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Abstract: An enhanced smoothed l0-norm algorithm for the passive phased array system, which
uses the covariance matrix of the received signal, is proposed in this paper. The SL0 (smoothed l0-
norm) algorithm is a fast compressive-sensing-based DOA (direction-of-arrival) estimation algorithm
that uses a single snapshot from the received signal. In the conventional SL0 algorithm, there are
limitations in the resolution and the DOA estimation performance, since a single sample is used. If
multiple snapshots are used, the conventional SL0 algorithm can improve performance in terms of the
DOA estimation. In this paper, a covariance-fitting-based SL0 algorithm is proposed to further reduce
the number of optimization variables when using multiple snapshots of the received signal. A cost
function and a new null-space projection term of the sparse recovery for the proposed scheme are
presented. In order to verify the performance of the proposed algorithm, we present the simulation
results and the experimental results based on the measured data.

Keywords: compressive sensing; direction of arrival; smoothed L0-norm method

1. Introduction

The direction-of-arrival (DOA) estimation method is a basic required technique to
estimate the locations of the targets. A representative method to estimate the DOAs of
targets uses the phase difference between antennas based on the uniform linear array
(ULA). Typical examples of the DOA estimation method are the conventional beamforming
algorithm, and adaptive beamforming algorithm, which are beamforming-based meth-
ods [1–4]. The multiple signal classification (MUSIC) algorithm estimates the DOAs of the
targets using the orthogonality of the noise part eigenvectors and the steering vectors [5].

The conventional DOA estimation algorithms [1–7] are based on an overdetermined
system. Therefore, the sensor failure of an array becomes a factor that greatly degrades the
DOA estimation performance of the algorithms.

In contrast, the compressive-sensing-based DOA estimation methods extend the
received signal to an underdetermined system using the spatial sparsity of the incident
signals of the targets and estimate the DOAs of the targets through the sparse recovery.
Thus, the compressive-sensing-based DOA estimation methods are more robust with the
sensor failure than the conventional DOA estimation methods.

In order to estimate the DOAs of the incident signals based on the CS method, a
data-fitting algorithm was proposed [8]. At first, a single snapshot measurement vector of
a received signal is used for the sparse recovery. In order to enhance the DOA estimation
performance of the data-fitting algorithm, the single measurement formulation of the
conventional algorithm was expanded to the multiple snapshots measurement formulation.
In [9], which is a study on extending the data-fitting DOA algorithm to the bistatic MIMO
sonar system is presented, and the high-resolution direction-of-departure (DOD)/DOA
algorithm is proposed.
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In [10–12], a compressive-sensing-based covariance-fitting DOA estimation algorithm
was proposed. The amount of computations was proportional to the number of samples
when the basis pursuit denoising (BPDN)-based cost function was used. The covariance-
fitting method was presented in [10–12], and the DOA was estimated using the sparse
recovery of the signal covariance matrix. Since the number of entries to be recovered is
independent of the number of samples, it is possible to solve the problem of computational
complexity due to an increase in the number of samples.

The biggest problem with these algorithms [8–12] is that they are computationally
intensive, and they are highly dependent on the noise variance of a given environment.
In [8–12], a regularization parameter, which is the weight of the cost function, is highly
dependent on the noise variance. If the noise variance that is used for the corresponding
parameter does not match the noise variance of the environment, the DOA estimation
performance of the corresponding methods is greatly degraded.

The smoothed l0-norm (SL0) [13,14] is a method of approximating the discontinuous
function L0-norm with an arbitrary continuous function. The solution of the L0-norm
function can be obtained by the global maxima of the corresponding function. This method
requires less computations than solving the L1-norm minimization problem, and it does
not require an accurate noise variance.

