachannel is the time constant of the
calcium channel.

Single-Pathway Experiment
Just as high-frequency stimuli (HFS) could induce LTP, low-
frequency stimuli (LFS) could induce LTD; the stimuli strength
matters whether early- or late-phase plasticity occurs (Sajikumar
and Frey, 2004). Referring to physiological experiments (Frey
and Morris, 1997, 1998), we designed four stimulus patterns with
weak HFS triggers early phase LTP (E-LTP), strong HFS triggers
late-phase LTP (L-LTP), weak LFS triggers early phase LTD (E-
LTD), and strong LFS triggers late-phase LTD (L-LTD), as shown
in Figure 2B. The weak HFS contains a single tetanus (100 Hz),
and the stimulus sustains for 0.2 s. The strong HFS contains three
times of tetanus (100 Hz), each sustains for 1 s, separated by 10
min intervals. The weak LFS contains 900 times 1 Hz stimulus,
and each stimulus lasts for 1 s, that is, the next stimulus starts 1 s
after the onset of the previous stimulus. The strong LFS contains
900 bursts of three stimuli at 20 Hz, and the next stimuli start
1 s after the onset of the previous stimuli. For each stimulus
pattern, a total of 300 min of biological time was simulated. Each
experiment was run 10 times with different random seeds to
generate Poisson spike trains of the presynaptic neuron.

Two-Pathway Experiment
The two-pathway experiment focuses on the phenomenon of
a weak E-LTP/D-inducing protocol delivered to one pathway
rescued into an L-LTP/D if a strong L-LTP/D-inducing protocol
is delivered to the other pathway at around the same time. This
phenomenon is known as cross-capture (Sajikumar et al., 2005;
Reymann and Frey, 2007), with which the tag caused by one
pathway captures PRP that is synthesized by another pathway.
Moreover, the phenomenon is reciprocal as a rescue of E-LTD
into L-LTD occurs when another pathway experiences a strong
L-LTP/D-inducing protocol.

Due to the cross-capture phenomenon and four types of
stimulus pattern in each pathway, there are 16 combinations
in two-pathway experiments. If the stimulus in both pathways
is strong, then each pathway could synthesize PRP by itself
and does not need to capture PRP synthesized by another

pathway. If the stimulus in both pathways is weak, then neither
stimulus could trigger PRP synthesis, and none of them could
convert early phase LTP/D to late phase LTP/D. Thus, there are
eight combinations left, as shown in Table 2. The weak HFS,
strong HFS, weak LFS, and strong LFS used in the two-pathway
experiment are the same as the one-pathway experiment. The
time interval between the two pathway stimuli is 30 min; that
is, the stimuli from the second pathway starts 30 min after the
stimuli of the first pathway. A total of 300 min of biological time
was simulated for each stimulus pattern. Each experiment was
run 10 times with different random seeds to generate Poisson
spike trains of the presynaptic neuron.

RESULTS

Single-Pathway Experiment
Weak High-Frequency Stimuli Induce Early Phase
LTP
We first compared the consistency between the simulation results
of SM-STC and physiological experiments. The physiological
experiments supporting STC theory are in vitro, that is,
the neurons are stimulated with different frequencies without
presynaptic plasticity. Therefore, in the following simulation, we
do not consider presynaptic plasticity, but only study the role of
postsynaptic plasticity. In the weak HFS experiment, the dynamic
changes of tag, PRP, and z under weak HFS during the whole
simulation time are calculated, as shown in Figure 3A1. The
stimulation at the initial time caused the changes of tag; thus, we
zoom in to visualize the changes of tag, PRP, and z in the first 50
min (Figure 3B1), 60 s (Figure 3C1), and 1 s (Figure 3D1). To
visualize the neural activity and calcium concentration behind tag
and PRP synthesis, the presynaptic neural activity, postsynaptic
neural activity, and calcium concentration in both spine and
dendritic branch during the first tetanus stimulus are shown in
Figures 3E1,F1,G1. The calcium concentration (Figure 3G1) in
the spine is higher than Ca1s (red dotted line), which is high
enough to induce the LTP tag and further results in E-LTP.
However, the stimulus is too weak to induce adequate calcium
concentration in the dendritic branch (lower than Ca0d, blue
dotted line), which results in no PRP synthesis, and the E-LTP
could not convert to L-LTP. The synaptic potentiation lasts for
about 90 min, and the trend of synaptic weight is consistent with
observations in biophysical experiments (Figure 4A of Frey and
Morris, 1997).

