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Abstract

The reconstruction of fire history is essential to understand the palaeoclimate and human

history. Polycyclic aromatic hydrocarbons (PAHs) have been extensively used as a fire

marker. In this work, the distribution of PAHs in Borneo peat archives was investigated to

understand how PAHs reflect the palaeo-fire activity. In total, 52 peat samples were ana-

lysed from a Borneo peat core for the PAH analysis. Pyrogenic PAHs consist of 2–7 aro-

matic rings, some of which have methyl and ethyl groups. The results reveal that the

concentration of pyrogenic PAHs fluctuated with the core depth. Compared to low-molecu-

lar-weight (LMW) PAHs, the high-molecular-weight (HMW) PAHs had a more similar depth

variation to the charcoal abundance. This finding also suggests that the HMW PAHs were

mainly formed at a local fire near the study area, while the LMW PAHs could be transported

from remote locations.

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are commonly found in the atmosphere, marine,

and terrestrial areas, including peats, sediments, ancient sedimentary rocks, and petroleum

[1–4]. The parent PAHs (PAH molecules with no alkyl substitutes) and some alkylated PAHs

are produced from the incomplete combustion of organic matter in the environment [5–7],

while alkylated PAHs are formed mainly from the sedimentary organic matter in sedimentary

rocks and petroleum during thermal maturation [8] and petrogenic [9] processes.

The reconstruction of past fire events is critical to understand the carbon cycle, climatic

regime [10, 11], fire source [12], and vegetation change [13]. The records of PAHs in sedimen-

tary archives have been used as tracers for past fire events [14]. The chemical composition of
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pyrogenic PAHs is generally varied and depends on their sources (combustion materials) such

as grass and fossil fuels [15, 16] and combustion temperature [17, 18]. PAHs can be long-range

transported as aerosols in the atmosphere [19]. Low-molecular-weight PAHs are more volatile

and water-soluble than high-molecular-weight PAHs [20, 21]. Therefore, the chemical compo-

sition of the PAHs in sedimentary archives can offer useful information on the material source,

combustion temperature, and transportation process [22, 23]. However, the way of interpreta-

tion of PAH compositions is not established in the practical use of reconstruction of fire events

in sedimentary (peat) archives.

Generally, many factors can affect the concentration and composition of PAHs, and most

factors are complex to analyse in modern samples because there are contributions of additional

anthropogenic sources such as petroleum-derived PAHs and the combustion of fossil fuels.

Thus, the chemical composition of PAHs should be investigated and analysed in a simple envi-

ronmental setting to understand the contributing factors that determine the characteristics of

PAHs.

In this paper, we investigated the PAHs in the peat samples obtained from the summit of

the Baram peat dome in northern Borneo. The Baram peatland was covered with natural vege-

tation until the end of the 20th century, and human activity was minimal in the peat dome. By

comparing with the charcoal abundance record [24], we also discussed the factors that con-

trolled the PAH distribution.

Borneo is an island within the Western Pacific Warm Pool (WPWP) with a tropical climate

and high year-round temperature and precipitation. The precipitation is influenced by both

the East Asian Winter Monsoon (EAWM) and El Niño-Southern Oscillation (ENSO). Today,

the ENSO regulates the frequency of forest fires in Borneo [25]. In El Niño years, the frequency

of forest fires is significantly high due to low precipitation (<100 mm per month in dry sea-

sons) and dry environments [25–27]. The monthly precipitation reduction by>80 mm during

August-October significantly increased the fire activity in southern Borneo in El Niño years

during 1997–2015 (Fig 1D) [27]. Thus, fire history provides a precipitation record in Borneo

[24], which is influenced by the EAWM and ENSO.

Samples and methods

Study cores

The peat cores were retrieved from three holes at the Tinbarap site near Marudi Town, Sara-

wak, Malaysia (N 04˚03’01.47” E 114˚15’02.45”, Fig 1). The permit for collection of Tinbarap

peat core was required and obtained from the Sarawak Forestry Corporation and the Sarawak

Biodiversity Centre. Hole 8 was drilled using a Russian peat sampler, whereas Holes 9 and 10

were drilled using a thin-wall sampler (Fig 2). Holes 8, 9, and 10 were drilled at about the same

point. Each hole was located far from the other hole within one meter. The peats are thus cor-

relative based on the depth. The site was located at the summit of the Baram peat dome [28].

