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Abstract: DNA copy number aberrations (CNAs) are of biological and medical interest
because they help identify regulatory mechanisms underlying tumor initiation and evolution.
Identification of tumor-driving CNAs (driver CNAs) however remains a challenging task,
because they are frequently hidden by CNAs that are the product of random events that take
place during tumor evolution. Experimental detection of CNAs is commonly accomplished
through array comparative genomic hybridization (aCGH) assays followed by supervised
and/or unsupervised statistical methods that combine the segmented profiles of all patients
to identify driver CNAs. Here, we extend a previously-presented supervised algorithm for
the identification of CNAs that is based on a topological representation of the data. Our
method associates a two-dimensional (2D) point cloud with each aCGH profile and generates
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a sequence of simplicial complexes, mathematical objects that generalize the concept of a
graph. This representation of the data permits segmenting the data at different resolutions and
identifying CNAs by interrogating the topological properties of these simplicial complexes.
We tested our approach on a published dataset with the goal of identifying specific breast
cancer CNAs associated with specific molecular subtypes. Identification of CNAs associated
with each subtype was performed by analyzing each subtype separately from the others and
by taking the rest of the subtypes as the control. Our results found a new amplification
in 11q at the location of the progesterone receptor in the Luminal A subtype. Aberrations
in the Luminal B subtype were found only upon removal of the basal-like subtype from
the control set. Under those conditions, all regions found in the original publication,
except for 17q, were confirmed; all aberrations, except those in chromosome arms 8q and
12q were confirmed in the basal-like subtype. These two chromosome arms, however,
were detected only upon removal of three patients with exceedingly large copy number
values. More importantly, we detected 10 and 21 additional regions in the Luminal B and
basal-like subtypes, respectively. Most of the additional regions were either validated on
an independent dataset and/or using GISTIC. Furthermore, we found three new CNAs in
the basal-like subtype: a combination of gains and losses in Ip, a gain in 2p and a loss
in 14q. Based on these results, we suggest that topological approaches that incorporate
multiresolution analyses and that interrogate topological properties of the data can help in

the identification of copy number changes in cancer.

Keywords: breast cancer subtypes; copy number aberrations; topological data
analysis; TAaCGH

1. Introduction

Chromosome aberrations are large-scale structural changes of the genome that are commonly
associated with cancer initiation and progression [1-3]. DNA copy number aberrations (CNAs), such as
copy number gains and losses, are of particular interest, because they may respectively harbor oncogenes
and tumor suppressor genes; hence, they have the potential to directly regulate cellular growth pathways
(reviewed in [4-6]). CNAs that contain oncogenes or tumor suppressor genes are commonly known
as driver aberrations; those that do not have functional implications are termed passenger aberrations.
Genome-wide experimental detection of CNAs is achieved through microarray and/or DNA sequencing
technologies [7—12]. Identification of driver CNAs, however, still remains a challenge [13-19]. One
approach to identify such aberrations is through statistical supervised methods [19-21], which detect
CNAs that are common and specific to a given cancer subtype or a cancer with specific clinical
characteristics. Here, we propose a supervised method that identifies CNAs based on the topological
properties of the aCGH profile. We call this method topological analysis of aCGH (TAaCGH).

TAaCGH associates a point cloud with each aCGH profile by means of a sliding window
map [22,23] and uses the topological properties of the point cloud, obtained by standard techniques
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of persistence homology (reviewed in [24,25]), to identify regions of amplifications and deletions. Two
properties differentiate our approach from other commonly-used supervised methods. First, TAaCGH
performs a multiresolution segmentation of the data, similar to that of wavelets [26], and second,
TAaCGH interrogates the topological properties of the data, rather than each of the independent clones
or segmented regions of each patient profile.

In this study, we tested our approach by identifying CNAs that are specific to the molecular subtypes
of breast cancer ([27,28], also reviewed in [29,30]), since it is known that different subtypes have
different regulatory mechanisms and, in some cases, well-determined patterns of driver CNAs [31-36].
Several studies have also reported the association between CNAs and the evolution of the tumor or
the response to treatment [7,37—45]. Therefore, an additional important aspect of CNA studies is the
possibility to identify prognostic subgroups with different outcomes and/or responses to treatment within
each gene expression subtype. We analyzed the data reported in [33] where CNAs associated with
molecular subtypes Luminal A, Luminal B, ERBB2/HER2/NEU (denoted by HER2+) and basal-like
were identified using the supervised algorithm called Supervised Identification of Regions of Aberration
in aCGH (SIRAC) [21]. TAaCGH found all regions reported in the original publication for the Luminal
A and HER?2 subtypes and a new amplification at the location of the progesterone receptor gene (11q)
in the Luminal A subtype. In the basal-like subtype, TAaCGH found all aberrations reported in [33],
except 8q and 12q; these two CNAs were found upon removal of three patients that had exceedingly
large copy number changes. Interestingly, TAaCGH also found 21 additional regions in the basal-like
subtype, including a combination of copy number gains and losses in 1p, a gain in 2p and a loss in 14q.
The Luminal B subtype only revealed specific CNAs when the basal-like subtype was removed from the
control set. Under those conditions, TAaCGH found all CNAs reported in [33], except 17q and 10 new
aberrations. Most of these newly-identified regions have been reported in other independent studies and
were validated using an independent dataset [32] and/or using GISTIC [13]. We therefore suggest that

the use of topological data analysis can help identify new aberrations in cancer.
2. Experimental Section

2.1. Simulation Data

Each simulated dataset consisted of 120 aCGH profiles, with 100 clones each. The 120 profiles were
equally split between the test and control sets. The implementation of the simulated profiles followed
the work of [21,46], where the copy number value of each clone was drawn from a Gaussian distribution
of mean o # 0 for clones inside an aberration and of mean . = 0 for clones outside any aberration.
The standard deviation o was constant for all clones in any given simulation. The mean value of an
aberration was 1 € {—1,0.6, 1}, the standard deviation of an aberration o € {0.2,0.5} and the length
of an aberration (i.e., number of clones) A € {2, 3,5, 10,20, 50, 75}. Simulations were repeated multiple
times for each combination of parameters.



Microarrays 2018, 4 342

2.2. The Horlings Dataset

The dataset analyzed in this study was published by Horlings and colleagues [33]. Measurements of
copy number changes were performed on microarrays containing 3.5 k Bacterial Artificial Chromosome
(BAC) , Pl1-Derived Artificial Chromosome (PAC) DNA segments covering the entire genome with
an average spacing of 1 Mb. Each BAC clone was spotted in triplicate on every slide (Code Link
Activated Slides, Amersham Biosciences). Signal intensity measurements were captured using ImaGene
Software (BioDiscovery, Inc.) and normalized by median print tip normalization. Intensity ratios
(Cy5/Cy3) were log-transformed, and triplicate spot measurements were averaged. From a pool of 295
breast tumor specimens, 68 samples were selected to represent the most common molecular subtypes:
Luminal A (n = 21) and Luminal B (n = 12), basal-like (n = 21), HER2-enriched, also known as
ERBB2/HER2/NEU, and denoted by (HER2+) (n = 14). All samples contained 50% or more tumor
cells. The raw data were not imputed; clone positions were outdated and, in some instances had, different
clones associated with the same genomic position. Therefore, some preprocessing was required.

