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TBX2 is a neuroblastoma core regulatory circuitry
component enhancing MYCN/FOXM1 reactivation
of DREAM targets
Bieke Decaesteker 1,2, Geertrui Denecker 1,2, Christophe Van Neste 1,2, Emmy M. Dolman4,

Wouter Van Loocke1,2, Moritz Gartlgruber5, Carolina Nunes 1,2, Fanny De Vloed 1,2, Pauline Depuydt 1,2,

Karen Verboom 1,2, Dries Rombaut 1,2, Siebe Loontiens 1,2, Jolien De Wyn 1,2, Waleed M. Kholosy4,

Bianca Koopmans4, Anke H.W. Essing 4, Carl Herrmann6,7, Daniel Dreidax 5, Kaat Durinck1,2,

Dieter Deforce 2,8, Filip Van Nieuwerburgh 2,8, Anton Henssen 9,10,11, Rogier Versteeg 12,

Valentina Boeva 3, Gudrun Schleiermacher 13, Johan van Nes 12, Pieter Mestdagh1,2,

Suzanne Vanhauwaert 1,2, Johannes H. Schulte9, Frank Westermann5, Jan J. Molenaar4, Katleen De Preter1,2 &

Frank Speleman 1,2

Chromosome 17q gains are almost invariably present in high-risk neuroblastoma cases. Here,

we perform an integrative epigenomics search for dosage-sensitive transcription factors on

17q marked by H3K27ac defined super-enhancers and identify TBX2 as top candidate gene.

We show that TBX2 is a constituent of the recently established core regulatory circuitry in

neuroblastoma with features of a cell identity transcription factor, driving proliferation

through activation of p21-DREAM repressed FOXM1 target genes. Combined MYCN/TBX2

knockdown enforces cell growth arrest suggesting that TBX2 enhances MYCN sustained

activation of FOXM1 targets. Targeting transcriptional addiction by combined CDK7 and BET

bromodomain inhibition shows synergistic effects on cell viability with strong repressive

effects on CRC gene expression and p53 pathway response as well as several genes impli-

cated in transcriptional regulation. In conclusion, we provide insight into the role of the TBX2

CRC gene in transcriptional dependency of neuroblastoma cells warranting clinical trials using

BET and CDK7 inhibitors.
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Neuroblastoma (NB) is a cancer of the developing
sympatho-adrenergic nervous system and is the most
common malignancy diagnosed in children during their

first years of life1. Sequencing revealed a relatively silent muta-
tional landscape with only ALK activating mutations being
identified in up to 10% of primary cases as well as de novo
secondary or emerging subclonal ALK mutations in relapsed
cases2,3. Further, in relapsed cases additional RAS-MAPK path-
way driving mutations are enriched4,5. In contrast to mutations,
DNA copy number alterations are remarkably recurrent in NB,
including focal amplification of the MYCN oncogene in
approximately half of the high-stage patients6 and large 17q
segmental gains occurring in the majority of both MYCN
amplified and non-amplified high stage tumors7–9. The finding of
recurrent gains of the syntenic human 17q region in MYCN
driven NB mouse tumors further supports the putative functional
importance of this genomic aberration in NB10. Investigating
dosage-sensitive genes affected by recurrent copy number
alterations can offer new insights into tumor biology as was
illustrated in ependymoma where multiple dosage-affected genes,
located within large chromosomal regions of recurrent gains and
losses, were shown to act as oncogenes or tumor suppressors
through installing a so-called cellular state driven through one or
more altered cellular functions11.

Given the recently proposed role of a core regulatory circuitry
(CRC)12 consisting of several super-enhancer (SE) marked13

transcription factor constituents in NB14–16, we decided to search
for dosage-sensitive SE marked transcription factors encoding
genes residing on chromosome 17q. The ‘T-box 2 transcription
factor’ (TBX2), hitherto not reported to be implicated in NB, was
prioritized as transcription factor with top-ranked SE score in NB
cell lines and with expression levels highly correlated with sur-
vival outcome in NB tumors. TBX2 is a member of the T-box
family of transcription factors with an important role during
embryogenesis and morphogenesis17,18 and is overexpressed in
several cancer entities including melanoma, breast, and pancreatic
cancer19–21. The oncogenic effect of TBX2 overexpression has
been attributed to its role in proliferation as well as inducing
epithelial-to-mesenchymal transition (EMT) and senescence
bypass22. Based on integrated analysis of TBX2 occupancy as
determined by ChIP-sequencing and transcriptome analysis upon
knockdown (KD), we propose TBX2 as a novel bona fide con-
stituent of the recently reported CRC in NB14–16.

To investigate the role of TBX2 in this CRC, functional ana-
lyses were performed showing the implication of TBX2 in cell
cycle, proliferation, and downstream E2F-FOXM1 signaling.
Finally, we demonstrate that combined pharmacological targeting
of transcriptional addiction using a BET and CDK7 inhibitor,
yields synergistic effects on TBX2 downregulation leading to
massive apoptosis.

Results
TBX2 is a super-enhancer marked transcription factor on 17q.
CRCs consisting of SE marked master transcription factors were
recently shown to be dysregulated in NB through MYCN-
dependent transcriptional amplification14,16 causing transcrip-
tional addiction23. Given the highly recurrent chromosome 17q
gain in high-risk human NBs and MYCN-driven mouse NBs, we
hypothesized that one or more dosage-sensitive CRC transcrip-
tion factors map to 17q thus rendering a selective advantage to
tumors cells exhibiting 17q gain. To identify such transcription
factors, we determined SE scores using the LILY algorithm15

based on the intensity of H3K27ac marks in 26 NB cell lines with
17q gain, two non-malignant neural crest cell lines and the
breast cancer cell line MCF-7 as non-embryonal control

(gene prioritization strategy is depicted in Fig. 1a, b and Sup-
plementary Fig. 1a, b). We identified a total of 176 SE clusters on
17q of which six were present in at least 20 NB cell lines (Sup-
plementary Fig. 1c). These six SE clusters are located in the
vicinity of 86 candidate genes of interest, including 11 tran-
scription factors24, of which 5 are actively transcribed in NB cells,
i.e. TBX2, RARA, SP2, NFE2L1, and VEZF1.

Next, we assessed the expression levels of these transcription
factors in relation to patient survival in two independent NB
tumor cohorts (GSE85047 n= 276, GSE62564 n= 498) and
observed the strongest association with overall and progression-
free survival for TBX225 (Fig. 1c and Supplementary Fig. 1d,
Kaplan–Meier analysis). Moreover, TBX2 is marked by a SE in all
investigated NB cell lines, but not in the human neural crest line
(hNCC) and the MCF-7 breast cancer cell line (Fig. 1b and
Supplementary Fig. 1b).

Of further interest, the highest expression levels for TBX2
were observed in NB cell lines and primary tumors compared
to other tumor entities, based on the online pan-cancer analysis
in the CCLE database (cancer cell lines) and R2 platform
(primary tumors and normal tissues) (Fig. 1d). TBX2 expression
levels were also high in normal embryonic tissues in keeping
with the established role of TBX2 in early development. Taken
together, our data suggest a possible important role for TBX2
as hitherto unrecognized transcriptional regulator in NB tumor
development.

4C-seq defines TBX2 promotor—super-enhancer interactions.
To provide further evidence for a functional role of the assigned
SE for TBX2 gene regulation, three different viewpoints residing
in the SE region (20 kb and 260 kb up TSS) or the promoter site
of TBX2 (4.5 kb up TSS) were selected for 4C-sequencing in NB
cell lines SK-N-AS and CLB-GA (Fig. 2a and Supplementary
Fig. 2a). Reciprocal interactions were observed between the two
viewpoints in the SE region and the promoter region, as well as
interaction with a region more upstream of TBX2 (400 kb up
TSS). These results are in line with the proposed TBX2 regulation
according to the associated SE region as determined by H3K27ac
mapping.

Of further interest, TBX2 maps to the border of a topologically
associated domain (TAD)26 (Supplementary Fig. 2b) and has
been associated with a bi-directionally transcribed topological
anchor point (tap)RNA TBX2-AS127. These positional conserved
tapRNAs are located at chromatin loop anchor points and
borders of TADs and show strong coordinated expression with
their associated nearby protein-coding gene28. Indeed, we found a
strong correlation between the expression levels of the tapRNA
TBX2-AS1 and TBX2 in a large cohort of NB tumors (n= 79,
Supplementary Fig. 2c). In addition to the potential regulatory
connection of TBX2-AS1 and TBX2, we also found strong
correlation with expression levels of the PPM1D gene which maps
within a 1.5 Mb distance from the TBX2 locus (Supplementary
Fig. 2d). In summary, the above findings support a physical
interaction between the TBX2 locus and its nearby SE and suggest
that the proposed chromatin looping drives TBX2 expression.