Anderson [29] described six phasic vegetation communities that formed between the marginal

and central areas of the peat dome: mixed swamp forest, Alan Forest, Alan Bunga Forest,
Padang Alan (Padang Medang), Padang Paya, and Padang Keruntum. The Padang Paya and

Padang Keruntum communities were reported as the most significant biodiversity-ecosystems,

which can only be found between the midst of the Baram dome to the upriver of Marudi [30].

The Baram peat dome started to develop more than 5,300 years ago. There were approximately

18,920 ha of undisturbed peatlands. The natural vegetation at the study site was oligotrophic

low trees [29] and recently cleared by the development of oil palm plantation [30]. The core

sediments consist of weathered peat (0–0.4 m), brown to dark brown peat (0.4–9.5 m), and

dark grey mud (9.5–9.8 m). The peat contained undecomposed roots and fragments of woods,
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leaves, and charcoals. Microscopic observation showed that plant tissues are not degraded

throughout the holes of the site. This suggests that the preservation of organic matter was

unchanged remarkably. Charcoals can be found throughout the entire hole, and the charcoal

abundance markedly varied every approximately 2 metres.

Eight samples from Holes 9 and 10 were dated at the Tinbarap site (S8 Fig in S1 File).

The remains of leaves in the peats were picked out and prepared using the acid-alkali-acid

(AAA) treatment [31]. The samples were combusted with CuO at 850˚C for 3 hours in a

sealed quartz glass tube to produce CO2, which was then purified in liquid N2 and EtOH-

liquid N2 traps [32]. The purified CO2 was reduced to graphite with an iron powder catalyst.

The graphite was analysed at the accelerator mass spectrometry facility at the Museum of

the University of Tokyo. Conventional ages were converted to calendar ages using the

OxCal program (version 4.4) [33] and the IntCal20 dataset [34]. The age of the bottom peat

layer was 5,321 years BP. The average sedimentation rate was ~0.17 cm year−1. The age of

the core-top sample was obtained by extrapolation of the age-depth relationship for the first

and second top dates.

Fig 1. Map of the studied site of Borneo tropical peatland. A peat core was collected at the Tinbarap site (N 04˚

03’01.47” E 114˚15’02.45”), which was marked as ☆. A previous study was conducted by Anderson [29] (marked by

) on the vegetation composition of the Borneo peat dome. The map was made using QG is software (version 3.6.2).

https://doi.org/10.1371/journal.pone.0256853.g001

Fig 2. The lithology of Borneo peat core with a total length of 10 m. The selected intervals for analysis are indicated

by black triangles (◄), and charcoals were measured in every 2 cm-interval, indicated by dash lines (-). The difference

between brown and dark brown colours is gradual and not significant.

https://doi.org/10.1371/journal.pone.0256853.g002
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Lipid extraction and fractionation

The samples were freeze-dried and homogenised. The PAHs were extracted and fractionated

according to the following method. Approximately 1 g of sample was extracted thrice with 100

mL of dichloromethane/methanol (3:1 v/v) for 45 minutes using an ultrasonic agitation

approach. The extract was condensed to 3 mL and saponified by adding 1 mL of 6% potassium

hydroxide in methanol-water (4:1) and 1 mL of clean Mili-Q water. The extract was heated at

80˚C in a water bath for an hour. The saponified lipid was extracted with n-hexane three times

before it was fractionated by column chromatography with silica gel. Before usage, the silica

gel was heated at 200˚C for 4 hours and cleaned Mili-Q water was added (5% weight of silica

gel). The column consisted of 12 mL of slurry silica gel (Gel 60 40–60 μm mesh) with a little

sodium sulfate powder added to the top. The lipid was separated into three fractions: n-hexane

(1:1 v/v) 8 mL (n-alkane); n-hexane/dichloromethane (9:1, v/v) 8 mL; n-hexane/dichloro-

methane (1:1, v/v) 7 mL (PAH) and dichloromethane/methanol (9:1, v/v) (sterol). The n-hex-

ane/dichloromethane (9:1, v/v) and n-hexane/dichloromethane (1:1, v/v) fractions were

combined and analysed using a gas chromatography-mass spectrometer (GC-MS).