We found that the position of the clones reported in [33] did not match those in publicly-available
databases. For instance, the position of the clone RP11 to 94L.15n, which contains ERBB2, was reported
to be at 35,065,321 bp on chromosome 17q in [33], but mapped to base pair position 37,812,853 in
the ENSEMBL database. To address this issue, we remapped all clones according to the ENSEMBL
database (built GRC'ch37). We found most clones located near or at the reported position; however, of
the original 3277 clones in the Horlings study, we updated the position of 3021 clones and removed 256.
We removed 122 clones that had no base pair information in the original publication or ENSEMBL.
Ninety eight clones were in a chromosome different from that reported in the original publication,
and eight clones were in the correct chromosome, but at a position located more than 5 x 10° bps
away from the position reported in ENSEMBL. Finally, we removed 28 clones that were in the correct
chromosomes, but had inconsistent relative positions with respect to their immediate neighboring
clones. We imputed missing values using the algorithm called locally weighted scatterplot smoothing
(lowess) [47]. Entries of clones that were mapped to the same locations were averaged.

2.3. Detection of Focal Copy Number Aberrations Using TAaCGH

Here, we extend the method initially proposed in [22,48] to analyze microarray data (see the
Conclusions Section for a detailed explanation of the new features reported in this work). For a chosen
section of m copy number values, TAaCGH associates a point cloud in an euclidean n-dimensional
coordinate system (i.e., R"), 1 < n < m. We illustrate this association by building a point cloud
in R? from a section of copy number values {yi,vs,...ym} (see Figure 1). Any three consecutive
copy number values {v;,¥;+1,Viro} naturally define a point in R® with coordinates (v;, ¥ii1, Yit2)
(i.e., the first log ratio value, vy;, is assigned to the x coordinate of the point in the point cloud; the
second log ratio value, y;,1, is assigned to the y coordinate of the point; and the third log ratio
value, y; 9, to the z coordinate of the point). This algorithm is well defined everywhere, except when
1 = m — 1,m (i.e., the last two copy number values of the section), since the third coordinate of
the point in the cloud (in R?) is not defined when i = m — 1, and neither the second nor the third
coordinates are defined when ¢ = m. To solve this problem, TAaCGH completes the missing entries
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by considering the first values of the section (i.e., {y1,y2}). In order to represent the entire section of
copy number values as a single point cloud, TAaCGH uses a sliding window approach. Therefore,
the point cloud generated by a section of consecutive copy number measurements {y1, s, ...Ym } iS
{(v1,92,Y3), (Y2, Y3, Ya), (Y3, Ya, Y5)s - (Yn—1, Yn> Y1), (Yn, Y1,y2) }. In Figure 1A, an idealized profile
with gains (green), no changes (silver) and losses (blue) is shown. The associated point cloud in R3
is shown in Figure 1B with the points connected by edges (see below for an explanation of the meaning
of the edges). A number of features can be noticed when representing the data as a point cloud. First, the
associated point cloud has an elliptical shape, because consecutive copy number values are correlated.
In fact, when TAaCGH was applied to gene expression profiles, we observed that the associated clouds
were spherical due to the lack of correlation between expression values of consecutive genes along the
genome [48]. Second, consecutive gains are mapped to the octant with all positive values, consecutive
losses to the octant with all negative values, and values containing combinations of positive and negative
values are mapped to the other octants. Third, the higher the absolute value of the gain or loss, the further
the corresponding points in the point cloud will be from the origin. Consequently, the noise in the data

is mapped near the origin of the coordinates.
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Figure 1. Generation of a point cloud from array CGH. (A) Idealized aCGH profile.
Hypothetical copy number changes are colored in blue (losses) and green (gains).
Non-significant changes are colored in silver. (B) Point cloud, with points connected by
edges, associated with the aCGH profile using a sliding window approach

The next step in the algorithm is to build a filtration of Vietoris-Rips simplicial complexes. The
goal of this step is to build a segmented picture of the data from which topological properties can be
inferred. Intuitively, a Vietoris—Rips simplicial complex is a generalization of a graph that is built as
follows: for a point cloud in R" and a fixed small number ¢ (called the filtration coefficient), one defines
an edge between two points in the cloud if the euclidean distance between the two points is less than
or equal to e. If n > 2, then solid triangles are also part of the Vietoris—Rips simplicial complex, and
a solid triangle between three points is included in the complex if the three points are connected by
edges. This process is also valid in higher dimensions and is generalized by adding tetrahedra and higher



Microarrays 2018, 4 344

dimensional minimal convex sets. It is evident that for any two values €; < €2, the associated simplicial
complexes 51, S, satisfy S; C Ss. Therefore, if one lets the filtration coefficient systematically increase
€1 < €3 < €3 < ... < €,, one obtains a filtration of simplicial complexes S; C Sy, C S5 C ... C 5,
(see [24,25] for a detailed description). We propose that in the analysis of aCGH data, the associated
filtration can be viewed as a continuous segmentation process that assigns the same copy number value
to clones whose copy number value difference is less than e. In other words, when two points in the
point cloud connect, they become part of the same element in the simplicial complex. This identification
of points in the point cloud can be interpreted as a segmentation step, where the clones generating the
points in the point cloud are assigned the same copy number value.

The key property of this representation of the data is that it allows us to perform association studies
between the phenotype of interest and the topological properties of the simplicial complexes. In this
work, we have done so for the number of connected components (called the zeroth Betti number and
denoted by [y), a topological property that measures the number of detached subsets that make up
a dataset. We chose to start with the number of connected components, because, as proposed in [22]
and illustrated in Figure 1, the value of /3, helps identify CNAs. Calculations of 3, were done using the
software jPlex [49].

By considering the values of /3, across the filtration, one obtains a function [(¢) that relates the
number of connected components to each distance e. Furthermore, given two sets of patients (test
and control), it is natural to compute the average value of [, for each value of e for the control
and test set separately and to associate a p-value with the difference between the two measurements.
TAaCGH identifies significant differences in 3, with differences in copy number values between the two
populations.