TBX2 is a copy-number affected dosage-sensitive gene. Next, we
investigated in more detail the genomic aberrations that account
for the high TBX2 expression in NB (Fig. 1d). We first analyzed
the CCLE database and found that NB was the tumor entity
exhibiting the most frequent gains for the TBX2 locus, the highest
expression and lowest methylation levels (Figs. 1d and 2b, c).
Next, we assessed the effect of DNA copy number alterations on
TBX2 expression levels using an ANOVA analysis in the NRC
tumor dataset (n= 218, GSE85047). Only in high-stage disease
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Fig. 1 TBX2 is a super-enhancer marked 17q transcription factor in NB. a Prioritization strategy to find SE-driven candidate oncogenes on chr17q. b H3K27ac
activity in a region upstream of TBX2 in 26 NB cell lines (blue), non-malignant neural crest cell lines (green) and the non-embryonal breast cancer cell line
MCF-7 (green). The Lilly annotated SE regions are indicated in red. The cluster (out of 276 clusters on chr17q) containing the overlapping SE used in the
prioritization process is annotated at the bottom. c Kaplan–Meier analysis (overall survival) of 276 neuroblastoma patients (NRC NB tumor cohort,
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values outside of the whiskers are present, then this is indicated with a single mark ‘x’ next to the implicated whisker
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Fig. 2 TBX2 is targeted by rare focal amplifications and marked by a SE. a 4C-seq analysis showing reciprocal interaction between the promotor site and SE
upstream of TBX2 in the NB CLB-GA and SK-N-AS cell lines using three different viewpoints. b Copy number ratio of the TBX2 locus in a pan-cancer dataset
(CCLE) with high copy number for TBX2 in NB (green arrow) as compared to cell lines from other tumor entities. Boxplots are drawn as a box, containing
the 1st quartile up to the 3rd quartile of the data values. The median is represented as a line within the box. Whiskers represent the values of the outer two
quartiles maximized at 1.5 times the size of the box. If 1 or more values outside of the whiskers are present, then this is indicated with a single mark dot next
to the implicated whisker. Number of samples for every entity is depicted below the boxplot. c Genome-wide methylation profile evaluated by reduced
representation bisulfite sequencing (RRBS) of the TBX2 locus in a pan-cancer dataset (CCLE). TBX2 is covered by a low methylation profile in NB (green
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(stage 3 and 4), we observed significantly increased TBX2
expression levels due to increased TBX2 copy number (p= 6.004e
−5, log2 ratio > 0.3) (Fig. 2d). We specifically looked for rare
TBX2 encompassing amplicons in a series of 556 high-risk NB
cases29 and detected a single MYCN-amplified case with an
additional 1.076 Mb focal 17q23.2 amplification (Fig. 2e and
Supplementary Fig. 2e) encompassing only six protein-coding
genes including the transcription factors TBX2 and TBX4. Of
further note, a previously reported focal high level 1.8 Mb gain of
a chromosome 17q23 segment in the NB cell line MP-N-TS also
encompasses the TBX2 locus30,31. Taken together, our data
indicate that TBX2 is a dosage-sensitive transcription factor
affected by the common segmental 17q gains and rare amplifi-
cation events in NB.

TBX2 is a core regulatory circuitry constituent in NB. To gain
further insight into the TBX2-controlled regulatory network, we
assessed TBX2 DNA occupancy by ChIP-sequencing and ATAC-
sequencing in the NB cell line IMR-32. A total of 557 significant
(adj.P.val < 0.05) TBX2 binding sites were identified and motif
analysis confirmed enrichment for a TBX motif (AGGTGTGA,
p= 1e−41), supporting the validity of our ChIP-seq data (Sup-
plementary Data 1). In total, 81, 28, and 94% of TBX2 binding
sites in IMR-32 respectively overlap H3K27ac, H3K4me3, and
ATAC-sequencing peaks (Fisher test p < 2.2e−16, Fig. 3a, b),
which confirms the binding of TBX2 to active promotor and
enhancer regions. Moreover, respectively 41 and 30% of the TBX2
ChIP-seq peaks are found intergenic or are annotated to lncRNAs
(Supplementary Fig. 3a, b), and 19% overlap with the SEs
annotated in the cell line IMR-32 (Fisher test p < 2.2e−16, Sup-
plementary Fig. 3c).

The recent reports on distinct CRCs in NB14,15 prompted us to
investigate the possible involvement of TBX2. In line with the
recent finding of invasion of MYCN into non-canonical E-boxes
at enhancers, motif analysis of TBX2-bound regions showed that
the non-canonical MYC(N) E-box motif CANNTG was found to
be highly enriched (Binomial test p= 1e−63) as well as motifs for
GATA(1/2/3/4), PHOX2(A/B), HAND(1/2) and neuronal
lineage-specific marker genes such as ASCL1, ISL1 and MEIS(1/
2)32,33 (Supplementary Data 1). We integrated the ChIP-seq
tracks for TBX2 with those reported for GATA315,34, HAND2,
PHOX2B15, and MYCN (this study) in NB cell lines and observed
overlap of TBX2 peak summits with binding sites of these CRC
transcription factors (Fig. 3b), thus supporting the notion that
TBX2 is indeed actively taking part in this CRC. Overlap of
PHOX2B, HAND2, and GATA3 binding with the TBX2 peaks
was predominantly observed in enhancer regions (Fig. 3b and
Supplementary Fig. 3d). The integration of TBX2 into this CRC is
further confirmed by the observation of auto-regulation by
binding of the TBX2 transcription factor to its own SE constituent
and binding of at least three CRC members including GATA3,
HAND2 and PHOX2B within this SE constituent (Fig. 3c). In
addition, TBX2 is binding the SE constituents of the other CRC
members PHOX2B, GATA3, and HAND2, amongst others, as
shown in Supplementary Fig. 3e. Finally, TBX2 expression is
positively correlated with GATA3, HAND2, and PHOX2B
expression levels as well as with those of other potential CRC
genes important in development in a NB tumor cohort (n= 283,
Supplementary Fig. 3f). Taken together, our data suggest that
TBX2 is part of the recently described CRC together with
HAND2, GATA3, and PHOX2B.

TBX2 controls E2F-FOXM1 driven cell cycle and proliferation.
To unravel the role of TBX2 within the CRC in NB cells, we
performed TBX2 KD with two shRNAs and a non-targeting

control and subsequent gene expression profiling in the NB cell
line IMR-5/75 (Supplementary Fig. 4a). A total of 1055 and 1326
genes were differentially down and upregulated, respectively (adj.
p.val < 0.05, Supplementary Data 2), including the upregulated
gene CDKN1A, which is a known target gene repressed by
TBX235. Gene set enrichment analysis (GSEA) on the down-
regulated genes upon TBX2 KD in IMR-5/75 cells revealed
enrichment (FDR < 0.01) for the hallmark and gene ontology
gene sets involved in cell cycle including G2/M checkpoint, E2F,
MYC(N) targets, mitosis, and DNA replication (Fig. 4a, Supple-
mentary Data 3) and enrichment was shown for TP53 pathway
among the upregulated genes. Using iRegulon, designed to detect
transcription factors, targets and motifs/tracks from a set of
genes24, (http://iregulon.aertslab.org/), we identified motif
enrichment (FDR < 0.01) for FOXM1, E2F, and E2F binding
partners TFDP1/TFDP3 in nearly half of all downregulated genes
(Fig. 4b, Supplementary Data 4). Interestingly, an E2F motif was
also enriched in the TBX2 binding sites in IMR-32 cells (Sup-
plementary Data 1). The role of E2F and the MuvB core com-
ponent FOXM1 was further supported by significant enrichment
for published gene sets containing FOXM1, DREAM, E2F, and
CCND1/CDK4 (the latter is known to phosphorylate FOXM1)
activity/target genes36 (Fig. 4c). In contrast, almost half of upre-
gulated genes upon TBX2 KD showed enrichment for a motif
with high similarity to the MuvB core component MYBL2, REST
(transcriptional repressor implicated in neuronal differentia-
tion37) and EP300 (histone acetyltransferase) ChIP binding sites
(Fig. 4b, Supplementary Data 4). In addition to FOXM1 target
genes, FOXM1 itself is also downregulated upon TBX2 KD in the
IMR-5/75 and CLB-GA cell lines (Fig. 4d).