Next, we are curious about the influence of presynaptic and
postsynaptic plasticity on the synaptic connection. Therefore, we
consider presynaptic plasticity in section “Presynaptic Plasticity”
and repeat the simulation experiment above. The results show
that the tendency of tag, PRP, and z does not change after the
addition of presynaptic plasticity, and we found the amplitude
increase of E-LTP (larger z), as shown in Figures 3A2–3G2.

Weak Low-Frequency Stimuli Induce Early Phase LTD
In the weak LFS experiment without considering presynaptic
plasticity, the dynamic changes of tag, PRP, and z under weak
LFS are calculated, as shown in Figure 4A. The stimulation at

Frontiers in Computational Neuroscience | www.frontiersin.org 5 February 2022 | Volume 15 | Article 798418

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-798418 February 7, 2022 Time: 15:57 # 6

Ding et al. SM-STC Model

FIGURE 2 | Schematic map of synapses simulated in this study and single-pathway stimulus patterns. (A) Synapse onto the CA1 pyramidal cell in the hippocampus
via Schaffer collaterals. (B) Four stimulus patterns include weak HFS triggers early phase LTP (E-LTP), strong HFS triggers late-phase LTP (L-LTP), weak LFS triggers
early phase LTD (E-LTD), and strong LFS triggers late-phase LTD (L-LTD) used in the single-pathway experiment.

TABLE 2 | Stimuli combinations in the two-pathway experiment.

Stimuli in the second pathway

Strong
HFS

Weak
HFS

Strong
LFS

Weak
LFS

Stimuli in the
first pathway

Strong HFS X
√

X
√

Weak HFS
√

X
√

X

Strong LFS X
√

X
√

Weak LFS
√

X
√

X

the initial time caused the changes of tag; thus, we zoom in
to visualize the changes of tag, PRP, and z in the first 50 min
(Figure 4B), 60 s (Figure 4C), and 1 s (Figure 4D). To visualize
the neural activity and calcium concentration behind tag and PRP
synthesis, the presynaptic neural activity, postsynaptic neural
activity, and calcium concentration in both spine and dendritic
branch during the first 1 Hz stimulus are shown in Figures 4E–
G. The calcium concentration (Figure 4G) in the spine is between
Ca0s (green dotted line) andCa1s (red dotted line), which induces
LTD tag and further results in E-LTD. However, the stimulus
is too weak to induce adequate calcium concentration in the
dendritic branch (lower than Ca0d, blue dotted line), which
results in no PRP synthesis, and the E-LTD could not convert to
L-LTD. The synaptic depression lasts for about 90 min, and the
dynamic change of synaptic weight is consistent with recordings
in the physiological experiment (Figure 2A of Sajikumar and
Frey, 2004). Moreover, the addition of presynaptic plasticity
did not change the tendency of tag, PRP, and z, as shown in
Supplementary Figure 1.

Strong High-Frequency Stimuli Induce Late-Phase
LTP
In the strong HFS experiment without considering presynaptic
plasticity, the dynamic changes of tag, PRP, and z under strong
HFS were calculated, as shown in Figure 5A. The stimulation at
the initial time caused the changes of tag and PRP; thus, we zoom
in to visualize the changes of tag, PRP, and z in the first 50 min
(Figure 5B), 60 s (Figure 5C), and 1 s (Figure 5D). To visualize

the neural activity and calcium concentration behind tag and PRP
synthesis, the presynaptic neural activity, postsynaptic neural
activity, and calcium concentration in both spine and dendritic
branch during the first tetanus stimulus are shown in Figures 5E–
G. The calcium concentration in the spine (Figure 5G) is higher
than Ca1s (red dotted line), which is high enough to induce LTP
tag. Moreover, the calcium concentration in the dendritic branch
is higher than Ca0d (blue dotted line), which is high enough
for PRP synthesis, and the synapse enters L-LTP. During the
whole simulation of 5 h, the potentiation of synaptic strength
maintains, and the trend of synaptic weight is consistent with
observations of the physiological experiment in Figure 2B of
Frey and Morris (1997). Moreover, the addition of presynaptic
plasticity did not change the tendency of tag, PRP, and z, as shown
in Supplementary Figure 2.