Figure 2 presents the algorithm for detecting sections of CNAs using TAaCGH. (A) shows the
ideogram of a chromosome in which the section to be analyzed has been highlighted in green. (B)
shows the aCGH profiles for one of the sections for two patients taken from [7]. The profile on the
left-hand side has an amplification, while the one on the right has no copy number changes. The sliding
window approach described above will create a point cloud of copy number values in " for each profile.
Figure 2C shows the corresponding point clouds and the one-dimensional Vietoris-Rips simplicial
complexes for the two profiles (for n = 2). The example on the left, corresponding to the profile
with the copy number gain, clearly shows two large connected components. One component is located
at the origin (red) and accounts for all clones with small copy number values. The second component,
away from the origin (in yellow), contains the copy number values corresponding to the amplification.
The point cloud on the right shows only one connected component at the origin. Hence, in TAaCGH,
each patient is not only represented by his or her associated point cloud, but by his or her corresponding

filtration, from which the topological invariants can be calculated for each value of €.
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Figure 2. Topological analysis of array CGH. (A) The ideogram of chromosome 1 and
the overlapping sections to be analyzed (in green). One section (black) is selected and
analyzed as illustrated in the following panels. (B) Array CGH profiles of the chromosome
section for two patients (test and control) taken from [7]. (C) aCGH data are mapped using
a sliding window algorithm to the Euclidean two-dimensional coordinate system, R?, and
a filtration of simplicial complexes is generated using values of the filtration parameter
e = 0.05,0.10,0.20. (D) For each e, the average (3, is computed for both the test sample
(te, blue) and the control sample (c., red) and plotted into one single graph from which
the test statistic S, is calculated. The p-value is calculated using a permutation test and
corrected using the false discovery rate (FDR), because of the multiple sections being tested.
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For a group of patients of size m, TAaCGH calculates the value of (3, for each patient ¢ and the value
of € (denoted by fy(i, €)) and then computes < [y(e) >= % > Bo(iye) for i = 1,...,m, the average
value of [ across all patients in the population. Since one obtains one < [y(e) > for each ¢, this
average value naturally defines a function on ¢, which we denote by < 3, >. Based on the construction
described, two populations of patients can be compared by identifying significant differences between
their associated < f, > curves, which represent copy number changes present at one population and
not the other. Figure 2D shows examples of < [, > curves for two samples: a test sample (in blue)
containing profiles similar to the sample profile with the aberration and a control sample (in red) with no
aberration at that particular location. The shape of the < [3; > curves can be easily interpreted. For very
small distances, every data point will contribute one component. As the distance € increases, points that
are at a distance less than e connect, decreasing the number of components. Eventually, for a sufficiently
large value of ¢, all points connect to form a single connected component.

To test statistically-significant differences between the test and control < 3, > curves, we used the
sum of the squares of the differences in average < [y > across all values of ¢, i.e., Sezp = > (tc — ce)?
fore = 0,..., K, where {. and c, are the average number of connected components for the test set and
the control set, respectively, and where K is the smallest number, such that {. = c¢. = 1. The null
hypothesis tested was S, = 0. In other words, there was no difference between the test and control
< Py > curves. We defined the referent distribution using a standard permutation test between genotypes
(i.e., aCGH profiles) and phenotypes (i.e., tumor subtype). Since this selection of p-values assigns one
p-value per section, we corrected the final p-value using the false discovery rate (FDR) [50,51].

When analyzing tumor data, the test population consisted of a specific subtype, and the control
population consisted of the remaining subtypes. Hence, both populations, test and control, had
aberrations. In some cases, we found that the control < [, > curve had larger values than the test
< [y > curve, suggesting that the control set had more CNAs at that particular location. These
cases were not considered in our analysis, since they provided information of the control and not the
test dataset.

2.4. Determining Significance of Specific Clones

TAaCGH determines a chromosome section that contains significant changes, but it does not identify
specific clones with significant copy number changes or whether the change is an amplification or
a deletion. To narrow down the search for clones with significant copy number changes and to identify
whether copy number changes were gains or losses, we compared the mean copy number value at
each clone between the control and the test population. Significance was assessed using a permutation
test. Since both the test and control populations have CNAs, sometimes at identical locations, some
chromosome arms were identified as significant using TAaCGH, but no clones were found significant.
These few regions were still considered as significant, but classified as undetermined.

2.5. Detection of Full-Length Arm/Chromosome Section Aberrations

The topological approach of TAaCGH is designed to measure relative changes in copy number

between a clone and its neighbors and, therefore, does not account for large-scale chromosome
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aberrations, such as full arm amplifications or deletions. To detect large-scale chromosome aberrations,
we extended the topological method by measuring significant displacements of the center of masses
of the point clouds. More specifically, the center of mass of the point cloud associated with each
chromosome arm was calculated for each patient and averaged over all patients belonging to any given
category. A p-value was assigned to the difference between the average value for the center of masses
for both populations using the same permutation approach described above. We not only tested for
significant differences between test and control, but also for significant displacements of the center of
masses of the test population from the origin. This second test allowed us to drop those cases where the

significant displacement was driven by the control population.

2.6. Validation of the Experimental Results

We took three different approaches to validate our findings: (1) we compared our findings
to those reported in the original publication [33], using SIRAC [21], and with other related
publications [31,36,52]; (2) those that were found in our study, but not in the original paper [33], were
tested in a second dataset [32]; and (3) we performed an independent analysis of the original data using
the program GISTIC [13]. To apply GISTIC to the dataset analyzed in this study, we first segmented each
profile using circular binary segmentation [53]. After segmentation, GISTIC found the aberrations per
patient, and we computed the percentage of patients of a given subtype with each aberration. Since the
sample size for some subtypes was small, we reported only those aberrations that were present in at least
35% of the patients (the full table of aberrations detected by GISTIC can be found in the Supplementary
Material). While we expected to have an overall agreement with GISTIC, we also expected GISTIC
to detect extra aberrations, because TAaCGH is designed to detect CNAs that are specific to a given
subtype.

3. Results and Discussion

In the following section, we present our results using TAaCGH. Simulation results, obtained using the
methods described in Section 2, are all presented in Section 3.1, and analysis of aCGH data are presented

in Section 3.2.

3.1. Simulation Results

We performed simulation studies to optimize the value of the parameters in TAaCGH. First, we
determined the size of the window (dimension of the point cloud) for analyzing the data. Second, we
estimated the sensitivity and specificity of TAaCGH for a fixed window size, and third, we estimated
the length of each chromosome section to be analyzed (green bars in Figure 2A). Lastly, we tested the
performance of the TAaCGH of regions containing aberrations in the test and the control sets.

3.1.1. Window Size

First, we investigated the role of the window size (or, in other words, the dimension in which the point

cloud is embedded). The number of clones in the simulated section was 50 (instead of 100); the length
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of the aberrations (i.e., the number of clones in the aberration) A = 2, 3, 5, 10, 20; the mean value of the
aberration ¢ = —1,1 and 0.6; and the standard deviation 0 = 0.2 and 0.5. We considered all possible
combinations of (A, u, o) for window sizes D = 2, 5,10, 15,20, 35, 50 and obtained a p-value for each
experiment. Each experiment was repeated 84 times. The vectors of p-values obtained by combining
all of this information were used to compute correlations across dimensions. Table 1 shows the results.
We observed that all values were highly correlated (>0.84). Furthermore, all dimensions were consistent
in their significance assignments (results not shown). We concluded that using D = 2 was enough to
detect aberrations and performed the remainder of the studies at this dimension.

Table 1. Correlation among p-values across dimensions. Each entry in the table shows
the correlation between the p-values obtained for the dimensions indicated in each row

and column.