Using a similar approach as for MYCN amplified IMR-5/75
cells, we also investigated the TBX2 transcriptional regulated
network in the non-MYCN amplified CLB-GA NB cells and
observed similar downstream targets and enriched genes sets as
those observed in IMR-5/75 upon TBX2 KD (Supplementary
Fig. 4a–d, Supplementary Data 3 and 5), with the E2F/FOXM1
axis being most prominent.

To further validate these results, we performed correlation
analysis in publicly available transcriptome data of 283 primary
NB tumors (NRC, GSE85047). Supporting the TBX2 KD data
described above, GSEA showed enrichment for cell cycle, DNA
repair and DNA replication as well as chromatin architecture
among the genes positively correlated with TBX2 expression
levels in the NB tumor data set (FDR < 0.01, R > 4, Fig. 4e). In
addition, we found a significant positive correlation for expres-
sion levels of TBX2 versus FOXM1, E2F core members, and other
DREAM complex members (Supplementary Fig. 4e). Further-
more, the TBX2 KD signature score (generated in both CLB-GA
and IMR-5/75 cells) was negatively correlated with the expression
of these DREAM complex members (Supplementary Fig. 4e, f).

As these data collectively suggest a role for TBX2 in control of a
FOXM1/E2F-driven gene regulatory network driving prolifera-
tion, we explored the phenotypical effects of TBX2 KD in NB cells
following prolonged lentiviral short hairpin RNA mediated KD of
TBX2 in IMR-32, CLB-GA and SK-N-AS NB cell lines with high
TBX2 expression. KD of TBX2 with four different hairpins for
5 days (Supplementary Fig. 4a) leads to a decrease in colony
formation capacity (Fig. 5a and Supplementary Fig. 5a) and
proliferation as measured with time-lapse microscopy (every
2–3 h) (Fig. 5b). Furthermore, we also show a significant G1
growth arrest in the CLB-GA cell line upon TBX2 KD (Fig. 5c) in
keeping with the above-reported effect of TBX2 KD on cell cycle
genes. Importantly, no effect on proliferation or colony formation
capacity was detected in the TBX2 non-expressing SH-EP cell
line, indicating limited off-target effects with these four hairpins
(Supplementary Fig. 5b). In summary, we have shown that TBX2
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is implicated in cell cycle and proliferation through regulating an
E2F-FOXM1 driven cellular state.

Combined TBX2-MYCN signaling targets the FOXM1/E2F
network. While CRC transcription factors bind their own
enhancers as well as those of the other CRC partners, the indi-
vidual contribution of each factor to the malignant phenotype of
the cancer cells is largely unexplored. A recent report suggested
that TWIST and HAND2 would cooperate with MYCN through
binding of enhancers of a set of developmental genes16. In view of

these findings, we also decided to further study the TBX2–MYCN
interrelationship. We first obtained indirect evidence for a func-
tional relationship between MYCN and TBX2 from several
datasets: (1) significant enrichment for publicly available MYC
(N) target/signature gene sets in the MYCN amplified IMR-5/75
and MYCN non-amplified cell line CLB-GA upon TBX2 KD
(Figs. 4a, 6a and Supplementary Fig. 4d); (2) significant correla-
tion of TBX2 and MYCN mRNA and protein expression in NB
tumors (Supplementary Fig. 3f) and NB cell lines (Supplementary
Fig. 6a), respectively; (3) correlation between MYCN activity and
TBX2 shRNA signature scores (established in both IMR5/75 and
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CLBGA) in NB tumors (CLB-GA: Spearman Correlation p=
1.28e−83, R=−0.684, IMR-5/75: Spearman Correlation p=
7.91e−26, R=−0.576) (Supplementary Fig. 6b) and NB cell lines
(CLB-GA: Spearman Correlation p= 0.00179, R=−0.564,
Spearman Correlation IMR-5/75: p= 6.67e−08, R= -0.825); (4)

62% of differentially expressed genes upon TBX2 KD (FDR <
0.05, n= 2381) in IMR5/75 overlapped (Fisher test, p= 0.006)
with the differentially expressed genes upon (dox inducible)
MYCN KD in the same cell line (FDR < 0.05, n= 4409), indi-
cating that these transcription factors co-regulate the same gene
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sets and finally (5) significant dynamical downregulation of the
shTBX2 signature was noted during Tg(TH-MYCN) driven NB
formation in transgenic mice, at one, two and six weeks after
birth38 (Supplementary Fig. 6c).

To further experimentally explore this presumed cooperation
between TBX2 and MYCN, we assessed the effects of TBX2 KD in
the presence of high versus low MYCN levels. Using this
approach, we observed a stronger decrease in cell proliferation
and increased G1-phase arrest when combining TBX2 andMYCN
KD together (Fig. 6b, c). Next, we performed RNA-sequencing to
further explore the transcriptional effects of individual versus
combined MYCN and TBX2 KD and confirmed synergistic
effects on expression levels of gene sets implicated in cell cycle
and the DREAM-E2F-FOXM1 complex, as well as publicly

available MYCN signatures (Fig. 6d). Using iRegulon analysis
on the enforced affected genes, motif enrichment of DREAM
complex core members, such as FOXM1, E2F4, and MYBL2 was
observed in the additively downregulated genes, while ChIP-seq
targets for EP300 and NANOG (public datasets) were enriched in
the upregulated genes (Supplementary Fig. 6d, Supplementary
Data 4).

MYCN protein levels were decreased upon TBX2 KD in the
MYCN non-amplified CLB-GA cell line, while in the MYCN
amplified IMR-5/75 cell line this was not the case (Fig. 4d). While
we show that both transcription factors have an effect on each
other’s transcriptional activity, the reciprocal effect on expression
seems to be complex and might be regulated via feedback loops.
The study of these interactions is beyond the scope of this study.

Fig. 4 TBX2 controls a FOXM1/E2F gene regulatory network. a Top enriched MsigDB hallmark genesets among the downregulated genes upon shTBX2 in
IMR-5/75 (FD < 0.01) and the upregulated genes (FDR < 0.01) upon shTBX2 in IMR-5/75. Normalized enrichment score (NES) and false discovery rate
(FDR) is depicted on the barcode plot. b iRegulon motif search for the downregulated and upregulated genes (FDR < 0.01) upon TBX2 knockdown in IMR-
5/75. Genes connected to a gene in a white circle do have a motif enrichment or ChIP-seq binding for the respective gene in the circle. c GSEA results for
genesets from literature (FOXM1 and E2F targets, and the downregulated genes upon CCND1 and CDK4 knockdown) which are enriched in the TBX2
downregulated genes in IMR-5/75. Normalized enrichment score (NES) and false discovery rate (FDR) is depicted on the barcode plot. d Western blot
of TBX2, MYCN, and FOXM1 levels upon TBX2 knockdown, in the CLBGA MYCN single copy and IMR-5/75 MYCN amplified cell lines. e Clustering of
genesets (MsigDB c5.bp.v4.0) correlated with TBX2 expression levels in the NRC tumor cohort (n= 283, GSE85047). Red nodes represent the
gene sets positively correlated with TBX2 expression (FDR < 0.01, R > 4), blue nodes represent gene sets negatively correlated with TBX2 expression
(FDR < 0.01, R <−0.3). Size of nodes depicts the size of the gene sets. Nodes that are clustered represent gene sets with the same or similar functional
indication
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paired t-test: p < 2.2e−16)
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Although FOXM1 is not regulated directly by TBX2, MYCN did
show binding to the FOXM1 promoter in several NB cell lines
(data not shown).

In summary, our data support the cooperation of TBX2 and
MYCN regulating the NB driven proliferative cellular state
mediated by FOXM1.