In [15], a joint smoothed l0-norm-based DOA estimation method in multiple input–
multiple output (MIMO) radar system was presented. The proposed scheme in [15] reduces
the dimension of the received signal matrix by using the feature of MIMO radar system
and the singular value decomposition of the received signal matrix. In [16], a reweighted
smoothed l0 norm-based DOA estimation method for the monostatic MIMO radar system
was proposed. To reduce the computation time, [16] used vectorized diagonal terms of
the signal covariance matrix by using the feature of the monostatic MIMO radar system
and only considering uncorrelated targets. A weight vector to enhance the accuracy of the
scheme is presented in [16] by using the noise subspace which can only be obtained when
the number of targets is given in advance. In [17], a robust SL0 approach for MIMO radars
was presented to provide accurate angle-range-Doppler estimates. The ill-conditioned
problem was studied when applying SL0 for MIMO radar angle-range-Doppler estimates.
In [18], an adaptive beamforming based on compressive sensing with the SL0 method
was presented. The proposed scheme in [18] can greatly reduce the elements of the
array without degenerating the performance of the beams. In [19], a new sparse signal
representation model was proposed. The proposed scheme shows robust performance
on DOA estimation by using the lower left diagonals of the covariance matrix. In [20],
a method which enhances the range-Doppler imaging performance for noise radar was
presented by generalized SL0 method. In [21], a regularized weight SL0 minimization
method for underdetermined blind source separation was proposed. the proposed scheme
in [21] shows the superior performance in signal and image recovery. In [22], a new
smoothing modified Newton algorithm based on lp norm regularization (SMN-lp) was
presented to recover the sparse signal.

The smoothed L0-norm (SL0) method only uses a single snapshot. The gradient
descend method is used for the process of mapping a signal vector using a continuous
function to find the global maxima, which is in the feasible set.

In order to perform the sparse recovery using a single snapshot, the conventional
method is vulnerable to the low SNR and adjacent multiple targets. DOA estimation
with multiple snapshots of received signals from correlated targets or a rich multipath
environment is practically important.

To enhance the performance of the conventional scheme and robustness for the cor-
related signal, a covariance-fitting-based SL0 algorithm is presented in this paper. By
using the covariance-fitting method, instead of using multiple snapshots, the number of
optimization variables for the sparse recovery could be reduced.
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The proposed algorithm is considered for use in a passive sonar system. Considering
the correlated signal is essential to properly estimate the DOAs of the multiple targets of
the measurement data collected underwater.

In this paper, we derived a process of extending the conventional method to enable
the covariance fitting and the cost function of the sparse recovery based on covariance
fitting is presented. The null-space projection term that adjusts the optimization result
so that it is always included in the feasible set is proposed to be suitable for the signal
covariance extended to the potential DOA set. In order to verify the performance of the
proposed algorithm, we present the simulation results, which are based on MATLAB and
the experimental results, which are based on the measured data.

2. Signal Model

In order to use the compressive-sensing method, the solution that needs to be obtained
must be sparse. The solution of the DOA estimation in the passive sonar system is the
incident angle of the received signal. The received signal is the incident on the sensor array
only in a specific direction. In other words, the received signal has a spatially sparse feature.

The received signal at ti can be expressed as

y(ti) = Ax(ti) + n(ti). (1)

When p denotes the number of targets, the signal vector x(ti) can be written as (2) in
the passive sonar system.

x(ti) =

 x1(ti)
...

xp(ti)

. (2)

In order to use the compressive sensing method, the signal vector x(ti) should be
changed as

x(ti) =

 x1(ti)
...

xNθ
(ti)

, (3)

where Nθ is the number of search angles for θ. A denotes an array manifold, and the array
manifold in the compressive-sensing method can written as

A =
[

a(θ1) a(θ2) · · · a
(
θNθ

) ]
. (4)

M is the number of sensors. The array vector a(θn) can be written as

a(θn) =
[

a1(θn) a2(θn) · · · aM(θn)
]T. (5)

The noise vector n(ti) is a complex Gaussian random vector whose real parts and
imaginary parts of the noise elements are Gaussian-distributed with N

(
0, σ2/2

)
:

n(ti) =
[

n1(ti) n2(ti) · · · nM(ti)
]T. (6)