Dimensions 2 5 10 15 20 35 50

2 1 089 092 095 093 093 0.89
5 1 091 092 092 091 0.85
10 I 095 094 095 0.84
15 I 098 097 0.93
20 1 099 091
35 I 093

3.1.2. Sensitivity and Specificity of TaACGH

To test the sensitivity and specificity of our method, we performed simulations analyzing
the parameters that define the aberrations. Sensitivity was estimated with aberration parameters
pw=-—1,0.6,1,0 =0.5and A = 2,3,5,10,20,50,75. Specificity was estimated by simulating cases
and controls with 4 = 0 and 0 = 0.5 and obtained a 100% success rate. Each experiment was
repeated at least 20 times for each combination of parameters; p-values were corrected by FDR. Results
for sensitivity are shown in Figure 3. This figure shows that TAaCGH has excellent sensitivity when
a segment has three or more consecutive copy number changes for both ;4 = 1 and ¢ = —1. This value
sharply decreases when 1 = 0.6 and A < 5.

3.1.3. Size of the Chromosome Section

Next, we analyzed the effects of the size of the section under analysis. One expects that very large
sections will produce poor results, since different aberrations may form topologically-indistinguishable
point clouds. For example, two sections with one amplification each with the same mean, but at different
locations produce identical point clouds. On the other hand, clouds with a small number of points are not
expected to be very informative. We therefore computed the sensitivity and specificity when the point
clouds were made of 20, 50, 80 and 100 points and the following parameters D = 2, y = 1, 0 = 0.5
and A = 2. Each experiment was repeated 100 times. We observed that the larger the point cloud, the
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worse the sensitivity decreasing from 100% for 20 points to 62% for 100 points. Specificity was 100%
for all cases.
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Figure 3. Sensitivity of TAaCGH using simulations. The chart shows the sensitivity of
TAaCGH to the length and the mean value of the aberration A and i, respectively. Each row
represents the different values of A\, and each color represents a different value of .

3.1.4. Performance of TAaCGH when Both Control and Test Population Have Overlapping Aberrations

In the last simulation study, we analyzed the performance of TAaCGH when both the control and the
test set had a CNA at the same location. We considered a total of 60 patients in each category with fixed
section size (= 20), standard deviation ¢ = 0.5 and dimension D = 2. The values of ; and \ ranged
from {0.6,1, —1} to {5,10, 15}, respectively. For clarity, we denoted 1. and p; the mean values of the
CNA in the control and test group and by A. and )\, the values of the length of the CNA for both sets.
Results of our simulations are shown in Figure 4.

As illustrated in Figure 4A, TAaCGH identified the aberration in the test set in almost all cases when
[t > e, but never when p,. > i, since those cases produced < [y > curves in which the control set had
higher values than the test set. When p; = ji., the performance was poor, as indicated in the bar chart on
Figure 4B, almost independently of the length of the aberration.
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Figure 4. Sensitivity and specificity of TAaCGH on sections with copy number aberrations
(CNAs) in both the test and control groups. The chart shows the sensitivity of TAaCGH to the
length and the mean value of the aberrations A and p, respectively. (A) Sensitivity when the
mean for the test (x;) and the mean for the control () are different. If the mean for the test
group is larger than the one from the control, sensitivity was 98.3%. If, on the other hand, the
mean from the control was larger than the test group, TAaCGH did not detect the aberration
in the test group; (B) Poor sensitivity when both the test group and the control group have
an aberration in the section with the same mean. When the length for the aberration in the
test group ()\;) has a medium size, that is 25% < \; < 75%, from the size of the section, the
sensitivity is 27.2%; otherwise, it will be close to 0%.

3.2. Results for Breast Cancer Subtypes

Samples were divided into subtypes; each subtype was considered separately as a test set, using the
remaining subtypes as the control. In our analysis, chromosome arms were subdivided into overlapping
sections; each section contained 20 clones, and any two consecutive clones overlapped 10 clones
(Figure 2A). < By > curves were calculated for the test and the control populations for a window size
of n = 2. The obtained p-values were then corrected for multiple testing using FDR (Figure 2D).
Results obtained for the entire study are shown in Figures 5 and 6 and in Supplementary Files
S1-S8. Each panel in Figures 5 and 6 shows the specific subtype with the location of the significant
aberrations found by TAaCCH, SIRAC and GISTIC. Green entries mean amplifications, blue deletions

and grey undetermined. Aberrations validated on an independent dataset are also color-coded in grey.
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Supplementary Files S1-S6 show the statistics for each of the subtypes; S7 shows the results of the
analysis using GISTIC; and S8 shows patients that were removed from the control set due to their large

copy number values (i.e., outliers).

Luminal A

Horlings et al. dataset

Bergamaschi et al.
dataset (Validation)

Luminal B

Horlings et al. dataset

Bergamaschi et al.
dataset (Validation)

TAaCGH SIRAC GISTIC TAaCGH TAaCGH SIRAC GISTIC TAaCGH
1q
Full Arm q23.3 (76%) |[Full Arm p32.3-p31.1 |p31.3 p34.2-p31.1
q21.3-q44 g41 (81%) p35.1-p33 p35.1-p34.3
8p p36.32-p34.2 p35.3-p35.2
[ [p23.2 (38%) | p36.21-p36.11
8q p36.32-p36.22
[ [q24.11 (62%) | 1q
11q q23.3 (67%)
q22.1-q23.2 | [q13.4 (29%) [Full Arm q41 (58%)
13q 3p
[ [q14.11 (48%) | [ [p14.3 (50%) |
16p 3q
Full Arm Full Arm [ [a27.2 (42%) |
p13-p12.3 4q
16q q24-q27 [ [ [q23-927
Full Arm Full Arm 69
q11.2-q13 [ [q26 (50%) |
q22.1-q24.1 8
p23.3-p11.1 [p23.1-p21.2 |p23.2 (75%) [p21.2-p11.21
p22-p11.1 p23.3-p21.3
HER2+ 8q
Bergamaschi et al.
Horlings et al. dataset dataset (Validation) q24.11-q24.3 q24.11 (83%) |g24-13-q24.3
TAaCGH SIRAC GISTIC TAaCGH 9p
1q Full Arm
q23.3 (57%) p23-p21.1 p22.1-p21.1
q41 (64%) p24.3-p22.3 p24.2-p22.3
3p 9q
[ [p14.3 (43%) | q13-922.32 q12-922.33
8p q31.1-q33.1 q22.33-q31.1
[ [p23.2 (43%) | q31.2-q33.2
13q 11q
[ [q14.11 (36%) | [ [q24.3 (50%) |
17q 13q
q11.1-q12 |q11.1-q12 q23.1 (50%) [g12.921.2 q12.2-q21.1 q14.11 (92%) [q13.1-q14.3
q12-g21.31 |q21.31-q23.2 q12.921.2 q31.1-q32.2 q31.1
q21.31-q22 [(q21.31-q23.2 q32.2
17q
q23.2 q23.1 (67%)
q24.3 (50%)
18q
[ [q12.2 (42%) |
21q
q11.2-g22.3 | [ [q11.2-922.3