PAH analysis

PAHs were measured using a GC-MS (Shimadzu-QP2010 Ultra) fitted with a DB-5MS fused

silica capillary column (30.0 m length x 0.25 mm i.d; 0.25 μm film thickness). The mass spec-

trometer was operated at a full scan in the electron impact mode (70 eV) with a mass range of

m/z 45–600 at a scan speed of 1.25 s. Helium (>99.9% purity) was used as a carrier gas with a

constant pressure of 67.0 kPa. The splitless injector, ion source, and interface temperatures

were set at 300˚C, 200˚C, and 300˚C, respectively. The column temperature was programmed

as follows: Hold for 1 min at 50˚C; apply a temperature ramp from 50 to 300˚C at 5˚C/min;

maintain at 300˚C for 20 minutes. This process resulted in a total run time of 74 minutes.

As listed in Tables 1 and 2, the PAH compounds were identified by comparing their mass

spectra and retention times with those of available compounds in the standard. Those com-

pounds (Table 1) that are available in the standard were obtained from Supleco, USA and dis-

solved with dichloromethane/hexane solvent mixture. To measure the reproducibility of the

analysis, the signal-to-noise (S/N) ratio for each available compounds were measured by inte-

grating the signal of the compound to the noise approximately 1 minute before and after of the

compound peak area appeared in the mass chromatogram and multiply the signal by 3.

Table 3 shows the detection limit and reproducibility of the available compounds in the stan-

dard. The unavailable alkylated compounds were identified by comparing the mass spectra

and retention times in Mita and Shimoyama [35], Marynowski et al. [36], Mita [37], Romero-

Sarmiento et al. [38], and Romero-Sarmiento et al. [39].

Quantification was done by the comparison between samples and a standard mixture in dif-

ferent runs. The concentration of the PAH compound (Eq 1) was calculated according to the

peak area of the compound, response factor, and sample weight as follows:

Concentration in μg=g ¼ Response factor x Peak area of sample x
Final fraction volume
Injection volume

� �

Sample weight ðgÞ
ð1Þ

The response factor was obtained by the analysis of known amounts of the PAH mixture

(Table 1). The unavailable compounds were assumed to have identical response factors to the

compounds with a similar molecular weight because the response factor strongly depends on

the molecular weight (Table 2).
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Principal component analysis

A principal component analysis (PCA) was performed for the dataset of PAH concentrations

using a PRIMER-E (PRIMER 6 version 6.1.12) software. The PAH concentration was normal-

ised based on the mean and standard deviation and converted to the z-score before the PCA

was performed [40].

Results

In total, 61 individual compounds, including parent and alkylated compounds, were identified

in Tinbarap peat samples (Tables 1 and 2 and Fig 3). Their chemical structures are shown in

S1 Appendix in S1 File. The identified PAHs ranged from two (naphthalene) to seven (coro-

nene) condensed aromatic rings: naphthalene (m/z 128), fluorene (m/z 166), phenanthrene

(m/z 178), anthracene (m/z 178), fluoranthene (m/z 202), pyrene (m/z 202), benzo[a]anthra-

cene (m/z 228), chrysene (m/z 228), indeno[1,2,3-c,d]pyrene (m/z 276), benzo[g,h,i]perylene

(m/z 276), dibenzo[a,h]anthracene (m/z 278), and coronene (m/z 300). Our careful investiga-

tion of ion chromatograms indicates that there were alkylated homologs (Fig 4) in naphtha-

lene, phenanthrene, pyrene, and chrysene structures, but they were absent in fluorene,

fluoranthene, benzo[a]anthracene, indeno[1,2,3-c,d]pyrene, benzo[g,h,i]pyrene, perylene,

dibenzo[a,h]anthracene, and coronene. Among these compounds, retene (m/z 234), perylene