3. Conventional Smoothed l0 Norm Based DOA Estimation

The conventional smoothed l0 norm method estimates the DOAs of the target by only
using a single snapshot. Using (3), the i-th element of x(ti) mapped to the Gausian function
can be expressed as

fσ(xk(ti)) , exp

(
−(xk(ti))

2

2σ2

)
, k = 1, · · · , Nθ , (7)
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where sigma is the variance of the Gaussian function. When (7) is defined, (8) is established,
and it can be approximated and expressed as (9)

lim
σ→0

fσ(xk(ti)) =

{
1, if x = 0
0, if x 6= 0

(8)

fσ(xk(ti)) =

{
1, if |x| � σ
0, if |x| � σ

. (9)

Using (3) a continuous multivariate function Fσ(x(ti)) can be defined as

Fσ(x(ti)) =
Nθ

∑
k=1

fσ(xk(ti)). (10)

Using Equation (10), we can see that the function Fσ(x(ti)) outputs the number of
elements whose value is 0 in the signal vector. Therefore, when the variance of the Gaussian
function, σ, is a very small value, the following equation holds:

‖x(ti)‖0 ≈ Nθ − Fσ(x(ti)). (11)

Using (11), the conventional cost function of the l0-norm minimization method can be
expressed as

min‖x(ti)‖0 subject to Ax(ti) = y(ti)⇒ max F(x(ti))subject to Ax(ti) = y(ti). (12)

The min‖x(ti)‖0 problem of the compressed sensing-based DOA estimation method,
which is a discontinuous function, can be expressed by the problem of finding the global
maxima of the continuous function through mapping to a Gaussian function. The solution
of the cost function expressed by the continuous function is required to find the global
maxima by using the gradient descent method.

4. Covariance-Fitting Smoothed l0 Norm Based DOA Estimation

Let L denote the number of snapshots. For i = 1, · · · , L in (1), which is the received
signal matrix Y, can be written as

Y = AX + N. (13)

The array covariance matrix obtained from the time average can be defined as

R̂ =
1
L

L

∑
i=1

y(ti)y(ti)
H ≈ AR̂xAH + E. (14)

Every element of RX should be optimized using the sparse recovery. The Gaussian
function was used in this paper in order to map the elements of the signal covariance
matrix. Using (14), the Gaussian function can be written as

fσ

(
(RX)k,l

)
, exp

−
((

RX
)

k,l

)2

2σ2

, k, l = 1, · · · , Nθ , (15)

where (RX)k,l denotes the entry that lies in row number k and column number l.
Equation (15) can be approximated to:

fσ

(
(RX)k,l

)
≈

 1, when
∣∣∣(RX

)
k,l

∣∣∣� σ

0, when
∣∣∣(RX

)
k,l

∣∣∣� σ .
(16)
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Using (16), Fσ

(
RX

)
can be defined as

Fσ(RX) =
Nθ

∑
k=1

Nθ

∑
l=1

fσ

(
(RX)k,l

)
. (17)

By using (16), it is clear that (17) represents the number of zero elements of RX when
σ is close to 0.

The cost function of the sparse recovery can be defined as

min
∥∥RX

∥∥
0

subject to R̂ = ARXAH .
(18)

‖·‖0 denotes the l0 norm which calculates the number of non-zero elements. In order
to make RX sparse, min‖RX‖0 should be minimized. The l0 norm of RX and the expression
in (17) has following relation:

‖RX‖0 ≈ N2
θ − Fσ(RX). (19)

When σ is close to 0, using (19), the cost function of the sparse recovery can be
approximated as

max Fσ(RX)

subject to R̂ = ARXAH .
(20)

Setting the σ value is important in order to obtain RX which is sparse and preserves
information about the signal sources. When σ is small, Fσ has many local maxima and is
highly non-smooth, so it is difficult to maximize it. Conversely, if σ is close to being infinite,
Fσ becomes easy to maximize because it is smoother than the previous case and has a lesser
local maximum. In order to easily and efficiently maximize Fσ, σ should be set to gradually
decrease from ∞ to 0.