Figure 5. Summary results for Luminal A, Luminal B and HER2+ subtypes. The three
panels show significant aberrations found by TAaCGH, SIRAC or GISTIC. Only results for

TAaCGH that were validated in an independent dataset are shown. The frequency cut-off in

GISTIC was 35%. Amplifications are denoted in green, deletions in blue and undetermined

in grey. Sections with both colors (blue and green) contained combinations of amplifications

and deletions. Arms validated using TAaCGH on a second dataset [32] are also color coded

in grey.
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p22.2-p12 8q*
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p35.1-p33 10p
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1q p15.3-p11.1  |p14-p12.33
923.1-q31.1 423.3 (76%) 10q
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p15-p11.2 g24.2-g26.3
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q11.2-25.3 |q12.3 q31.3-932.33
q11.2-25.3 |q21.1-g23 15q
6q q11.2-q22.31 [g15.1
Full Arm q23.3 (43%) q11.2-q22.31 |g21.1
q24.1-q27 q23-926.3
7q 17q
[ [q34 (62%) | [ [a24.3 (48%) |
18q
q11.1-g21.33 | [912.2 (52%) |

Figure 6. Summary results for basal-like subtype. The two panels show significant
aberrations found by TAaCGH, SIRAC or GISTIC. Only results for TAaCGH that were
validated in an independent dataset are shown. The frequency cut-off for GISTIC was 35%.
Amplifications are denoted in green, deletions in blue and undetermined in grey. Sections
with both colors (blue and green) contained combinations of amplifications and deletions.
Arms validated using TAaCGH on a second dataset [32] are also color coded in grey. *

Significance when outliers were removed from the control set.

3.2.1. Analysis of Luminal Subtypes

We analyzed Luminal A and B subtypes separately. The Luminal A subtype clinically is associated
with the most favorable disease prognosis among the molecular subtypes. It is commonly estimated
by pathologic characteristics, namely the estrogen receptor (ER) +, progesterone receptor (PR) +
and ERBB2/HER2 (—), with low proliferation and with a low number of chromosome aberrations.
Commonly-observed aberrations in the Luminal A subtype include 1q, 8q, 8p, 11q gain, 16p and
16q loss [31,33,36,52,54]. Our topological analysis found a single significant region 11q22.1 to q23.2.
Within this region, only the clone at position 100, 641, 187 was significantly amplified. Figure 7A shows

the corresponding < 3y > curves and 7B shows an example of a Luminal A aberrant profile at 11q.
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Analysis of the displacement of the centers of mass for whole chromosome arms found 1q, 16p and
16q to be significant. Figure 7C shows the box plots for the displacements of the center of masses for
chromosome arm 16q (for the Luminal A subtype and for the control set) together with a representative
profile of a whole chromosome arm deletion for 16q (Figure 7D). The three arms 1q, 16p and 16q
were significant in the original study by Horlings, as well as in many other studies [32,35,36,52,55,56]
and were also validated when applying TAaCGH to the data published in [32]. Interestingly GISTIC
identified CNAs in 1q and 11q, as well as CNAs in 8p, 8q and 13q, but failed to identify 16p and
16qg. Based on our simulations, we expected TAaCGH not to be able to identify all aberrations detected
by GISTIC, since they were common to different subtypes. In this particular case, 8p was common

to 51% of all patients across subtypes; 8q was common to 65%; and 13q was common to 63% (see
Supplementary File S7).
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Figure 7. Results for the Luminal A subtype. (A) < [y > curves for the Luminal A
significant region in 11q. The blue curve corresponds to the Luminal A subtype and the
red curve to the control set; (B) A characteristic profile of a Luminal A patient with an
amplification at 11g22.1 (100,641,187 bp) in the significant region 11g22.1 to q23.2 (vertical
black bars); (C) A box plot of the center of masses of the Luminal A subtype vs. the control.
The diamond in the center of the box shows the average, and the horizontal dotted lines
represent the confidence intervals. Blue confidence intervals correspond to the Luminal A
subtype and red to the control set; (D) The profile of a patient with a deletion of the entire
chromosome arm 16q.
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Next, we analyzed the Luminal B subtype. Luminal B patients are characterized by ER+, HER2— or
HER2+, but have higher proliferation rates than Luminal A. Luminal B subtype cancers have generally
worse prognosis than Luminal A. CNAs commonly observed in Luminal B patients include gains of 1q,
8pl2 to pll, 8q, 11q13 to ql4, 17q and 20q and losses in 1p, 8p, 13q, 16q, 17p and 22q (reviewed
in [29,54]; see also [31,32,36,57,58]). Our topological analysis did not find any significant aberrations
associated with this subtype. The displacement of the center of masses found 12q, but this arm was
not confirmed on the validation dataset. A deeper analysis of the Luminal B set revealed that the initial
significance was driven by Patient 378 with extremely large copy number values (see Supplementary
File S6) and by a small cohort of Luminal B patients (n = 12). Supporting this conclusion is the fact
that we did not find any significant aberrations after removing Patient 378.

We performed several tests to understand why TAaCGH did not find the regions
1p31.3, 8p21.2 to p23.1 or 17q23.2 reported in the original study [33] and in other studies [31,32,36].
Since Luminal B is known to be a rather heterogeneous subtype and some of its CNAs may be
shared across different subtypes [54], we hypothesized that some of these regions could be aberrant
in more than one subtype. We therefore tested if the removal of specific subtypes from the control set
would change our p-values. Upon removing the basal-like subtype from the control set, we found the
significance of the regions 1p36.32 to p31.1, 4924 to q27, 8p23.3 to p22, 8p22 to pll.1, 8q24.11 to
q24.3, 9p24.3 to p21.1, 9q13 to q22.32, 9q31.1 to q33.1, 13q12.2 to q21.1, 13q31.1, 13932.2, 21ql11.2
to q22.3. TAaCGH identified specific amplified/deleted clones for the indicated significant regions,
except for chromosome arms 4q, 8q and 21q, suggesting that these arms contain heterogeneous regions
of CNAs that are common to several subtypes. Since 8p23.1 to p21.2 and 1p31.3 were reported in [33],
they were not analyzed any further. Figure 8 shows the < [, > curves and patient profiles for regions
9p24.3 to p22.3 ((A) and (B)) and 13q12.2 to g21.1 ((C) and (D)). Figure 8B,D shows representative
profiles that contain the significant CNAs reported in Table 2. To test whether these newly-identified
regions were specific to [33], we performed a validation test using the dataset published in [32] and also
compared it to those results obtained by GISTIC. All of the regions were validated in [32], although in
some cases, small fragments within significant regions were not validated. This effect was most likely
due to the higher resolution of the array. For instance within 1p36.32 to 31.1 we validated regions
1p36.32 to p36.22, 1p36.21 to p36.11, 1p35.3 to p35.2, 1p35.1 to p34.3, 1p34.2 to p31.1. Most of the
regions, or regions in close proximity, not reported by [33], but found in our study, have been reported
in other studies. For instance, 8p22 to p11, 8q, 9p, 9q, 13q and 21q have been reported as either focal or
whole arm aberrations in [31,32,36,38,45,59—63]. Significant clones for 8p are shown in Supplementary
File S6. In agreement with TAaCGH, GISTIC also detected 8p, 8q and 13q (all common to more than
75% of the patients in the Luminal B subtype), but failed to detect 1p, 4q, 9p, 99, 21q. On the other
hand, GISTIC detected 1q, 3p, 3q, 6q, 11q, 17q and 18q. As expected, TAaCGH did not detect these
CNAs, because they were common to the test and control set. For instance, 1g23.3 was common to
68%, and 1¢g41 was common to 60% of the patients across all subtypes. The remaining chromosome
arms were shared by different amounts of patients, ranging from 25% for 6q to 43% for 3p. It may seem
that 25% is a small number of patients; however, when we looked at the distribution of patients across
subtypes, we found that half of these patients were in the Luminal B set (test set) and the other half in
the HER2+ (control set; see the distribution of aberrations in the Supplementary File S7).
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Figure 8. Selected results for the Luminal B subtype. (A) < (3, > curves for Luminal B in