(m/z 252), cadalene (m/z 198), and simonellite (m/z 237) (Fig 5) are generally interpreted as

“diagenetic” compounds [41–44]. Other compounds are considered the PAHs of pyrogenic

origin [15, 45, 46]. Major pyrogenic PAHs are naphthalene, fluorene, phenanthrene, anthra-

cene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, retene, perylene, indeno-[1,2,3-c,d]

pyrene, and dibenzo[a,h]anthracene (S1 Fig in S1 File).

Retene, perylene, cadalene, and simonellite are generally considered as “diagenetic” com-

pounds. The concentrations of “diagenetic” compounds were 0.04–67.33 μg/g with an average

of 13.25 μg/g (Fig 5). Perylene was the most abundant compound among the “diagenetic”

compounds. The relative abundance of perylene to the total PAHs markedly increased with

increasing core depth (Fig 5). Other “diagenetic” compounds show a cyclic variation.

The total concentrations of “pyrogenic” compounds in the Tinbarap peat core significantly

fluctuated in the range of 0.17–30.55 μg/g with an average of 7.19 μg/g (Fig 6). The variation in

Table 1. Measured polycyclic aromatic hydrocarbons (PAHs) identified based on the authentic reference compounds.

Peak Compounds Code Molecular weight (m/z) Response factor

1 Naphthalene Naph 128 9.73E-06

2 Fluorene Flu 166 1.86E-05

3 Phenanthrene Phe 178 1.30E-05

4 Anthracene Ant 178 1.37E-05

5 Fluoranthene Fla 202 1.57E-05

6 Pyrene Py 202 1.54E-05

7 Benzo[a]anthracene BaA 228 3.57E-05

8 Chrysene Chr 228 3.17E-05

9 Retene Ret 234 1.01E-04

10 Perylene Per 252 7.24E-05

11 Indeno[1,2,3-c,d]pyrene IPy 276 1.93E-04

12 Benzo[g,h,i]perylene BPer 276 1.29E-04

13 Dibenzo[a,h]anthracene DiA 278 3.72E-04

https://doi.org/10.1371/journal.pone.0256853.t001
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Table 2. List of the measured polycyclic aromatic hydrocarbons (PAHs) identified based on the retention times and mass spectra published by Mita and Shimoyama

[35], Marynowski et al. [36], Mita [37], Romero-Sarmiento et al. [38], and Romero-Sarmiento et al. [39].