Furthermore, making the output of the gradient descent method in the feasible set,
which is an important part in order to recover the sparse RX. In order to make the output
RX of the method in a feasible set, the following process is essential:

R̂X = R̂X −A†
(

AR̂XAH − R̂
)(

AH
)†

. (21)

Figure 1 illustrates the concept of the proposed scheme. Using the R̂X = R̂X − µ ·∆R̂X,
(21) can be expressed as

R̂X=R̂X −A†(AR̂XAH − R̂
)(

AH)†

=
(
R̂X − µ · ∆R̂X

)
−A†(A(R̂X − µ · ∆R̂X

)
AH − R̂

)(
AH)†

=R̂X − µ · ∆R̂X −A†(AR̂XAH − µ ·A∆R̂XAH − R̂
)(

AH)†

=R̂X − µ · ∆R̂X + µ ·A†A∆R̂XAH(AH)†

=R̂X − µ ·
(

∆R̂X −A†A∆R̂XAH(AH)†
)

.

(22)

A†A is a projection matrix onto the row space of A. (22) can be written as

R̂X=R̂X − µ ·
(

∆R̂X −A†A∆R̂X
(
A†A

)H
)

=R̂X − µ ·
(
∆R̂X −A†A∆R̂XA†A

)
.

(23)
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Since the result is the same, no matter how many times the projection is executed,
Equation (23) can be simplified as

R̂X=R̂X − µ ·
(
∆R̂X −A†A∆R̂X

)
=R̂X − µ ·

(
I−A†A

)
∆R̂X.

(24)(
I−A†A

)
in (24) is a null-space projector. The gradient ∆R̂X is controlled to fit in the

feasible set by the null-space projector.

while min

†
†ˆ ˆ H

X
R A R AInitial value of

for

max min, ,

221 1 1 1
2 2

1,1 1,1 1, 1,

2 21 1 1 1
2 2

,1 ,1 , ,

ˆ ˆ ˆ ˆexp / 2 exp / 2

ˆ

ˆ ˆ ˆ ˆexp / 2 exp / 2

i th i th i th i th

N N

i th

i th i th i th i th

N N N N N N

R R R R

R R R R

X X X X

X

X X X X

R

1ˆ ˆ ˆi th i th i th

X X X
R R R

†
†ˆ ˆ ˆ ˆ-i th i th i th H H

X X X
R R A AR A R A

Initial value of max

end

end

for

end

k

Figure 1. The concept of the covariance-fitting SL0 (correlated signal).

5. Numerical Results

In order to verify the DOA estimation performance of the covariance-fitting SL0,
the spectra of the proposed scheme are compared with the conventional beamforming
algorithm. The structure of the sensor array is set to a uniform linear array. When the value
of the wavelength is set, the uniform linear array structure is settled so the inter-element
spacing of the receiver becomes half the wavelength.

The number of incident signal sources is two and the DOAs of the incident signals
are set in the two cases. In case 1, the location of the two incident signal sources are far
apart from each other and the DOAs are −20◦ and 20◦. In case 2, the two incident signal
sources are adjacent and the DOAs of the two incident signal sources are 15◦ and 20◦. The
results of the proposed scheme and the conventional beamforming algorithm are shown in
Figures 2–4.
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Figure 2. Spectrum of the proposed scheme and the conventional beamforming algorithm when the
number of sensors is 15, the number of samples is 1000 and the incident angles are −20◦ and 20◦

(SNR = 10 dB).
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Figure 3. Spectrum of the proposed scheme and the conventional beamforming algorithm when the
number of sensors is 10, the number of samples is 500, and the incident angles are −20◦ and 20◦

(SNR = −10 dB).