significant region 9p24.3 to p22.3. The blue curve corresponds to the Luminal B subtype and

the red curve to the control set (not including the basal-like patients); (B) A characteristic
profile of a Luminal B patient from 9p with deletions at 9p21.3, 9p22.1 and 9p23.9 (23.4,
18.6, 9.7 Mbp), as well as an amplification at 9p24.1 (6 Mbp) in the significant regions
9p23 to p21.3 (vertical brown dashed lines) and 9p24.39 to 22.3 (vertical black dotted lines);
(C) < By > curves for Luminal B in significant region 13q12.2 to q21.1. The blue curve

corresponds to the Luminal B subtype and the red curve to the control set from which the

basal-like patients were removed; (D) A characteristic profile of a Luminal B patient from
13q with deletions at 13q12.2 to q14.11 (32.2 to 41.5 Mbp) in significant region 13q12.2 to

g21.1 (vertical black dotted lines).

The positions of the significant clones within the identified significant regions were identified next

and are presented in Table 2.

Lastly, we removed the HER2+ subtype from the control dataset, but no significant aberrations were

detected. In conclusion, upon removal of the basal-like dataset from the control group, our study found

all regions reported in [33], except 17q23.2, and found 10 other regions that were also validated in [32],
three of which were validated by GISTIC.
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Table 2. Chromosome aberrations detected by TAaCGH in the Luminal B subtype.

Chromosome Arm  Cytoband Location of Aberration Gain/Loss Location of Neighboring Clones

Ip 36.32 3,225,674 loss 3,225,674 to 4,577,827
36.22 10,154,043 loss 9,161,350 to 11,561,620
36.22 11,561,620 loss 11,064,731 to 11,844,141
36.22 12,429,632 loss 11,844,141 to 14,639,539
36.21 15,553,913 loss 14,639,539 to 17,268,504
36.12 23,338,991 loss 22,032,838 to 24,480,408
36.11 27,703,779 loss 27,359,936 to 27,856,736
343 35,105,342 gain 34,380,537 to 36,832,678
343 38,492,287 loss 38,278,515 to 39,536,339
33 50,571,477 loss 49,145,731 to 50,823,002
31.33t0 31.1 65,599,782 to 70,103,164 loss 64,435,137 to 70,406,779
31.1 76,869,240 loss 75,463,114 to 78,005,143
9p 24.1 6,004,718 gain 4,922,574 t0 6,576,990
23 9,668,611 loss 8,409,615 to 9,943,073
22.1 18,590,957 loss 17,850,221 to 19,321,518
21.3 23,387,562 loss 22,490,595 to 24,101,721
9q 21.11 71,549,399 loss 71,129,855 to 72,258,752
21.31 83,762,927 loss 82,953,907 to 84,780,238
222 93,147,096 loss 92,847,611 to 94,131,899
31.1 106,545,018 gain 98,981,704 to 107,489,797
13q 122 t031.1 32,170,305 to 41,470,434 loss 31,017,797 to 51,431,527
31.1 79,057,929 loss 56,818,886 to 81,814,181
31.1 83,138,436 to 83,695,803 loss 81,974,786 to 84,869,575
31.1 84,869,575 to 87,444,574 loss 83,695,803 to 88,048,738

3.2.2. Analysis of the ERBB2/HER2/NEU (HER2+)-Enriched Subtype

Next, we analyzed the ERBB2/HER2/NEU-enriched subtype. In HER2+ patients, overexpression
of HER2 is commonly regulated by an amplification of the chromosome region containing the gene
ERBB?2 [64,65]. Only regions 17q11.1 to q12, 17q12 to q21.31 and 17q.21.31 to q22 were significant,
and the corresponding < (3, > curves are shown in Figures 9A-9C.

Our study, in agreement the the original study [33] and others [32,36,66], found the location of
ERBB2 (cytobands 17q11.1 to q12). Furthermore, in agreement with the study by Horlings, we found
a region extending beyond ERBB2 and containing cytobands 17q21.2 to q22. Significant clones were
located between base pair positions 37,258,265 to 38,428,492 and 48,120,796 to 48,817,562. Figure 9D
shows the profile of a patient with amplifications at the significant regions.

These results were also validated in [32]. In particular, our validation study confirmed a significant
amplification encompassing regions 17q12 to 17q21.2. GISTIC was consistent with these findings and
also found that more than 35% of the patients in the HER2+ subtype had aberrations in 1q, 3p, 8p and
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13q. Similarly to our previous remarks, these CNAs were not detected by TAaCGH, because they were
common to a large percentage of the patients in the study (>43%).
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Figure 9. Results for the HER2+ subtype. (A) to (C) show < 3, > curves for the regions
indicated. The graphs show < 3, > for the HER2+ patients in blue and the control set in red.
All three regions indicated showed significance. (D) A profile with the significant regions in
between dotted vertical lines. ERBB2 is located near the position 4 x 107.