Peak Compounds Code Molecular weight (m/z) Response factor

14 2-Methylnaphthalene 2-MN 142 9.73E-06

15 1-Methylnaphthalene 1-MN 142 9.73E-06

16 Biphenyl Bip 154 9.73E-06

17 1,3-Dimethylnaphthalene 1,3-DMN 156 9.73E-06

18 1,6-Dimethylnaphthalene 1,6-DMN 156 9.73E-06

19 1,4- + 2,3-Dimethylnaphthalene 1,4- + 2,3-DMN 156 9.73E-06

20 1,5-Dimethylnaphthalene 1,5-DMN 156 9.73E-06

21 1,2-Dimethylnaphthalene 1,2-DMN 156 9.73E-06

22 1,8-Dimethylnaphthalene 1,8-DMN 156 9.73E-06

23 2,6 + 2,7-Dimethylnaphthalene 2,6- + 2,7-DMN 157 9.73E-06

24 2-Methylbiphenyl 2-MBip 168 9.73E-06

25 Diphenylmethane DMe 168 9.73E-06

26 3- + 4-Methylbiphenyl 3- + 4-MBip 168 9.73E-06

27 1,3,7-Trimethylnaphthalene 1,3,7-TMN 170 9.73E-06

28 1,3,6-Trimethylnaphthalene 1,3,6-TMN 170 9.73E-06

29 1,4,6- + 1,3,5-Trimethylnaphthalene 1,4,6- + 1,3,5-TMN 170 9.73E-06

30 2,3,6-Trimethylnaphthalene 2,3,6-TMN 170 9.73E-06

31 1,2,7-Trimethylnaphthalene 1,2,7-TMN 170 9.73E-06

32 1,6,7-Trimethylnaphthalene 1,6,7-TMN 170 9.73E-06

33 1,2,6-Trimethylnaphthalene 1,2,6-TMN 170 9.73E-06

34 1,2,4-Trimethylnaphthalene 1,2,4-TMN 170 9.73E-06

35 1,2,5-Trimethylnaphthalene 1,2,5-TMN 170 9.73E-06

36 1,4,5-Trimethylnaphthalene 1,4,5-TMN 170 9.73E-06

37 2-Butylnaphthalene 2-BN 170 9.73E-06

38 Tetramethylnaphthalene TeMN 184 9.73E-06

39 3-Methylphenanthrene 3-MP 192 1.30E-05

40 2-Methylphenanthrene 2-MP 192 1.30E-05

41 2-Methylanthracene 2-MA 192 1.37E-05

42 4- + 9-Methylphenanthrene 4- + 9-MP 192 1.30E-05

43 1-Methylphenanthrene 1-MP 192 1.30E-05

44 Cadalene Cad 198 9.73E-06

45 3-Ethylphenanthrene 3-EP 206 1.30E-05

46 2- + 9-Ethylphenanthrene 2- + 9-EP 206 1.30E-05

47 1-Ethylphenanthrene 1-EP 206 1.30E-05

48 3,5- + 2,6-Dimethylphenanthrene 3,5- + 2,6-DMP 206 1.30E-05

49 2,6- + 2,7-Dimethylphenanthrene 2,6- + 2,7-DMP 206 1.30E-05

50 1,3- + 2,10- + 3,9- + 3,10-Dimethylphenanthrene 1,3- + 2,10- + 3,9- + 3,10-DMP 206 1.30E-05

51 1,6- + 2,9- + 2,5-Dimethylphenanthrene 1,6- + 2,9- + 2,5-DMP 206 1.30E-05

52 1,7-Dimethylphenanthrene 1,7-DMP 206 1.30E-05

53 2,3- + 1,9-Dimethylphenanthrene 2,3- + 1,9-DMP 206 1.30E-05

54 1,8-Dimethylphenanthrene 1,8-DMP 206 1.30E-05

55 1,2,3-Trimethyl-4-propenylnaphthalene 1,2,3-TMPN 210 9.73E-06

56 2-Methylpyrene 2-MPy 216 1.54E-05

57 4-Methylpyrene 4-MPy 216 1.54E-05

58 1-Methylpyrene 1-MPy 216 1.54E-05

59 Simonellite Sim 237 1.37E-05

60 Methylchrysene MChr 242 3.17E-05

61 Coronene Cor 300 1.29E-04

https://doi.org/10.1371/journal.pone.0256853.t002

PLOS ONE The significance of pyrogenic polycyclic aromatic hydrocarbons in Borneo peat core

PLOS ONE | https://doi.org/10.1371/journal.pone.0256853 September 8, 2021 6 / 15

https://doi.org/10.1371/journal.pone.0256853.t002
https://doi.org/10.1371/journal.pone.0256853


the total concentration of alkylated PAHs mirrors the total concentration of “pyrogenic”

PAHs (Fig 6). Depth variations in all “pyrogenic” PAHs are shown in S1 Fig in S1 File.

The PCA analysis (Figs 7 and 8) extracts two major factors that determine the concentra-

tions of “pyrogenic” PAHs; PC 1 (65.0% of the total variance) and PC 2 (7.5% of the total vari-

ance). PC 1 explained the synchronous variations of pyrogenic PAHs, which implies that the

variation of all pyrogenic PAHs was identical to the first-order approximation. PC 2 explained

the difference in depth distributions between high- and low-molecular-weight PAHs. Methyl-

ated and ethylated PAHs were accompanied by their parent molecules.