Strong Low-Frequency Stimuli Induce Late-Phase
LTD
In the strong LFS experiment without considering presynaptic
plasticity, the dynamic changes of tag, PRP, and z under strong
LFS are calculated, as shown in Figure 6A. The stimulation at
the initial time caused the changes of tag and PRP; thus, we
zoom in to visualize the changes of tag, PRP, and z in the first
50 min (Figure 6B), 60 s (Figure 6C), and 1 s (Figure 6D).
To visualize the neural activity and calcium concentration
behind tag and PRP synthesis, the presynaptic neural activity,
postsynaptic neural activity, and calcium concentration in both
spine and dendritic branch during the first burst stimulus are
shown in Figures 6E–G. The calcium concentration in the
spine (Figure 6G) is between Ca0s (green dotted line) and
Ca1s (red dotted line), which induces LTD tag. The calcium
concentration in the dendritic branch is higher than Ca0d (blue
dotted line), which is high enough for PRP synthesis, and the
synapse enters L-LTD. During the whole simulation of 5 h, the
depression of synaptic strength maintains. The simulation result
is consistent with recordings in the physiological experiment in
Figure 1B of Sajikumar and Frey (2004). Moreover, the addition
of presynaptic plasticity did not change the tendency of tag, PRP,
and z, as shown in Supplementary Figure 3.
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FIGURE 3 | E-LTP induced by weak HFS. (A) Dynamic change of tag (red), PRP (blue), and z (black) during the whole simulation time (300 min) without (A1) and
with (A2) considering presynaptic plasticity. (B) Dynamic change of tag (red), PRP (blue), and z (black) during the first 50 min without (B1) and with (B2) considering
presynaptic plasticity. (C) Dynamic change of tag (red), PRP (blue) and z (black) during the first 60 s without (C1) and with (C2) considering presynaptic plasticity.
(D) Dynamic change of tag (red), PRP (blue) and z (black) during the first 1 s without (D1) and with (D2) considering presynaptic plasticity. (E) Activity of presynaptic
neuron during the first tetanus stimulus without (E1) and with (E2) considering presynaptic plasticity. (F) Activity of postsynaptic CA1 neuron during the first tetanus
stimulus without (F1) and with (F2) considering presynaptic plasticity, the membrane potential of soma, dendrite 1, and dendrite 2 are shown in blue, red, and black.
(G) Calcium concentration in spine (red) and dendritic branch (blue) during the first tetanus stimulus without (G1) and with (G2) considering presynaptic plasticity,
calcium threshold for tag and PRP are shown in green (Ca0s), red (Ca1s), and blue (Ca0d ) dotted lines. The PRP has been magnified 200 times for clearer display,
and the shaded areas stand for standard deviation.

Two-Pathway Experiment
Strong High-Frequency Stimuli in the First Pathway
Induced Plasticity-Related Product Synthesis; Weak
High-Frequency Stimuli in the Second Pathway
Occurred 30 Min Later Captures Plasticity-Related
Product and Enters Late-Phase LTP
In the two-pathway experiment, synapses from different neurons
project to one CA1 pyramidal cell through Schaffer collaterals
(Figure 7A). The stimulus in the first pathway (P1) is strong
HFS, and the stimulus in the second pathway (P2) is weak HFS
that occurred 30 min later (Figure 7B1). Without considering
presynaptic plasticity, the LTP tag induced by P1 strong HFS
is shown in Figure 7B2 (red dotted line), and the stimulus
of P1 is strong enough to induce PRP synthesis (blue line
in Figure 7B2); thus, the LTP tag captures PRP and enters
L-LTP (black dotted line in Figure 7B2). The P2 weak HFS
is given 30 min after stimulation of P1 and tags the synapse
with LTP (red solid line in Figure 7B2); however, the stimulus
of P2 is relatively weak, and it cannot induce the synthesis of
PRP. Nevertheless, it captures the PRP synthesized by P1 and
enters L-LTP (black solid line in Figure 7B2). During the whole
simulation of 5 h, the potentiation of synaptic strength in both
P1 and P2 is maintained. The simulation result is consistent
with observations in the physiological experiment in Figure 4D
of Frey and Morris (1997). Moreover, the addition of presynaptic

plasticity did not change the tendency of tag, PRP, and z, and
we found the increase of L-LTP amplitude of P2, as shown in
Supplementary Figure 4A.