3.2.3. Results for the Basal-Like Subtype

The basal-like subtype is the most heterogeneous subtype and includes those that are termed
triple negative, indicative of the absence of ER, PR and HER2 expression. This subtype is generally
associated with the worst prognosis of the subtypes, perhaps in part due to lack of targeted therapies.
Consistent with this heterogeneity, we found the basal-like subtype to have the highest number of CNAs
in a total of 29 different regions. We present the significant sections of the genome found in our study

according to our validation results

i. CNAs in agreement with those reported in the original study

We found the statistical significance of all arms reported in [33] (i.e., 4p, 5q, 6p, 10p, 10q and 15q)
with the exception of 8q and 12q. From these, the only arms that were not significant by the center of
masses were 12q and 15q. Our significant regions did not always match the regions reported in [33].
These discrepancies between both studies were either because of the updated position of the clones in

our study or because TAaCGH found regions containing those reported in [33]. For example, we found
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the significance of the region 4p15.1 to pl1 instead of the reported region 4p15.31. Region 4p15.31,
however, became significant when the clones were placed following Horlings’ original position. Another
example was the loss of 5q12.3 to q13.2, where we found an overlapping region expanding from 5q11.1
to 5q13.1. We did not detect 8q initially. The whole 8q chromosome arm became significant (using the
center of masses) upon removal of two Luminal patients (110 and 302) with profiles that were clearly
different from the rest of patients in the subtype. Similarly, 12q became significant (with TAaCGH)
upon removal of the Luminal B Patient 378 (the patient already identified as an outlier in the Luminal B
study). Our study using GISTIC found 4p, 5q, 10p, 10q, but failed to identify 6p, 15q.

ii. CNAs not reported in the original study, but validated in [32] using TAaCGH

We also detected regions that were validated in [32], but that were not reported in the original
study [33]. These regions were 1p22.2 to pl12, 1p36.32 to p31.1, 2pl5 to p11.2 and most segments
in 14q: 14q12 to q21.3 and 14q24.1 to q32.33. This region in 14q was large enough that the significance
was also reflected in the analysis by the center of masses. Significant sections contained the cytobands
14932 to q33 reported by [31,67], but partially missed the cytobands 14q22 to q23 reported by [32].
A detailed description of the significant clones in the basal-like subtype are presented in Table 3 and in
Supplementary File S6. Figure 10 shows examples of the < 3, > curves for chromosome arms 2p and
14q ((A) and (C)), a representative profile for chromosome 2p (B) and the displacement for the center
of masses for 14q for the basal-like subtype (D). None of these regions were detected by our analysis
using GISTIC.

iii. New CNAs not reported in the original study, not validated in [32], but confirmed by GISTIC

Some regions were not validated in [32], but were detected by GISTIC. We report these regions
separately, because they have also been reported in other studies; hence, we do not believe they are an
artifact of the data.

1. Chromosome arm 1q: We found the region 1q23.1 to 31.1 to be aberrant, and GISTIC confirmed
it to be an amplification. This region was large enough that the changes were also detected in
the study using the center of masses. This region of the genome was previously reported in other
studies [31,32,36].

2. Chromosome arm 3p: Two regions in 3p were significant: 3p22.1 to p11.2 and 3p26.3 to p23.
Region 3p22.1 to p11.2 has been reported to be a loss in a number of studies, including [32,68-70].
Additionally, we found a gain in 3p26.3 to p23.

3. Chromosome arm 3q: We found an amplification of the whole arm, while GISTIC found region
3q27.2. The gain of 3q is characteristic of BRCAI1 deficiency in sporadic tumors, as well as in
hereditary tumors (e.g., [71]).

4. Chromosome arm 6q: Three sections out of nine were found amplified in chromosome arm 6q.
These three regions expanded cytobands 6q24.1 to q27 and contain the estrogen receptor gene
ERS1 located at 625.2. This finding was also detected in our study by the center of masses [69].

5. Chromosome arm 12p: The region 12p13.3 was found to be amplified using our topological
analysis, and the entire arm was also detected by the displacement of the center of masses. GISTIC

detected a downstream region 12p33 to be amplified.
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6. Chromosome arm 13q: Two main sections were found aberrant in the chromosome arm 13q.
The first one expanding 13q12.2 to q31.2 and the second 13q31.2 to q34. We were unable
to identify whether 13q12.2 to q31.2 was an amplification or a deletion; however, GISTIC
identified a deletion in 13ql4.11 in 81% of the patients. Additionally TAaCGH found an
amplification in 13q31.2 to q34. Amplifications in chromosome 13q have been found in multiple
subtypes [36] and more specifically in cytokeratin 14 (CK14) positive tumors, 25% of which are
basal-like carcinomas [72].

7. Chromosome arm 18q: A section extending 18q11.1 to q21.33 was significant, but TAaCGH was
unable to identify whether it was an amplification or a deletion, suggesting an heterogeneous
combinations of amplifications and deletions in the region across subtypes. GISTIC, on the other
hand, identified a deletion in 18q12.2.

Table 3. New chromosome aberrations detected by TAaCGH in the basal-like subtype.

Chromosome Arm  Cytoband Location of Aberration Gain/Loss Location of Neighboring Clones

1p 36.21 14,639,539 loss 12,429,632 to 15,553,913
35.1t032.3 34,380,537 to 53,737,606 gain 33,102,443 to 54,031,005
323 55,875,826 loss 55,270,329 to 56,824,097
32.2-31.3 58,882,124 to 62,359,674 gain 57,684,846 to 63,423,938
31.1 78,005,143 gain 76,869,240 to 82,056,781

22.1 93,996,738 loss 92,518,227 to 94,792,570
21.2 99,899,192 gain 98,909,737 t0 99,899,246

21.1 101,303,797 loss 99,899,246 to 101,449,113

21.2 101,449,113 gain 101,303,797 to 102,594,767

13.3 107,585,795 to 108,529,492 gain 106,959,397 to 110,015,588

13.1 117,424,118 gain 116,780,010 to 118,589,386
2p 14 to 13.3 64,625,779 to 71,023,979 gain 63,342,684 to 71,251,890
14q 13.2 33,766,983 to 36,544,890 loss 33,310,161 to 37,941,646
21.1 37,941,646 loss 36,544,890 to 46,896,032
21.2 44,219,870 loss 42,928,208 to 45,707,124
24.3 76,584,595 loss 76,141,892 to 77,583,617
31.1 80,271,909 to 83,099,727 loss 78,389,382 to 83,987,892
31.2 84,784,824 loss 83,987,892 to 85,099,070
31.3 87,007,447 to 87,344,554 loss 85,099,070 to 87,765,087
31.3t032.12 89,750,111 to0 92,321,034 loss 88,420,711 to 93,495,784

32.13t032.2 94,877,177 to 97,996,975 loss 93,495,784 to 95,662,483
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Figure 10. Results for the basal-like subtype. (A) < [, > curves for the significant region
in the basal-like subtype 2p15 to p11.2. The blue curve corresponds to the basal-like subtype

and the red curve to the control set. (B) A characteristic profile of a basal-like patient with an

amplification at 2p14 to p13.3 (64 to 71 Mbp) in the significant region 2p15 to p11.2 (vertical

dotted lines). (C) < [y > curves for significant region 14q24.3 to q32.13. The blue curve

corresponds to the basal-like subtype and the red curve to the control set. (D) A box plot of

the center of masses of the basal-like subtype vs. the control for 14q. Diamonds represent

the average, and horizontal dotted lines represent the confidence intervals. Blue confidence

intervals correspond to the basal-like subtype and red to the control set. The boxplot shows

the displacement of the center of mass for basal-like in 14q as a full-length deletion.

iv. New CNAs not reported in the original study, not validated in [32] using TAaCGH, but in

agreement with other studies

Three chromosome arms were neither identified by GISTIC, nor validated in [32]. These arms,

however, have been reported previously in other works.