Discussion

Diagenetic formation of perylene

Perylene was found to be a major PAH in Tinbarap peat samples. The relative abundance of

perylene in total PAHs markedly increased with increasing depth (Fig 5). Perylene is assumed

to be formed from the biological pigment 4,9-dihydroxiperylene-3,10-quinone, biosynthesised

by fungi, insects, and marine organisms that formed by the reduction in anaerobic sediments

[18, 47–49], soils [47, 50, 51], and termite nests [52]. The downward-increasing trend of pery-

lene abundance in the Tinbarap peat core can be attributed to the diagenetic formation of per-

ylene with increasing burial depth.

Molecular weight of pyrogenic PAHs

The difference in depth variation between compounds with 2–3 ring (LMW) and those with

5–6 ring (HMW) (Fig 9) suggests that the pyrogenic PAHs in Tinbarap peat core has two dif-

ferent groups, indicated by the PC 2 variation (Fig 8). McGrath et al. [53] showed that LMW

PAHs (fluorene, phenanthrene, and anthracene) were usually generated in a broader tempera-

ture range than HMW PAHs (indeno[1,2,3-c,d]pyrene, dibenzo[a,h]anthracene, and benzo[g,

h,i]perylene) by the pyrolysis of cellulose. Thus, the difference in pyrolysis temperature can

affect the variation of PAHs in the peat archives.

Alternatively, the difference in transportation among PAHs can affect the change in PAH

composition in the peat archives. The LMW PAHs are more volatile than HMW PAHs [20, 54].

In comparison to LMW PAHs, the depth variation of HMW PAHs was more similar to the var-

iation of charcoal abundance (Fig 9). The HMW PAHs variation show a statistically significant

Table 3. The detection limits and reproducibility (standard deviation) of the available PAHs in the standard.

Compounds Detection limit (μg/g) Standard deviation

Naphthalene 1.76 3.96E-01

Fluorene 1.66 3.34E-01

Phenanthrene 11.93 3.86E+00

Anthracene 3.39 7.34E-01

Fluoranthene 5.72 1.40E+00

Pyrene 4.53 1.08E+00

Benzo[a]anthracene 3.42 1.49E+00

Chrysene 15.22 9.30E+00

Retene 1.12 7.01E-01

Perylene 2.52 1.07E+00

Indeno[1,2,3-cd]pyrene 0.75 1.89E-01

Benzo[g,h,i]perylene 1.40 3.62E-01

Dibenzo[a,h]anthracene 1.37 7.12E-01

https://doi.org/10.1371/journal.pone.0256853.t003
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correlation with charcoal abundance (r = 0.40 and p = 0.006 for both>125 μm and 250 μm

charcoal fractions). In contrast, LMW PAH variation show a much lower correlation with char-

coal abundance (r = 0.15 and 0.13; p = 0.30 and 0.40 for>125 μm and 250 μm fractions, respec-

tively). Charcoals are residues of combusted plant tissues [55]. Macroscopic charcoals with

particle sizes of>125 μm and 250 μm were prominent local fire tracers [56, 57]. In-situ or local

fires produced more charcoal than the ex-situ or distal fire [58–60]. Previous studies have

shown that larger macroscopic charcoals were formed at and near the burnt areas [57, 58, 61].

The dispersion distance of char particles (<200 μm) is at a maximum of 10 km [12]. Hence,

charcoal cannot be transported far. Therefore, HMW PAHs reflect the local fire, while the

Fig 3. Total ion chromatogram (TIC) and the mass chromatograms of the molecular ions of the PAHs in sample

Hole 8, 361–366 cm. The numbered spectral peaks are the compounds listed in Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0256853.g003

Fig 4. The relative abundance of pyrogenic compounds averaged in all samples.

https://doi.org/10.1371/journal.pone.0256853.g004
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LMW PAHs capture fire events from remote locations. Karp et al. [23] showed that LMW

PAHs are significantly enriched in smokes (<2.5 μm) than in char residues [23], suggesting that

the LMW/Total pyrogenic PAHs ratio is an indicative of the transportation of PAHs. The

LMW/Total pyrogenic PAHs ratio varied reversely with charcoal abundance (Fig 9). Our result

of the close relationship between charcoal and HMW PAHs strongly supports the fidelity of

their proposed index. This implies that the HMW PAHs can be used as a proxy of local fire

activity as charcoal is. PAHs are generally analysed together with other biomarkers, potentially

providing more data for fire activity to reconstruct more robust fire history. On the other hand,

the usage of LMW PAHs for the reconstruction of proximal fires needs caution, although these

compounds can be potentially used for the reconstruction of regional fire history.