Weak High-Frequency Stimuli in the First Pathway
Induced Early Phase LTP, Whereas the Strong
High-Frequency Stimuli in the Second Pathway
Occurred 30 Min Later Make the Early Phase LTP
Convert to Late-Phase LTP
The stimulus in P1 is weak HFS, and the stimulus in P2 is
strong HFS that occurred 30 min later (Figure 7C1). Without
considering presynaptic plasticity, the LTP tag induced by P1
weak HFS is shown in Figure 7C2 (red dotted line); however,
the stimulus of P1 is too weak to induce PRP synthesis,
thus, the synapse in P1 enters E-LTP (black dotted line in
Figure 7C2). P2 strong HFS is given 30 min after stimulation
of P1 and tags the synapse with LTP (red solid line in
Figure 7C2), and the stimulus of P2 is strong enough to induce
the synthesis of PRP, P2 enters L-LTP directly (black solid
line in Figure 7C2). Then, the LTP tag of P1 captures the
PRP synthesized by P2 and converts E-LTP to L-LTP (black
dotted line in Figure 7C2). During the whole simulation of
5 h, the potentiation of synaptic strength in both P1 and
P2 is maintained. The simulation result is consistent with
recordings of the physiological experiment in Figure 2D of
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FIGURE 4 | E-LTD induced by weak LFS without considering presynaptic plasticity. (A) Dynamic change of tag (red), PRP (blue), and z (black) during the whole
simulation time (300 min). (B) Dynamic change of tag (red), PRP (blue), and z (black) during the first 50 min. (C) Dynamic change of tag (red), PRP (blue), and z
(black) during the first 60 s. (D) Dynamic change of tag (red), PRP (blue), and z (black) during the first 1 s. (E) Activity of presynaptic neuron during the first 1 Hz
stimulus. (F) Activity of postsynaptic CA1 neuron; the membrane potential of soma, dendrite 1, and dendrite 2 are shown in blue, red, and black. (G) Calcium
concentration in the spine (red) and dendritic branch (blue); calcium threshold for tag and PRP are shown in green (Ca0s), red (Ca1s), and blue (Ca0d ) dotted lines.
The PRP has been magnified 200 times for clearer display, and the shaded areas stand for standard deviation.

Frey and Morris (1998). Moreover, the addition of presynaptic
plasticity did not change the tendency of tag, PRP, and z, and
we found the increase of L-LTP amplitude of P1, as shown in
Supplementary Figure 4B.

Strong Low-Frequency Stimuli in the First Pathway
Induced Plasticity-Related Product Synthesis; Weak
Low-Frequency Stimuli in the Second Pathway
Occurred 30 Min Later Captures Plasticity-Related
Product and Enters Late-Phase LTD
The stimulus in P1 is strong LFS, and the stimulus in P2 is
weak LFS that occurred 30 min later (Figure 7D1). Without
considering presynaptic plasticity, the LTD tag induced by P1

strong LFS is shown in Figure 7D2 (red dotted line), and the
stimulus of P1 is strong enough to induce PRP synthesis (blue
line in Figure 7D2); thus, the LTD tag captures the PRP and
enters L-LTD directly (black dotted line in Figure 7D2). P2 weak
LFS is given 30 min after stimulation of P1 and tags the synapse
with LTD (red solid line in Figure 7D2); however, the stimulus
of P2 is relatively weak, and it cannot induce the synthesis
of PRP. Nevertheless, it captures the PRP synthesized by P1
and enters L-LTD (black solid line in Figure 7D2). During the
whole simulation of 5 h, the synaptic depression of P1 and the
synaptic potentiation of P2 is maintained. The simulation result
is consistent with recordings in the physiological experiment in
Figure 2B of Sajikumar and Frey (2004). Moreover, the addition
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FIGURE 5 | L-LTP induced by strong HFS without considering presynaptic plasticity. (A) Dynamic change of tag (red), PRP (blue), and z (black) during the whole
simulation time (300 min). (B) Dynamic change of tag (red), PRP (blue), and z (black) during the first 50 min. (C) Dynamic change of tag (red), PRP (blue), and z (black)
during the first 60 s. (D) Dynamic change of tag (red), PRP (blue), and z (black) during the first 1 s. (E) Activity of presynaptic neuron during the first tetanus stimulus.
(F) Activity of postsynaptic CA1 neuron during the first tetanus stimulus; the membrane potential of soma, dendrite 1, and dendrite 2 are shown in blue, red, and
black. (G) Calcium concentration in the spine (red) and dendritic branch (blue) during the first tetanus stimulus; calcium threshold for tag and PRP are shown in green
(Ca0s), red (Ca1s), and blue (Ca0d ) dotted lines. The PRP has been magnified 200 times for clearer display, and the shaded areas stand for standard deviation.

of presynaptic plasticity did not change the tendency of tag, PRP,
and z, as shown in Supplementary Figure 4C.