Drugging transcriptional addiction to TBX2 and CRC genes.
To test the possibility to drug the transcriptional addiction of NB
cells to the highly expressed TBX2 gene and CRC genes, we
combined the CDK7 inhibitor THZ1, which was previously
shown to affect transcription of lineage-dependency genes in
NB39, with the bromo-domain inhibitor JQ1, which causes
transcriptional repression of SE associated oncogenes40. We
observed a significant synergistic effect on cell viability upon
evaluation of a concentration range of JQ1 (5.1 nM–33.3 μM) and
THZ1 (0.051 nM–0.333 μM) in 5 NB cell lines (i.e. 2 MYCN
amplified cell lines Kelly and SK-N-BE(2c) and 3 MYCN non-
amplified cell lines CLB-GA, SH-SY5Y, and SK-N-AS) (Fig. 7a),
after 72 h treatment. In addition, we expanded this analysis for
two primary patient-derived tumor cell lines (one MYCN
amplified and one MYCN non-amplified organoid grown in stem
cell medium) for which we tested viability for drug combinations
after 5 days of treatment and observed even stronger synergism
(Fig. 7b). Based on these findings, we selected concentrations of
35 nM for THZ1 and 1 μM for JQ1 to evaluate treatment response
over time in eight cell lines (cell lines above and IMR-32 and
IMR-5/75), and observed an increasing synergistic effect on
cell proliferation and apoptosis in all tested NB cell lines, while
MCF-7 remained unaffected (Fig. 7c, Supplementary Fig. 7a, b).
Given that TBX2 was previously implicated in HDAC1 controlled
repression of CDKN1A expression and cell cycle arrest in dif-
ferent cancer types20 and the strong observed effects of HDAC
inhibitors in combination with other anti-cancer drugs41, we
also decided to combine HDAC1 inhibitor Panobinostat together
with the CDK7 inhibitor THZ1 (Supplementary Fig. 7c). We
observed a significantly synergistic effect over time on cell pro-
liferation and apoptosis albeit only in four out of eight NB cell
lines (Supplementary Fig. 7d, e).

Based on these data, we identify combined BET and CDK7
inhibition as a potent synergistic drug combination to target NB
cells. To gain deeper insight into the molecular basis of the
observed JQ1/THZ1 drug synergism, we performed gene
expression profiling after a 10 h treatment with 35 nM THZ1
and 1 µM JQ1 in cell line IMR-5/75. Treatment with the single
and combined compounds resulted in a more than two-fold
reduction in steady-state mRNA levels with 4.3, 3.1 and 7.9%
respectively as compared to the control (Supplementary Fig. 8a).
First, we evaluated synergistic effect of combined JQ1 and THZ1
treatment on transcriptional dependency of the NB cells for TBX2
and other CRC genes and confirmed strong reduction in
expression levels (Supplementary Fig. 8b). More specifically, all
predefined CRC genes in NB cell lines with high TBX2
expression16 or in the (nor)adrenergic module14,15 were sig-
nificantly downregulated upon combination treatment (Fig. 8a,
Supplementary Fig. 8c). Downregulation of TBX2 expression
levels was confirmed by qPCR analysis after single compound
treatment while combination of THZ1 and JQ1 treatment yielded
further downregulation in the high TBX2 expressing IMR-32,
IMR5-75 and Kelly cells (Fig. 8b). Furthermore, PHOX2B,
FOXM1, and the LIN28B (implicated in a MYCN-LIN28B
regulatory axis)42 mRNA and protein expression levels were also
strongly affected (Fig. 8b, c, Supplementary Fig. 8d).

In addition to the CRC genes, we also observed dramatic
altered gene expression patterns for FOXM1/E2F/DREAM

complex core genes upon combination treatment. While these
effects are robust, the direct of regulation does not allow an
unequivocal interpretation of the effects of drug synergism. For
example, MYBL2 is strongly induced and acts, together with
FOXM1 as an activator of genes driving cell cycle progression.
One possible explanation is the existence of a feedback loop as
reported43 (Fig. 8d, Supplementary Fig. 8e). In addition to the
observed effects on CRC genes and FOXM1/E2F/DREAM
complex core genes, the drug synergism also effects TP53
pathway response (Fig. 8e), in keeping which the finding that
TP53 activation may sensitize transcriptionally addicted cancer
cells to THZ1 inhibition44.

Further scrutinizing of the top differentially and synergistically
downregulated genes (Supplementary Data 6) contains several
important regulators of transcription including several chromatin
remodelers such as BPTF, IWS1, and INO80 which can be
assumed to be implicated in the drug synergism. In the top
upregulated genes upon treatment with JQ1 (p= 0.05), THZ1
(p= 0.05) and the combination (p= 0.01), we noticed HEXIM1, a
presumed tumor suppressor which forms an inhibitory complex
with P-TEFb and implicated in cell cycle progression and TP53
response45, the two major phenotypic effects observed upon
TBX2 KD (Supplementary Fig 8f)).

Taken together, we propose that the MYCN-TBX2 CRC
represents an important novel therapeutic vulnerability for
high-risk NB, warranting future clinical trials to assess available
BET and CDK7 inhibitors.

Discussion
The high-risk NB genome is dominated by DNA copy number
alterations, the most prominent being MYCN amplification
occurring in roughly half of these cases. We and others have
previously shown that chromosome 17q gain is the most frequent
alteration in both MYCN amplified and non-amplified high-risk
NB7–9. In addition, the syntenic region in MYCN-driven mouse
NB also undergoes copy number increase10. Recently, SE marked
master transcription factors were identified in NB that co-occupy
most enhancers and form an auto-regulatory loop what has been
called a CRC14–16.

We hypothesized that expression levels and activity of one or
more CRC constituents could be affected through chromosome
17q copy number gains. To test this hypothesis, we ranked
transcription factors on chromosome 17q based on H3K27ac
mark and patient survival, and identified TBX2 as top candidate.
TBX2, which has thus far not been studied in NB, is most highly
expressed in this tumor entity as compared to other tumor
entities and also strongly upregulated in mouse neural crest-
derived MYCN overexpressing NB46. In addition to the common
MYCN amplification, rare amplicons have been shown to impact
on activity of important NB genes as has been illustrated for ALK
and LIN28B47,48. We also reported recently that such rare
amplicons have strong negative impact on survival in keeping
with an important role of target genes in these rare amplicons in
the general NB tumor biology and clinical behavior49. In the light
of these observations, the finding of TBX2 amplification in two
NB cases further supports the biological relevance of this gene.