Fig 5. Depth variations in retene (Ret), perylene (Per), cadalene (Cad), and simonellite (Sim) concentrations.

https://doi.org/10.1371/journal.pone.0256853.g005

Fig 6. Depth variations in charcoal abundance with the total concentrations of pyrogenic parent and alkylated

PAHs.

https://doi.org/10.1371/journal.pone.0256853.g006
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Our PAH record indicates that fire activity was intensified at several hundred years interval

(Fig 9). Usually, natural tropical rainforest is highly resistant to fire because of low dry fuel

availability and high humidity, even during drought [25]. Thus, the repeated occurrence of

wildfires implies that the megadroughts have occurred repeatedly in Borneo peatlands in the

past. The preliminary data of charcoal at five different sites were discussed in the context of cli-

mate variability [24], showing the influence of solar cycles affecting the occurrence of droughts

in Borneo. Further PAH studies will be useful to test the hypothesis.

Thermal origin of retene, simonellite, and cadalene

Generally, retene and simonellite are considered as “diagenetic” compounds, since they are

formed from diterpenoids of higher plant resins in gymnosperms during diagenesis of sedi-

ment burial [62, 63]. However, the peat samples did not have sufficient time to thermally

mature before forming “diagenetic” compounds. There is no increasing downward trend of

retene concentration, not supporting the diagenetic formation of retene. The depth variations

of these compounds are similar to those of some pyrogenic PAHs such as pyrene, benzo[a]

anthracene, and fluoranthene (Fig 5 and S1 Fig in S1 File). The pyrolysis of peat yield retene

transformed from diterpenoids by heating of fires [64]. The retene in ice cores [65, 66], air

[67], and lake sediments [68] were often attributed to the combustion of plants. Retene in the

Tinbarap peat core showed similar variation patterns to that of charcoal abundance (Figs 5

and 6). Thus, these compounds were formed by the pyrolysis of plants and considered as ther-

mally transformed compounds.

Cadalene is also well-known for its “diagenetic” characteristics. Cadalene belongs to a ses-

quiterpenoid derived from angiosperm plants [69]. Cadalene is formed from the degradation

Fig 7. Factor loadings of PC1 and PC2 of PAH compounds.

https://doi.org/10.1371/journal.pone.0256853.g007

Fig 8. Depth plots of factor scores for PC 1 and PC 2.

https://doi.org/10.1371/journal.pone.0256853.g008
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of cadinene and cadinol during diagenesis [41]. However, the peat samples did not have suffi-

cient time to thermally mature before forming “diagenetic” compounds. There is no increasing

downward trend of cadalene concentration, not supporting the diagenetic formation of cada-

lene. Thus, like retene, cadalene can also be a thermally-transformed compound formed by the

combustion of angiosperm plants. Cadalene in Tinbarap peat core showed a unique depth var-

iation, which probably reflects the contribution of angiosperm to fuel materials for wildfires.

Conclusion

The pyrogenic PAHs in Tinbarap peats had 2–7 rings, where some compounds had methyl

and ethyl groups. Pyrogenic PAHs showed large fluctuations with the core depth. Compared

to low-molecular-weight (LMW) PAHs, the depth variation of high-molecular-weight

(HMW) PAHs was more similar to that of charcoal abundance. Thus, the HMW PAHs were

mainly formed from a local fire near the study area, while the LMW PAHs were likely origi-

nated from remote locations. Our results suggest that the concentration and composition of

PAHs are useful to understand the frequency of fire activity in both local and remote areas.
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Fig 9. Variations of low-molecular-weight and total pyrogenic PAHs (LMW/Total pyrogenic PAHs), high-
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