Weak Low-Frequency Stimuli in the First Pathway
Induced Early Phase LTD, Whereas the Strong
Low-Frequency Stimuli in the Second Pathway
Occurred 30 Min Later Make the Early Phase LTD
Convert to Late-Phase LTD
The stimulus in P1 is weak LFS, and the stimulus in P2 is
strong LFS that occurred 30 min later (Figure 7E1). Without
considering presynaptic plasticity, the LTD tag induced by P1

weak LFS is shown in Figure 7E2 (red dotted line); however, the
stimulus of P1 is too weak to induce PRP synthesis, and thus, the
synapse in P1 enters E-LTD (black dotted line in Figure 7E2). P2
strong LFS is given 30 min after stimulation of P1 and tags the
synapse with LTD (red solid line in Figure 7E2), and the stimulus
of P2 is strong enough to induce the synthesis of PRP; P2 enters
L-LTD directly (black solid line in Figure 7E2). Then, the LTD tag
of P1 captures the PRP synthesized by P2 and converts E-LTD
to L-LTD (black dotted line in Figure 7E2). During the whole
simulation of 5 hours, the synaptic depression of P1 and the
synaptic potentiation of P2 is maintained. The simulation result
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FIGURE 6 | L-LTD induced by strong LFS without considering presynaptic plasticity. (A) Dynamic change of tag (red), PRP (blue), and z (black) during the whole
simulation time (300 min). (B) Dynamic change of tag (red), PRP (blue), and z (black) during the first 50 min. (C) Dynamic change of tag (red), PRP (blue), and z (black)
during the first 60 s. (D) Dynamic change of tag (red), PRP (blue), and z (black) during the first 1 s. (E) Activity of presynaptic neuron during the first burst stimulus.
(F) Activity of postsynaptic CA1 neuron during the first burst stimulus; the membrane potential of soma, dendrite 1, and dendrite 2 are shown in blue, red, and black.
(G) Calcium concentration in the spine (red) and dendritic branch (blue) during the first burst stimulus, calcium threshold for tag and PRP are shown in green (Ca0s),
red (Ca1s), and blue (Ca0d ) dotted lines. The PRP has been magnified 200 times for clearer display, and the shaded areas stand for standard deviation.

is consistent with observations in the physiological experiment in
Figure 2C of Sajikumar and Frey (2004). Moreover, the addition
of presynaptic plasticity did not change the tendency of tag, PRP,
and z, as shown in Supplementary Figure 4D.

Strong High-Frequency Stimuli in the First Pathway
Induced Plasticity-Related Product Synthesis; Weak
Low-Frequency Stimuli in the Second Pathway
Occurred 30 Min Later Captures Plasticity-Related
Product, and Enters Late-Phase LTD
The stimulus in P1 is strong HFS, and the stimulus in P2 is
weak LFS that occurred 30 min later (Figure 8A1). Without
considering presynaptic plasticity, the LTP tag induced by P1

strong HFS is shown in Figure 8A2 (red dotted line), and the
stimulus of P1 is strong enough to induce PRP synthesis (blue
line in Figure 8A2); thus, the LTP tag captures the PRP and
enters L-LTP directly (black dotted line in Figure 8A2). P2 weak
LFS is given 30 min after stimulation of P1 and tags the synapse
with LTD (red solid line in Figure 8A2); however, the stimulus
of P2 is relatively weak, and it cannot induce the synthesis
of PRP. Nevertheless, it captures the PRP synthesized by P1
and enters L-LTD (black solid line in Figure 8A2). During the
whole simulation of 5 h, the synaptic potentiation of P1 and
synaptic depression of P2 is maintained. The simulation result
is consistent with observations in the physiological experiment in
Figure 4D of Sajikumar and Frey (2004). Moreover, the addition
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FIGURE 7 | Stimuli and dynamic change of tag, PRP, and z in the two-pathway experiment without considering presynaptic plasticity; both stimuli are high or low
frequency. (A) Two presynaptic neurons project to the CA1 pyramidal cell in the hippocampus via Schaffer collaterals, the synapse from the first presynaptic neuron
is labeled as P1, and the synapse from the second presynaptic neuron is labeled as P2. (B1) The stimulus in P1 is strong HFS, and the stimulus in P2 is weak HFS
that occurred 30 min later. (B2) Strong HFS in P1 induced PRP synthesis; weak HFS in P2 occurred 30 min later captures PRP and enters L-LTP. (C1) The stimulus
in P1 is weak HFS, and the stimulus in P2 is strong HFS that occurred 30 min later. (C2) Weak HFS in P1 induced E-LTP, whereas the strong HFS in P2 occurred 30
min later make the E-LTP convert to L-LTP. (D1) The stimulus in P1 is strong LFS, and the stimulus in P2 is weak LFS that occurred 30 min later. (D2) Strong LFS in
P1 induced PRP synthesis; weak LFS in P2 occurred 30 min later captures PRP and enters L-LTD. (E1) The stimulus in P1 is weak LFS, and the stimulus in P2 is
strong LFS that occurred 30 min later. (E2) Weak LFS in P1 induced E-LTD, whereas the strong LFS in P2 occurred 30 min later make the E-LTD convert to L-LTD.
The PRP has been magnified 200 times for clearer display. The shaded areas stand for standard deviation.