Analysis of the present TBX2 and MYCN occupancy data and
available data for CRC constituents such as GATA3, PHOX2B,
and HAND2 provided compelling evidence that TBX2 also
functions as a CRC gene in NB. Dysregulation of these CRCs has
been proposed to result from oncogenic master transcription
factors, altered transcription of one or more CRC downstream
signaling genes or a more global downstream perturbation due to
invasion of a transcriptional amplifier50. While our current
understanding of the specific mode of action and contribution of
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Fig. 7 Combined CDK7-BET inhibition as a novel therapeutic approach. a Heatmap with the percentage of cell viability for serial dilutions of JQ1
(5.1 nM–33.3 μM) in combination with THZ1 (0.051 nM–0.333 μM) in Kelly, SK-N-BE(2c), SK-N-AS, IMR-32, CLB-GA, and SHS-Y5Y), 72 h upon treatment;
and respective 3D representation of Excess over Bliss scores. Excess over Bliss scores >0 indicates drug synergy, <0 indicates drug antagonism. Data
points in the screen represent mean of two technical replicates. b Heatmap with the percentage of cell viability for serial dilutions of JQ1 (5.1 nM–33.3 μM)
in combination with THZ1 (0.051 nM–0.333 μM) in two organoids (one MYCN amplified and one MYCN non-amplified, 5 days upon treatment); and
respective 3D representation of Excess over Bliss scores. Excess over Bliss scores >0 indicates drug synergy, <0 indicates drug antagonism. Data points
in the screen represent mean of two technical replicates. c Synergistic effect on proliferation (% confluency) over time for the cell lines CLB-GA and
IMR-5/75 upon treatment with 35 nM THZ1 and 1 µM JQ1. One biological replicate out of three is shown, error bars represent the s.d. of the three technical
replicates. Microscopic pictures of the cells 60 h upon treatment are depicted at the right (scale bar is 100 µm). Red staining of the cells indicates apoptosis
(AnnexinV positivity). Bliss score was used to calculate potential synergism for 7 NB cell lines and the negative control MCF-7 breast cancer cell line.
Excess over Bliss scores >0 indicates drug synergy, <0 indicates drug antagonism
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Fig. 8 Downregulation of the CRC upon combined CDK7-BET inhibition. a Significant downregulation of the Module 1 CRC gene signature15 upon treatment
with 1 µM JQ1, 35 nM THZ1 and the combination in the IMR-5/75 cell line for 10 h. Kruskal–Wallis followed by a post-hoc Dunn’s multiple comparisons test
(four biological replicates per condition). b log10 TBX2, FOXM1, PHOX2B, MYCN, and LIN28B mRNA levels 10 h upon treatment with 1 µM JQ1, 35 nM THZ1
and the combination of JQ1 and THZ1 in the IMR-5/75, Kelly and IMR-32 cell lines. Error bars represent the s.d. of the three or four biological replicates.
ANOVA statistical analysis followed by a post-hoc Tukey’s test for multiple comparisons. c MYCN, PHOX2B, and TBX2 protein levels 10 h and 16 h upon
treatment with 1 µM JQ1, 35 nM THZ1 and the combination of JQ1 and THZ1 in the IMR-5/75 cell line. d Heatmap showing the expression levels for the
E2F-Dream complex core members upon treatment with 1 µM JQ1, 35 nM THZ1 and the combination of JQ1 and THZ1 in the IMR-5/75 cell line.
Kruskal–Wallis followed by a post-hoc Dunn’s multiple comparisons test (four biological replicates per condition). e Significant upregulation of the TP53
Hallmark geneset (MsigDB) upon treatment with JQ1, THZ1 and the combination in the IMR-5/75 cell line for 10 h. Kruskal–Wallis followed by a post-hoc
Dunn’s multiple comparisons test (four biological replicates per condition). *p < 0.05, **p < 0.01, ***p < 0.001
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the CRC to the complex NB phenotype is limited, some insights
are emerging. First, the work by Zeid et al.16 revealed MYCN
invasion of enhancers with canonical and non-canonical MYC
(N) recognition sites in a dose-dependent fashion as one major
driving event for the oncogenic CRC16. Secondly, GATA3 has
been shown to act in de novo enhancer establishment as a pio-
neering transcription factor51. Thirdly, PHOX2B and HAND2
are typical lineage identity genes52 for which it can be assumed
MYCN hyperactivity perturbs their normal epigenetic dynamic
regulation leading to differentiation arrest. Here, we add TBX2 as
a novel actor in this complex circuitry. Although TBX2 has some
properties of a lineage dependency factor, overexpression and
amplification of TBX2 has been associated with poor prognosis in
various other cancer entities and TBX2 is also a well-known
developmental gene acting in various tissues including neural
crest53,54. TBX2 has been described as a potent growth-
promoting factor, partly due to its ability to bypass senescence
and to repress key negative regulators of the cell cycle such as
p2120, which was confirmed as a repressed TBX2 target gene in
the present study.

In keeping with this finding, TBX2 repressed genes in both
CLB-GA and IMR-5/75 NB cells were found to be enriched for
TP53 targets while common activated genes were enriched for
FOXM1 targets, more specifically p53–p21–DREAM–E2F/CHR
pathway known to control G2/M transition55. A number of the
FOXM1 G2/M target genes are of particular interest, i.e. BRIP1
and RRM2 which are implicated in control of replicative stress in
NB (unpublished data), RAD51 implicated in homologous DNA
repair and FANCI, FANCD2 and FANCG involved in replication
fork stability and interstrand cross-link DNA repair. Together
with data from previous reports, we propose that TBX2 repres-
sion of p21 enforces MYCN controlled p21 repression56,58 which
is followed by activation of CDK2/cyclin A, p107/p130 phos-
phorylation and finally DREAM complex repression. More
directly, both MYCN and TBX2 activate FOXM1 expression and
activity. In summary, we speculate that TBX2 plays a crucial role
within the NB CRC, in a cooperative MYCN/TBX2 regulated
p53-p21-DREAM-CDE/CHR pathway controlling G2/M cell
cycle genes.Together with data from previous reports, we propose
that TBX2 repression of p21 enforces MYCN controlled p21
repression56 which is followed by activation of CDK2/cyclin A,
p107/p130 phosphorylation and finally DREAM complex
repression. More directly, both MYCN and TBX2 activate
FOXM1 expression and activity. In summary, we speculate that
TBX2 plays a crucial role within the NB CRC, in a cooperative
MYCN/TBX2 regulated p53-p21-DREAM-CDE/CHR pathway
controlling G2/M cell cycle genes57–59. Finally, a function in
epithelial-mesenchymal transition (EMT) has been attributed to
TBX222. While we found no evidence for a direct role for TBX2 in
transition from adrenergic towards mesenchymal/neural crest-
like phenotype of NB cells, in NB tumors TBX2 expression levels
were highly negatively correlated with those for ZEB2, known to
be implicated in cell fate switch and EMT60.

In this study, we also identified TBX2-AS1 as a long noncoding
RNA tightly co-expressed with TBX2 suggesting cis-regulation,
but its expression is unexpectedly increased upon TBX2 and
MYCN KD, possibly due to a compensation mechanism in
response of attenuated TBX2 and MYCN expression levels. Of
further notice, this lncRNA has been recently proposed as a
highly conserved tapRNA. Interestingly, other CRC genes such as
PHOX2B, GATA3, and HAND2 are also marked by nearby
bidirectionally transcribed putative tapRNAs. Whether this is a
common component of the complex regulation of CRC con-
stituents remains to be studied.

Transcriptional addiction is emerging as an important novel
drug vulnerability in cancer. Targeting multiple CRC constituents

and SE driven downstream genes may prevent resistance or
enhance sensitivity to BRD4 inhibitors, as JQ1 blocks the binding
of BRD4 with acetylated histones, rather than targeting BRD4
itself, which is still recruited to SEs and contributing to phase
separation of chromatin domains50. Based on this rationale,
we tested transcription addiction as a possible “Achilles heel” for
the highly active transcribed genes in NB61 and observed strong
synergistic effects on cell growth and apoptosis for combined BET
and CDK7 inhibition. By combining JQ1 and THZ1, we were able
to target and induce a collapse of the SE-driven transcriptome
including TBX2 and MYCN. Another potential mechanism
explaining the observed synergism could be modulating the p53
transcriptional program by JQ1 or TBX2 inhibition, which sen-
sitize the cells for CDK7 inhibition, as described recently in colon
cancer44, rather than targeting a dependency on transcriptional
activation by TBX2 itself. In accordance with the strong TBX2
downregulation, JQ1/THZ1 combination drugging affected the
FOXM1-DREAM regulated target genes. Finally, several addi-
tional downregulated genes could also be envisioned to contribute
to the observed drug synergism. The chromatin remodeler BPTF
is a MYC interactor required for MYC chromatin recruitment
and transcriptional activity62. The chromatin remodeler IWS1 is
the binding partner of SPT6, an interaction which is induced by
P-TEFb phosphorylation of RNAPII CTD and results in binding
of the ALYREF mRNA export adaptor through binding nascent
mRNA63. ID1 is a member of helix-loop-helix (HLH) family of
proteins that regulate gene transcription through inhibitory
binding to basic-HLH transcription factors and is involved in the
repression of cell differentiation and activation of cell growth64.
INO80 is an ATP-dependent chromatin remodeling complex
involved in transcriptional regulation, DNA repair, replication
fork stabilization, and restart57. In the list of upregulated genes
one of the most differentially regulated ones is HEXIM1. This is
intriguing given the well-established role of HEXIM1 in the
switch of transcriptional programs through inhibiting P-TEFb
and as sensitizer for BET inhibition. In addition, overexpression
of HEXIM1 upregulates expression levels of p53 and p53 target
genes by blocking p53 ubiquitination mediated by MDM2.

Of further notice, the observed drug synergism was particularly
strong in primary tumor-derived cell lines (organoids) established
prior to therapy. This further supports the importance for
expanding in vitro testing with cell lines closer resembling the real
clinical situation for optimal assessment of drugging effects.

In conclusion, we identified TBX2 as a novel CRC constituent
in high-risk NB contributing to the proliferative cellular state of
these cells and offering opportunities for novel drugging strate-
gies. Our data pave the way for more in-depth studies towards
understanding the effects of drugging of transcriptional addiction
as a guide towards novel therapies for NB.