1. Chromosome arm 4q: We found most of 4q to be significant, with the exception of the centromere

near regions 4q11 to q13.3. This finding is in agreement with [32,69], who reported a loss of 4q31

to q35. The aberration in 4q was large enough to also be detected by the center of masses.

2. Chromosome arm 9p: Cytobands from 9p24.3 to 9p21.3 were found to be significant. Gains were

reported in [63,73].

3. Chromosome arm X p. The section containing Xp22.33 to 11.21, which contained all clones in the

array, was found significant in [72].
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v. New CNAs identified by TAaCGH, but not validated in [32]

Some regions were found to be significant only on the original dataset. These included section
5p15.33 to p12 and were also significant when considering the whole chromosome arm 5p and sections
9g21.13 to q22.32 and 9q32 to q34.3. Since these regions were not validated and have scarcely been
investigated previously, we cataloged them as artifacts of the data.

vi. CNAS identified by GISTIC alone
GISTIC identified four chromosome arms that neither TAaCGH, nor SIRAC identified. There

regions were an amplification in 7q34, a deletion in 8p23.2, a deletion in 11q24.3 and an amplification
in 17q24.3. As discussed earlier, these regions were relatively common across different subtypes
(see Supplementary File S7).

4. Conclusions

Array CGH provides an unparalleled opportunity to characterize disease-associated CNAs.
Identification of these aberrations, however, is a difficult task, due to the heterogeneity of the diseases and
the noise inherent to the microarray technologies. Here, we have presented a method called topological
analysis of array CGH (TAaCGH), which complements currently-available methods. Other topological
methods have been used in the identification of breast cancer subtypes using gene expression [74];
however, TAaCGH is, to our knowledge, the only supervised method that uses topological techniques
to identify regions of copy number changes. In comparison to other methods that identify CNAs,
TAaCGH incorporates a multi-resolution segmentation approach, modulated by the filtration parameter,
and performs an association test between the topological properties of the point cloud and the phenotype
under study.

TAaCGH is designed to analyze any type of time series provided that it is made of real-valued data.
In previous works, we applied preliminary versions of TAaCGH to a different breast cancer aCGH
dataset [22] and to a gene expression dataset [48], and in the future, we intend to extend it to other
genomic data (see, for instance, [75]). Applications of TAaCGH to SNPs or sequencing data remain to
be explored. In this study, we have extended our previous work by analyzing the statistical properties
of TAaCGH, developing a new method to optimize the parameters in the program (specificity and
sensitivity, dimensionality, size of the genomic section to be analyzed, comparison of test and control
with CNAs at identical locations), identifying amplifications and deletions of specific clones within
significant < (3, > sections and incorporating the analysis of the center of masses for identifying whole
arm amplifications/deletions.

We found almost all aberrations reported in the initial study [33] and 31 more regions that were missed
in the original study. We validated many of the regions by testing TAaCGH on a second dataset [32] and
by comparing our results with those obtained by GISTIC. Although the gene expression data in [33] was
not made available to us, we were able to find some possible significance to the regions found using the
database Catalogue of Somatic Mutations in Cancer (COSMIC) [76]. For instance, we found 11g22.1 to
23.2 in Luminal A. This aberration was not found in the original study by Horlings, was not validated
in the dataset of [32], but was confirmed by GISTIC. Interestingly, 11q22.1 to q23.2 corresponds to the
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position of the progesterone receptor (PR) whose overexpression is commonly associated with Luminal
A tumors. Supporting this finding, although not conclusive, we found a significant association between
patients with an amplification in 11q22.1 to 23.2 and the reported PR status (Fischer exact test p = 0.03).
This result suggests that the PR gene can be regulated by changes in copy number.

We found significant aberrations on the Luminal B subtype only upon removal of the basal-like
subtype from the control set. Besides those aberrations that were reported in the original study (i.e.,
1p36.32 to 31.1 and 8p23.3 to 23.1) [33] we also found the following: (1) Region 4q24 to q27
for which we did not find a specific amplification or deletion common to all patients, suggesting an
heterogeneous pattern of amplification and deletions across the profiles. Inspection of the profiles
revealed a large deletion in some patients [77] combined with a focal gain between positions 112,097,383
and 116,102,599. Analysis of the COSMIC database of these cytobands found gene UGT'8 associated
with malignancy and lung metastasis [78,79]. (2) Region 8p12 contains genes whose loss has been
associated with breast cancer progression (KAT6A, PURG, WRN, NRGI) [80-83]. (3) 9p was driven
by a combination of deletions and amplifications. We found a gain at 6,004,718 in 9p24.1, a region
that contains multiple proto-oncogenes related to breast cancer (i.e., GASC1 UHRF2, KIAA1432 and
C9orf123) [63], as well as losses in positions 9,668,611, a region that contains the single gene PTPRD
that has been associated with poor prognosis and metastasis in cancer [84,85]. Furthermore, the region
9p21.1 to g23 has been reported to be lost in breast cancer [86]. (4) We also found large deleted
regions in chromosomes 9q and 13q, which contain multiple cancer genes, together with an amplification
in 9q31.1. This amplification contains the gene SMC2, which has been associated with poor
prognosis [87]. (5) A gain at 43,635,239 in 21q22.3 was also found. Our study did not find 17q. We
believe that this was the result of having a small sample size for the Luminal B subtype and of having
several patients in the control group with aberrations in the same region.

Basal-like tumors revealed a wide variety of aberrations, and in our study, we found all aberrations
reported in the original study (chromosome arms 8q and 12q were found by removing three patients
with very high copy number values; see Supplementary File S8) and 19 more aberrations. Out of these
19 aberrations, seven were also confirmed by GISTIC, and three were validated in a second independent
dataset. Most of the others had been reported in other studies. These three new CNAs were found in
chromosome arms 1p, 2p and 14q and are described in Table 3. Most significantly, we found intermittent
regions of gains and losses between 1p36.32 and 1p13.1, a gain of 2p15 to p11.2 and losses of 14q12 to
g21.3 and 14q24.3 to q32.22. We were unable to obtain any meaningful information from the COSMIC
database, however, because these regions are large and dense in cancer genes.

In conclusion, topological approaches provide an alternative method for data analysis, and in this
work, we have shown how it can help uncover chromosome aberrations in aCGH data. One important
feature of this topological approach is that it can be extended in multiple directions. For instance, the
work of Perea and Harer [23] and our own work [88,89] suggest that the number of two-dimensional
holes in the data (denoted by /3;) can be used to identify periodic patterns in the data. We are currently
working on such an analysis, but are unable to provide any results yet, since a new statistical framework
needs to be developed. Our preliminary studies suggest that certain co-occurring aberrations can be
detected using this topological invariant. Other possible extensions include different strategies in the
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generation of the point cloud (instead of a delay time embedding algorithm) or the incorporation of
non-euclidean measures in the definition of the point cloud.

5. Software

TAaCGH can be obtained by e-mailing Javier Arsuaga directly: jarsuaga@ucdavis.edu.
Supplementary Materials

Supplementary materials can be found at http://www.mdpi.com/2076-3905/4/3/339/s1.
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