of presynaptic plasticity did not change the tendency of tag, PRP,
and z, as shown in Supplementary Figure 5A.

Weak High-Frequency Stimuli in the First Pathway
Induced Early Phase LTP, Whereas the Strong
Low-Frequency Stimuli in the Second Pathway
Occurred 30 Min Later Make the E-LTP Convert to
L-LTP
The stimulus in P1 is weak HFS, and the stimulus in P2 is
strong LFS that occurred 30 min later (Figure 8B1). Without

considering presynaptic plasticity, the LTP tag induced by P1
weak HFS is shown in Figure 8B2 (red dotted line); however,
the stimulus of P1 is too weak to induce PRP synthesis, and
thus, the synapse in P1 enters E-LTP (black dotted line in
Figure 8B2). P2 strong LFS is given 30 min after stimulation
of P1 and tags the synapse with LTD (red solid line in
Figure 8B2), and the stimulus of P2 is strong enough to induce
the synthesis of PRP; P2 enters L-LTD directly (black solid
line in Figure 8B2). Then, the LTP tag of P1 captures the
PRP synthesized by P2 and converts E-LTP to L-LTP (black
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FIGURE 8 | Stimuli and dynamic change of tag, PRP, and z in the two-pathway experiment without considering presynaptic plasticity; one stimulus is high frequency,
and the other stimulus is low frequency. (A1) The stimulus in P1 is strong HFS, and the stimulus in P2 is weak LFS that occurred 30 min later. (A2) Strong HFS in P1
induced PRP synthesis; weak LFS in P2 occurred 30 min later and captures PRP and enters L-LTD. (B1) The stimulus in P1 is weak HFS, and the stimulus in P2 is
strong LFS that occurred 30 min later. (B2) Weak HFS in the first pathway induced E-LTP, whereas the strong LFS in the second pathway occurred 30 min later to
make the E-LTP convert to L-LTP. (C1) The stimulus in P1 is strong LFS, and the stimulus in P2 is weak HFS that occurred 30 min later. (C2) Strong LFS in the first
pathway induced PRP synthesis; weak HFS in the second pathway occurred 30 min later and captures PRP and enters L-LTP. (D1) The stimulus in P1 is weak LFS,
and the stimulus in P2 is strong HFS that occurred 30 min later. (D2) Weak LFS in the first pathway induced E-LTD, whereas the strong HFS in the second pathway
occurred 30 min later to make the E-LTD convert to L-LTD. The PRP has been magnified 200 times for clearer display. The shaded areas stand for standard
deviation.

dotted line in Figure 8B2). During the whole simulation of
5 h, the synaptic potentiation of P1 and synaptic depression
of P2 is maintained. The simulation result is consistent with
observations in the physiological experiment in Figure 4A of
Sajikumar and Frey (2004). Moreover, the addition of presynaptic
plasticity did not change the tendency of tag, PRP, and z, and
we found the increase of L-LTP amplitude of P1, as shown in
Supplementary Figure 5B.