Methods
Cell culture and generation of stable cell lines. All patient specimens and
samples were used in accordance with institutional and national policies, with
appropriate approval provided by the relevant ethical committees at the respective
institutions. All patient-related information was anonymized. All NB cell lines used
in this manuscript (genotype and mutation status in Supplementary Table 1), the
HEK-293TN and MCF-7 cell line were grown in RPMI1640 medium supplemented
with 10% fetal bovine serum (FBS), 2 mM L-Glutamine and 100 IU/ml penicillin/
streptavidin (referred further as complete medium) at 37 °C in a 5% CO2 humid
atmosphere. The IMR-5/75 shMYCN cell line was grown as previously described58

with Tetracyclin-free FBS to avoid leakage in experiments where KD of MYCN was
not desired; as such when we refer to IMR-5/75 in some experiments, this means
that the IMR-5/75 shMYCN cells were used and grown in Tetracyclin-free
medium. Short tandem repeat (STR) genotyping was used to validate cell line
authenticity prior to performing the described experiments and Mycoplasma
testing was done on a monthly basis. Patient-derived neuroblastoma tumor
organoids (Kholosy et al., unpublished) were grown in Dulbecco’s modified Eagle’s
medium (DMEM)-GlutaMAX containing low glucose and supplemented with 20%
(v/v) Ham’s F-12 Nutrient Mixture, B-27 Supplement minus vitamin A, N-2
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Supplement, 100 IU/ml penicillin, 100 μg/ml streptomycin, 20 ng/mL epidermal
growth factor (EGF), 40 ng/ml fibroblast growth factor-basic (FGF-2), 200 ng/ml
insulin-like growth factor-1 (IGF-1), 10 ng/ml platelet-derived growth factor-AA
(PDGF-AA) and 10 ng/ml platelet-derived growth factor-BB (PDGF-BB). EGF,
FGF-2, PDGF-AA, and PDGF-BB were obtained from PeproTech and IGF-1 was
obtained from R&D Systems. Other cell culture related materials were obtained
from Life Technologies.

Four different mission shRNAs from the TRC1 library (Sigma-Aldrich,
TRCN0000014824, TRCN0000014825, TRCN0000014826, TRCN0000014827,
referred in the manuscript as sh1, sh2, sh3, sh4 respectively) targeting TBX2 and
one non-targeting shRNA control (SHC002, NTC) were used to generate NB cell
lines with TBX2 KD. Virus was produced by seeding 3 × 106 HEK-293TN cells in a
10 cm2 dish 24 h prior to transfection. Transfection of the cells was done with
trans-lentiviral packaging mix and lentiviral transfection vector DNA according
to the Trans-Lentiviral shRNA Packaging Kit (Dharmacon) using CaCl2 and 2x
HBSS. 16 h after transfection cells were refreshed with reduced serum DMEM
medium containing 5% FBS and the lentivirus-containing medium was harvested
48 h later. Virus was concentrated by adding 2500 µl ice-cold PEG-IT (System
Biosciences) to 10 ml harvested viral supernatants, this was incubated overnight at
4 °C and complete medium was added to the remaining pellet upon centrifugation.
IMR-32, CLB-GA, and SK-N-AS cells were transduced with concentrated virus
(4 shRNAs and NTC) and 24 h after transduction cells were refreshed with
medium and 48 h after transduction, cells were selected using 0.5–1 µg/ml
puromycin. Transcriptomic and phenotypic read-outs were performed 7 days upon
transduction. IMR-5/75 shMYCN cell lines were transduced with concentrated
virus (4 shRNAs and NTC) and 24 h after transduction cells were refreshed with
medium either with 1 ug/ml doxycycline or not. Puromycin selection was started
48 h upon transduction. 72 h upon transduction and 48 h upon shMYCN
induction with doxycycline, cells were evaluated for transcriptomic and phenotypic
changes.

Real-time quantitative PCR. Total RNA was extracted using miRNeasy kit
(Qiagen) according to the manufacturer’s instructions, including on-column
DNase treatment, and concentration was determined with the Nanodrop (Thermo
Scientific). cDNA synthesis was performed using the iScript Advanced cDNA
synthesis kit from BioRad. PCR mix contained 5 ng of cDNA, 2.5 ul SsoAdvanced
SYBR qPCR supermix (Bio-Rad) and 0.25 µl forward and reverse primer (to a final
concentration of 250 nM, IDT) and was analysed on the LC-480 device (Roche) for
RT-qPCR cycling. Expression levels were normalized using expression data of
3 stable reference genes out of 5 reference genes tested (SDHA, YWHAZ, TBP,
B2M, HPRT1) and analyzed using qBasePlus software (http://www.biogazelle.com).
All primer pair sequences can be found in Supplementary Table 2.

Analysis of RNA-sequencing data. RNA quality was determined with the
Experion automated electrophoresis system (BioRad) prior to profiling. 250 ng of
RNA isolated from cell line CLB-GA upon KD of TBX2 (three biological replicates
per condition) and from cell line IMR-5/75 upon KD of TBX2 and/or MYCN
(six biological replicates per condition) was used as input for library preparation
with the TruSeq Stranded mRNA Sample Prep Kit from Illumina. 100 ng of RNA
from the THZ1, JQ1 and combined drugging was used to perform an Illumina
sequencing library preparation using the QuantSeq 3′ mRNA-Seq Library Prep Kit
(Lexogen, Vienna, Austria) according to manufacturer’s protocol. During library
preparation 15 PCR cycles were used. Size distribution and quality was evaluated
with a high sensitivity DNA ChIP on the bio-analyzer (Agilent) and qPCR
quantification of the libraries using the Illumina Kapa Library quantification kit
(Lightcycler 480 qPCR mix Kapa). RNA-seq libraries were sequenced on the
NextSeq 500 platform (Illumina) using the Nextseq 500 High Output kit V2 75
cycles single-end (Illumina). Sample and read quality was checked with FastQC
(v0.11.3). The QuantSeq generated reads were trimmed using cutadapt version 1.11
to remove the “QuantSEQ FWD” adaptor sequence. Reads were subsequently
aligned to the human genome GRCh38 with STAR aligner (v2.5.2b and v2.5.3a).
Final gene count values were obtained with RSEM (v1.2.31), which takes read
mapping uncertainty into account. Non-locus strand specific read counts were
filtered. To explore if the samples from different groups clustered together and to
detect outlier samples, Principal Component Analyses (PCAs) on rlog transformed
counts were performed using the R statistical computing software. Genes were only
retained if they were expressed at counts per million (cpm) above one in at least
four, eight or twelve samples for the drugging, shTBX2 in IMR-5/75 and shTBX2 in
CLB-GA datasets respectively. Counts were normalized with the TMM method (R-
package edgeR), followed by voom transformation and differential expression
analysis using limma (R-package limma). A general linear model was built with the
treatment groups (drugging or KD) and the replicates as a batch effect. Statistical
testing was done using the empirical Bayes quasi-likelihood F-test. GSEA59 was
performed on the genes ordered according to differential expression statistic value
(t). Signature scores were conducted using a rank-scoring algorithm65. Limma
voom barcodeplots were used for visualization of gene set enrichment. In order to
identify enriched functional classes and (upstream) co-regulators, iRegulon24 and
enrichR66 were used with the default settings.

Western blot analysis. Proteins were isolated using a RIPA lysis buffer (5 mg/ml
sodium deoxycholate, 150 mM NaCl, 50 mM Tris-HCl pH 7.5, 0,01% SDS solution,
0,1% NP-40) supplemented with protease inhibitors. In total, 40 µg of protein
lysate was loaded onto an SDS-PAGE gel (10% Pre-cast, Bio-Rad), run for 1 h
at 150 V and subsequently blotted onto a nitrocellulose membrane. The
membranes were probed with the following primary antibodies: anti-TBX2
antibody (SC-17880, Santa Cruz, 1:1000 dilution / sc-514291, Santa Cruz, 1:1000
dilution), anti-PHOX2B antibody (sc-376997, Santa Cruz, 1:500 dilution),
anti-MYCN antibody (SC-53993, Santa Cruz, 1:1000 dilution), anti-FOXM1
antibody (5436 S, Cell Signalling, 1:1000 dilution). As secondary antibody, we used
HRP-labeled anti-rabbit (7074 S, Cell Signalling, 1:10,000 dilution) and anti-mouse
(7076P2, Cell Signalling, 1:10,000 dilution) antibodies. Antibodies against Vinculin
(V9131; Sigma-Aldrich, 1:10,000 dilution), alpha-Tubulin (T5168, Sigma-Aldrich,
1:10,000 dilution) or bèta actine (A2228; Sigma-Aldrich, 1:10,000 dilution) were
used as loading control. All antibodies were diluted in milk/TBST (5 % non-fat dry
milk in TBS with 0.1 % Tween-20). Binding of the antibodies with the membrane
was evaluated using the SuperSignal West Dura Extended Duration Substrate
(Thermo Scientific). Pictures were taken with the ChemiDoc-It Imaging System
(UVP) using the VisionWorks analysis software (UVP), quantification of the blots
were performed using ImageJ. Uncropped scans of the blots used in the main
figures can be found in the Supplementary Figure 9.