Strong Low-Frequency Stimuli in the First Pathway
Induced Plasticity-Related Product Synthesis; Weak
High-Frequency Stimuli in the Second Pathway
Occurred 30 Min Later Captures Plasticity-Related
Product and Enters Late-Phase LTP
The stimulus in P1 is strong LFS, and the stimulus in P2 is
weak HFS that occurred 30 min later (Figure 8C1). Without
considering presynaptic plasticity, the LTD tag induced by P1

strong LFS is shown in Figure 8C2 (red dotted line), and
the stimulus of P1 is strong enough to induce PRP synthesis
(blue line in Figure 8C2); thus, the LTD tag captures the PRP
and enters L-LTD directly (black dotted line in Figure 8C2).
P2 weak HFS is given 30 min after stimulation of P1 and
tags the synapse with LTP (red solid line in Figure 8C2);
however, the stimulus of P2 is relatively weak, and it cannot
induce the synthesis of PRP. Nevertheless, it captures the
PRP synthesized by P1 and enters L-LTP (black solid line
in Figure 8C2). During the whole simulation of 5 h, the
synaptic depression of P1 and synaptic potentiation of P2 is
maintained. The simulation result is consistent with observations
in the physiological experiment in Figure 4B of Sajikumar and
Frey (2004). Moreover, the addition of presynaptic plasticity
did not change the tendency of tag, PRP, and z, and we
found the increase of L-LTP amplitude of P2, as shown in
Supplementary Figure 5C.
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Weak Low-Frequency Stimuli in the First Pathway
Induced Early Phase LTD, Whereas the Strong
High-Frequency Stimuli in the Second Pathway
Occurred 30 Min Later Make the Early Phase LTD
Convert to Late-Phase LTD
The stimulus in P1 is weak LFS, and the stimulus in P2 is
strong HFS that occurred 30 min later (Figure 8D1). Without
considering presynaptic plasticity, the LTD tag induced by P1
weak LFS is shown in Figure 8D2 (red dotted line); however, the
stimulus of P1 is too weak to induce PRP synthesis, and thus, the
synapse in P1 enters E-LTD (black dotted line in Figure 8D2).
P2 strong HFS is given 30 min after stimulation of P1 and tags
the synapse with LTP (red solid line in Figure 8D2), and the
stimulus of P2 is strong enough to induce the synthesis of PRP; P2
enters L-LTP directly (black solid line in Figure 8D2). Then, the
LTD tag of P1 captures the PRP synthesized by P2 and converts
E-LTD to L-LTD (black dotted line in Figure 8D2). During the
whole simulation of 5 h, the synaptic depression of P1 and the
synaptic potentiation of P2 is maintained. The simulation result
is consistent with observations in the physiological experiment in
Figure 4C of Sajikumar and Frey (2004). Moreover, the addition
of presynaptic plasticity did not change the tendency of tag, PRP,
and z, as shown in Supplementary Figure 5D.

DISCUSSION

In this study, according to the STC theory, we propose the
SM-STC model and simulate various plasticity phenomena on
Schaffer collateral synaptic connections to the CA1 pyramidal
neuron. The simulation results in both single- and two-pathway
experiments are consistent with physiological observations
(Frey and Morris, 1997, 1998; Sajikumar and Frey, 2004).
In the single-pathway experiments, weak HFS/LFS is used to
induce E-LTP/LTD, which could sustain for about 90 min
(Figures 4, 5); strong HFS/LFS is used to induce L-LTP/LTD,
which are well-maintained for the 5 h of biological time
we simulated (Figures 6, 7), suggesting that, with longer
simulation time, L-LTP and L-LTD can still maintain. In
the two-pathway experiments, the weak stimuli from one
pathway could tag the synapse and trigger E-LTP/D, but
they are not strong enough to induce PRP synthesis in
the dendritic branch; thus the E-LTP/D could not convert
to L-LTP/D. However, if strong stimuli in another pathway
leading to the synthesis of PRP in the same dendritic branch
and the PRP arrives prior to the decay of the tag, the
E-LTP/D could be transformed into L-LTP/D, which is known
as cross-capture (Figures 7, 8). Furthermore, we simulated
the synaptic change by considering both presynaptic and
postsynaptic plasticity. The simulation results show that after
the addition of presynaptic plasticity, the tendency of tag,
PRP and z does not change, and the amplitude of LTP
in some simulations increased, which fills the gap of the
physiological experiment that is hard to include presynaptic
plasticity in vitro. Therefore, the proposed SM-STC model
combines presynaptic efficiency (facilitation and depression)
and postsynaptic plasticity (potentiation and depression), which

brought us a more complete map of brain-like dynamics.
Presynaptic efficiency changes in a fast time scale, whereas
postsynaptic plasticity based on synaptic tagging and PRP
capture is in a slow time scale; these diverse synaptic plasticity
mechanisms could orchestrate for more biological plausible
simulations (Zenke et al., 2015).

Compared with previous models, the SM-STC model in
this study considers biochemical mechanisms and implements
simplicity simultaneously, which could bridge the gap between
STC theory and behavior. Building spiking neural networks
with SM-STC as a learning rule could help us understand
the neural basis of associative memory. Memory is deemed
to be represented in the form of cell assembly (or engram)
(Buzsáki, 2010; Josselyn et al., 2015), and related memories are
suggested to share neurons for association (De Falco et al., 2016).
However, whether these associated memories shared the same
(clustered distribution) or a different dendritic branch (dispersed
distribution) matters in the relationship between them. For
example, if two memories share the same dendritic branch,
the enhancement or degradation of one memory will cause
the enhancement or decline of another memory; however, if
two memories share different dendritic branches of the same
neuron, the enhancement or degradation of one memory may
not affect the other memory. In addition, due to the locality
of PRP, memories experienced close in time are more likely
to be encoded in the same dendritic branch (Cai et al., 2016;
Kastellakis et al., 2016); thus, SM-STC provides a good starting
point for neural network modeling on memory presentation on
the synaptic level.

The SM-STC model could also be used in studying
reinforcement learning. The dopamine release during a novel
experience is crucial for the establishment of novelty-induced
memory (Okuda et al., 2021). Activation of dopamine D1/D5
receptors causes increased availability of PRPs (Frey and
Morris, 1998; Redondo and Morris, 2011), whereas inhibition
of dopamine D1/D5 receptors prevents the STC process by
blocking the synthesis of PRP (Wang et al., 2010). In addition,
experiments on both rodents (Morris, 2006; Moncada and
Viola, 2007) and humans (Ramirez Butavand et al., 2020) show
that experiencing unexpected novelty before or after learning
could enhance memory. Thus, adding dopamine neurons in
the spiking neural network with SM-STC could shed light on
reinforcement learning tasks.

The presented SM-STC model can also help understand
memory decline in aged individuals (Shetty and Sajikumar,
2017). In aged rodents, the E-LTP induced by weak stimuli
could not convert to L-LTP, whereas strong stimuli could
induce L-LTP with the potentiation amplitude lower than young
rodents (Sharma et al., 2015; Shetty et al., 2017), which may
be caused by unstable tag or decreased PRP synthesis during
weak stimuli. These influence factors can be reflected by changing
parameters in the SM-STC model, which provides the possibility
for understanding memory decline in aged individuals by neural
network modeling.

The performance of the SM-STC model has been tested in
a neuron model with three compartments. The SM-STC model
can also be used in neurons with biological morphology, which
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have hundreds or thousands of compartments. A single-neuron
model with biological morphology is shown to have strong
computational power (Gidon et al., 2020; Beniaguev et al., 2021).
Moreover, single neurons can learn network-level computations
simply by tuning synaptic weights (Bicknell and Häusser, 2021).
Thus, the SM-STC model could provide a new, simple, general,
and biologically reasonable learning rule for neural networks with
complex morphological neurons.

The SM-STC model depicts transmitter and residual calcium
level–induced plasticity based on presynaptic neural activity and
early/late-phase long-term plasticity dependent on postsynaptic
activity on excitatory synapses. Because plasticity manifests
in multiple concurrently active forms in the brain (Citri
and Malenka, 2008), the SM-STC model cannot capture all
the circumstances. In terms of time scale, the plasticity rule
could be divided into rapidly induced plasticity lasting a
few seconds to tens of seconds (Zucker and Regehr, 2002)
and homeostatic plasticity lasting for hours or even longer
(Turrigiano and Nelson, 2000). From the viewpoint of spatial
scale, the plasticity rule includes local plasticity depending
only on the activity of the presynaptic and postsynaptic
neuron and global plasticity modulated by global factors,
such as neuromodulator (Turrigiano, 2012). According to the
neurotransmitter types of presynaptic neurons, the plasticity
could be divided into excitatory and inhibitory plasticity
(Kullmann et al., 2012; Froemke, 2015). Therefore, the SM-STC
model provides a biologically plausible rule for rapidly induced,
homeostatic, and local plasticity and could work together with
global and inhibitory plasticity to bring a complete map of
neural plasticity.

In summary, we propose a synaptic plasticity model SM-
STC that takes biological rationality and simplicity into account
simultaneously, and we demonstrate the effectiveness of the
model by a series of simulation experiments. The SM-STC
model could bridge the gap between STC theory and behavior
performance and provide new insight for modeling memory
association, reinforcement learning, and memory decline in aged
adults through neural networks.
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