Phenotypic assessment of cells. For colony formation assays, 2000 viable CLB-
GA, IMR-32 and SK-N-AS cells with or without TBX2 KD were seeded in a 6-cm
dish in a total volume of 5 ml complete medium and were then left unaffected for
10–14 days in a humid incubator at 37 °C. After an initial evaluation under the
microscope, the colonies were stained with 0.005% crystal violet and digitally
counted using ImageJ. The IncuCyte® Live Cell imaging system (Essen BioScience)
was used for assessment of proliferation after TBX2 KD. Briefly, 17.5 × 103 viable
CLB-GA and 15 × 103 IMR-32, SK-N-AS and IMR-5/75 cells, with or without
TBX2 KD, were seeded in five replicates in a 96-well plate (Corning costar 3596)
containing complete medium. Cell viability was measured in real-time using the
IncuCyte by taking photos every 2 h of the whole well ( × 4). Masking was done
using the IncuCyte® ZOOM Software. For cell cycle analysis, 7 × 105 cells were
seeded in a T25 in complete medium and transduced with TBX2 shRNAs and
controls and selected with puromycin, as described above. Cells were trypsinized
and washed with PBS. The cells were resuspended in 300 µl cold PBS and while
vortexing, 700 µl of 70% ice-cold ethanol was added dropwise to fix the cells.
Following incubation of the sample for minimum 1 h at −20 °C, cells were washed
in PBS and resuspended in 500 µl PBS with RNase A to a final concentration of
0.25 mg/ml. Upon 1 h incubation at 37 °C, 20 µl Propidium Iodide solution was
added to a final concentration of 40 µg/ml. Samples were loaded on a BioRad S3TM

Cell sorter and analysed with the Dean-Jett-Fox algorithm for cell-cycle analysis
using the FlowJo® software package.

Monitoring of synergistic effects of drug combinations. The combined effect of
JQ1 (MedChem Express) and THZ1 hydrochloride salt (Medchem express) in
classical NB cell lines and patient-derived NB organoids was determined in a
checkerboard fashion. Cell lines and organoids were seeded in 384-well plates
and incubated overnight. Next, cell lines and organoids were co-treated with three-
fold dilution series of JQ1 (5.1 nM–33.3 μM) and THZ1 (0.051 nM–0.333 μM),
using the HP D300 Digital Dispenser (Tecan). Control cells were treated with
DMSO. Cell viability was determined after 72 h (classical cell lines) or 120 h
(organoids) using the 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) colorimetric assay (classical cell lines) or the CellTiter-Glo® lumi-
nescent assay from Promega (organoids). Cell viabilities of DMSO-treated cells
were set to 100%. Excess over Bliss scores (score >0 indicates drug synergy, <0
indicates drug antagonism) were calculated and subsequently visualized using
the R package synergyfinder. Values more than 100% were replaced by 100% for
the concentration range experiments of SH-SY5Y and SK-N-BE(2c) to fulfill the
criteria for Bliss score calculation.

IncuCyte® assay for assessment of drug synergism. Neuroblastoma cells (CLB-
GA, IMR-32, IMR-5/75, SH-SY5Y, Kelly, SK-N-BE(2)-C and SK-N-AS) and MCF-
7 cells were seeded in complete medium and a 1:200 dilution of IncuCyte® Annexin
V Red Reagent for apoptosis (Essen Bioscience) in 96-well tissue culture plates
(Corning costar 3596) in triplicate at 30% confluency and allowed to recover
overnight. The next day, cells were treated with the indicated concentrations of JQ1
(BPS Bioscience), THZ1 hydrochloride salt (Medchem express) or Panobinostat
(LBH589, Selleck Chemicals), or combinations thereof. Cell proliferation and cell
death (AnnexinV positivity) were assessed continuously for 68–96 h after treatment
by using the IncuCyte® Live Cell imaging system (Essen BioScience), by taking
photos every 3–4 h of the whole well. Masking was done using the IncuCyte®
ZOOM Software. Possible synergism was calculated using the Bliss method.

Chromatine immunoprecipitation (ChIP) assay. A total of 3–5 × 107 cells were
crosslinked in complete medium with 1% formaldehyde while shaking for 7 min
at room temperature. Crosslinking was quenched with 125 mM glycine (Sigma-
Aldrich), cells were washed twice with PBS and stored at −80 °C. Cells were lysed
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and sonicated with the M220 Covaris for 15 min to obtain 200–300 bp long
fragments. Chromatin fragments were immunoprecipitated overnight using 1 µg
for every 107 cells of the following antibodies anti-TBX2 (SC-17880), anti-
H3K4Me3 (Ab8580), anti-H3K4me1 (Ab8895), anti-H3K27ac (Ab4729) and anti-
MYCN (SC-53993). 20 µl Protein A UltraLink® Resin beads was added per 107

cells. Beads were eluted and split into two subsamples, one was used for western
blot after adding 2x laemmli buffer and incubation at 95 °C for 10 min at 1000 rpm
to elute the proteins from the beads, while the other subset was used for DNA
isolation after resuspension in elution buffer and incubation for 22 min at 65 °C
while vortexing every 2 min. Reverse crosslinking was done at 65 °C for 15 h. The
chromatin for DNA purposes was resuspended in TE-buffer to dilute SDS in the
elution buffer, incubated for 2 h at 37 °C with 0.2 mg/ml RNase and followed by an
incubation of 2 h at 55 °C with 0.2 mg/ml proteinase K. DNA was isolated using
400 µl phenol:chloroform:isoamylalcohol (P:C:IA) in phase lock gel tubes (5Prime).
Upon centrifugation, the aqueous layer was transferred to a new tube with 200 mM
NaCl, 30 µg glycogen and 800 µl 100% ethanol, and incubated for 30 min at
−20 °C. Upon centrifugation, the pellet was washed with 80% Ethanol and
resuspended in RNase/DNase free water. Concentration was measured using the
Qubit® dsDNA HS Assay Kit (Thermo Scientific). Library prep was done using the
NEBNExt Ultra DNA library Prep Kit from Illumina with 50–500 ng starting
material and using 8–12 PCR cycles according to the manufacturer’s instructions.
Libraries were evaluated on the bio-analyzer using the Agilent high-sensitivity kit,
followed by Pippin Prep™ (Sopachem) with a 2% Dye Free Marker L Agarose
Gel Cassette to remove large fragments (>600 bp) or adapter dimers (<200 bp).
Library concentrations were measured with the Illumina Kapa Library quantifi-
cation kit (Lightcycler 480 qPCR mix) and ChIP-seq libraries were sequenced on
the NextSeq 500 or HiSeq 2000 platform (Illumina) using the Nextseq 500 High
Output kit V2 75 cycles single-end (Illumina) or HiSeq SBS Kit V4 50 cycles.

Assay for transposase-accessible chromatin using sequencing. ATAC-seq
(assay for transposase-accessible chromatin using sequencing) was performed as
previously described with minor changes67. In short, 50,000 cells were lysed and
fragmented using digitonin and Tn5 transposase (Illumina). Next, the samples
were purified using the MinElute kit (Qiagen). The transposed DNA fragments
were amplified and purified using Agencourt AMPure XP beads (Beckamn
Coulter). Library concentrations were measured with the Illumina Kapa Library
quantification kit (Lightcycler 480 qPCR mix) and ATAC-seq libraries were
sequenced on the NextSeq 500 platform (Illumina) using the Nextseq 500 High
Output kit V2 75 cycles single-end (Illumina).

ChIP-seq and ATAC-seq data-processing and analysis. Prior to mapping to
the human reference genome (hg19) with bowtie2 (v.2.3.1), quality of the raw
sequencing data was evaluated using FastQC and adapter dimers were removed
using cutadapt when necessary. Peak calling was performed using MACS2 taking a
q value of 0.05 as threshold. IGV was used for visualization purposes with the by
IGVtools generated tdf files. Bedgraph files generated by MACS2 were converted to
bigwig files and used as input for the ChIP-tracks in the figures, further processed
using the R package Sushiplot. Homer68 was used to perform motif enrichment
analysis, taking 200 bp around the peak summit as input. Gene annotation tables,
tag density plots, heatmaps and overlap of peaks maps were generated using
Homer and the R packages EnrichedHeatmap and ChIPpeakAnno, with default
parameters.

Super-enhancer analysis. ChIP-sequencing data of three different datasets were
used for SE calling. (a) H3K27ac ChIP-sequencing for the cell lines CLB-GA (rep1),
NGP, IMR-5/75 and IMR-32 (rep1) was performed as reported above with the
H3K27ac antibody (ab4729, Abcam). (b) H3K27ac ChIP-sequencing for the cell
lines SK-N-AS (rep1), CHP-212 (rep1), GI-M-EN (rep1) and IMR-5 was per-
formed by Zymo Research using between 5 × 106 and 10 × 106 frozen cross-linked
cells and pull down with the anti-H3K27ac antibody, as previously reported by
Henssen et al69. (c) The public available H3K27ac ChIP-seq fastq files for CHP-
212, CLB-MA, CLB-PE, CLB-GA (rep2 and rep3), GI-C-AN, GI-M-EN (rep2),
IMR-32 (rep2), LA-N-1, N206, NB-EBc1, SH-SY5Y, SJNB-1, SJNB-12, SJNB-6,
SJNB-8, SK-N-AS (rep2), SK-N-BE(2)-C, SK-N-DZ, SK-N-FI, TR14 (GSE9068315)
and MCF-7 (GSE6911270) were obtained using the SRAtoolkit and mapping to ref
genome hg19 was done using bowtie2 (v.2.3.1) with default settings. All BAM
sequence files were mapped to the reference genome hg19 and subsequently
downsampled using the picard tool DownsampleSam to obtain approximately
30 million reads per sample in order to be able to compare the H3K27ac activity
between the cell lines. Cell line replicates are clustering together according to
H3K27ac signal (Supplementary Fig. 1a), represented by a correlation (Pearson)
heatmap generated by DeepTools.

SEs were defined with the Lilly algorithm15 with the LILY provided
configuration file for single-end reads and a merge distance of 200 bp.
ControlFREEC was run with a window size of 50,000 and ploidy constraint of 2–4.
All SEs that are overlapping across the 26 NB cell lines or that are within maximum
distance of 500 bp from each other were clustered using bedtools, resulting in 176
SE clusters on chr17q (38.1 Mb—qter). Among the top 500 SEs ranked according
to the median rank, six regions were prioritized based on the presence of an SE

cluster in min 20 NB cell lines. Ensembl genes (bioMart) in a 500 Kb range around
the SE cluster were annotated to the different SE clusters. Of the annotated
transcription factors71,72, only those with a H3K27ac activity called peak at their
TSS (Macs2, q < 0.05) were selected, as SEs are supposed to highly activate their
target genes13. Genes were only selected when they had a H3K27ac marked TSS
in all cell lines harboring the SE. Both IGV and the R package Sushi were used
to visualize the SE regions in the different cell lines.

4C-sequencing and data analysis. Preparation of 4C samples was performed
as described previously73, starting with 107 separated single cells that were cross-
linked with 2% formaldehyde. DNA was digested using DpnII as a primary and
Csp6I as a secondary restriction enzyme. 50 ng of the final 4C template of two NB
cell lines (CLB-GA and SK-N-AS) was used for the amplification step with three
different primer sets (Supplementary Table 2) designed for the TBX2 locus. PCR
products were purified and pooled for multiplexed sequencing after adding 40%
PhiX to increase sequence complexity. Sequencing was performed on the HiSeq
2000 V4 platform (50 bps single reads). Sequencing reads from the 4C library were
demultiplexed using the demultiplex.py script (https://gist.github.com/meren/
7632184) and aligned using bowtie2 (v2.3.1) with parameters—sensitive—time—
end-to-end -q -p 2. Aligned data were stored together with the metadata into a
FourCSeq object74. The aligned libraries were subjected to a QC according to
criteria published elsewhere73. Cis- and trans-interactions were determined using a
custom script implementing the method described in73,74. Briefly, a z-score is
computed on the binarized signal (i.e., counting all fragments covered by reads)
using sliding windows (w= 100 fragments, W= 3000 fragments), and an FDR is
computed from this z-score to identify significant interactions. We use a FDR of
1% for cis-interactions and 0.5% for trans-interactions. Domainograms showing
the signal intensity of different ranges are plotted using a custom R-script. Bigwig
files for visualization are generated using a smoothing over 21 consecutive
fragments, and normalized to the total library size.

TBX2 expression analysis in NB tumors and cell lines. TBX2 expression analysis
was performed on 283 NB tumors for which copy number (n= 218), mRNA
expression (n= 283) and patient survival (n= 276) data were available from the
Neuroblastoma Research Consortium (NRC, GSE85047), which is a collaboration
between several European NB research groups. Additionally, the NB dataset from
Su et al. (n= 489, GSE45547) was used as validation cohort25. All statistical ana-
lyses were performed using R (version 3.3.0). Genes were ranked according to the
correlation of their expression (Spearman correlation) with TBX2 expression levels.
Next, pre-ranked GSEA was performed as previously described59 with the MsigDB
c5.bp.v4.0 geneset and clustering of enriched genesets (only when FDR < 0.01, and
R > 4/R <−3) was performed using the tool EnrichmentMap in Cytoscape (version
3.2.1). TBX2 expression in normal tissue, tumor, and cell line datasets was visua-
lized on the R2 genomics analysis and visualization platform (http://r2.amc.nl/).

DNA copy number analysis. The presence of focal gains encompassing the TBX2
locus was investigated in published copy number profiling data of 556 high-risk
tumors29. TBX2 focal gains were identified as copy number segments overlapping
with the TBX2 locus with log2 ratio >= 0.3 and a maximal size of 5 Mb. Visual
inspection of the segmented profiles was done using Vivar75 and R2 (http://r2.amc.
nl/).

Low coverage whole genome sequencing was performed following Library
construction using the NuGen kit (Ovation® Ultralow Library Systems V2). In
brief, 100 ng was used to prepare a Library and 150 bp paired sequenced in a flow
cell using the MiSeq V3, to achieve an average of approximately 2 × . Copy number
analysis was performed using the FREEC tool76.

Quantification and statistical analysis. Statistical significance of differences
between conditions for the functional analysis colony forming assay and cell cycle
was determined by a non-parametric Mann–Whitney test using R package (version
3.3.0) upon mean-centering the datapoints. The ANOVA (analysis of variance) test
is used to assess how much of the variability in the TBX2 expression levels can
be explained by the patient stage or/and TBX2 copy number status, while the non-
parametric test Kruskal–Wallis followed by a post-hoc Dunn’s multiple compar-
isons test was used to determine differences in gene expression and signatures
scores between 4 different groups with 4 biological replicates per condition.
Statistical significance of overlap between conditions was determined by Fisher test
using R package. The non-parametric Spearman or parametric Pearson test was
used for correlation analysis depending on the homoscedasticity assumption
(Pearson if the assumption is met). Kaplan–Meier analysis with log-rank statistics
was used for survival analysis. All assumptions for statistical analysis (performed
using R) are met and as such justified. For qPCR experiments, reference genes
were excluded if Genorm M value was greater than five and/or Coefficient of
Variation greater than two, according to the qBaseplus software. For all
experiments, at least three reference genes were used for the normalization
according to good qPCR practice.

The details of quantification and statistical methods used can be found in each
figure legend.
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Code availability. The code for super-enhancer analysis is available at https://
github.com/LabSpeleman/LILYconfig/blob/master/config.200.SE.txt and https://
github.com/LabSpeleman/LILYconfig/blob/master/config.FREEC.general.txt

Data availability
The RNA-sequencing, ChIP-sequencing and ATA-sequencing datasets generated during
this study were deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/
arrayexpress) with accession numbers: E-MTAB-6570, E-MTAB-6562, E-MTAB-6568,
E-MTAB-6567 and E-MTAB-7025. Data that supports the findings of this study are
available from the Neuroblastoma Research Consortium (NRC, GSE85047), Su et al.
[GSE45547]25 and Depuydt et al. [GSE103123]29.
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