The spectra of the proposed scheme and the conventional beamforming algorithm
when the DOAs of two incident signals are−20◦ and 20◦ are shown in Figures 2 and 3. Both
the proposed scheme and the conventional beamforming algorithm accurately estimate the
DOAs of the incident signals for all the SNRs. In the conventional beamforming algorithm,
the average power of the sidelobes increases as the SNR decreases. When the SNR is −10
dB, the power difference between the mainlobe and the sidelobe is around 5 dB. In contrast



Sensors 2021, 21, 4403 8 of 20

to the conventional beamforming algorithm, which shows a typical beam pattern, the
spectrum of the only proposed scheme has sharp peaks in the part that corresponds to the
DOAs. This is because the compression sensing-based DOA estimation method is not a
beamforming method, so the mainlobe and the sidelobe do not exist in the spectrum.
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-20

-15

-10

-5

0
P

o
w

e
r(

d
B
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Spectrums of the proposed scheme and the CBF

CBF

Proposed scheme

Figure 4. Spectrum of the proposed scheme and the conventional beamforming algorithm when
the number of sensors is 20, the number of samples is 500 and the incident angles are 15◦ and 20◦

(SNR = 10 dB).

The resolution performance of the proposed scheme and the conventional beamform-
ing algorithm is shown in Figure 4. In this case, the DOAs of two incident signals are 15◦

and 20◦. In the conventional beamforming algorithm, it can be seen that the two incident
signals cannot be resolved. In contrast to the conventional beamforming algorithm, it can
be seen that the proposed scheme accurately resolves the two adjacent incident signals at
5◦ interval.

Figures 5 and 6 show the root mean square (RMS) errors of the proposed scheme, the
conventional smoothed l0 norm method and the multiple snapshots-based smoothed l0
norm method versus signal-to-noise ratio (SNR) with 10 sensors and 1000 snapshots. The
true DOA of the first target is 5◦ and that of the second target is 20◦. These simulation
results in Figures 5 and 6 verify that the DOA estimation performance of the proposed
scheme is superior to that of the conventional smoothed l0 norm method and the multiple
snapshots-based smoothed l0 norm method.

As can be seen in Figures 5 and 6, the proposed scheme and the multiple snapshots-
based smoothed l0 norm method are robust to noise level. On the other hand, the RMS
errors of the conventional smoothed l0 norm method increase rapidly when SNR is 0 dB.

In the case of the proposed scheme, the number of optimization variables can be
maintained regardless of the number of snapshots by optimizing the signal covariance
matrix extended to the potential DOA set. In Figure 7, the operation times of the proposed
scheme and the multiple snapshots-based smoothed l0 norm method with respect to the
number of snapshots are depicted. In the case of the multiple snapshots-based smoothed l0
norm method, as the number of snapshots increases, the number of optimization variables
increases. Therefore, the computational complexity significantly increases in proportion to
the number of snapshots.
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Figure 5. RMSE of the proposed scheme, the conventional smoothed l0 norm method and multiple
snapshots smoothed l0 norm method when the number of sensors is 10, the number of samples is 100
and the incident angles are 5◦ and 20◦ (sig1).
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Figure 6. RMSE of the proposed scheme, the conventional smoothed l0 norm method and multiple
snapshots smoothed l0 norm method when the number of sensors is 10, the number of samples is 100
and the incident angles are 5◦ and 20◦ (sig2).
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Figure 7. The operation times of the multiple snapshots SL0 and the proposed scheme.

In Figure 8, the spectra of the proposed scheme, the SpSF(sparse spectrum fitting)
algorithm, which is a compressive-sensing-based covariance-fitting DOA estimation using
convex optimization, and the conventional beamforming DOA estimation algorithm is
presented. Comparing the spectra of the proposed scheme with the spectra of the SpSF
algorithm, except for the difference in dynamic range which indicates the power difference
between the peaks and the noise floor, there is no significant difference in the DOA esti-
mation performance. However, in terms of computational complexity, there is a distinct
difference between the proposed scheme and the SpSF algorithm.

The operation times of the proposed scheme, the multiple snapshots-based smoothed
l0 norm method and the SpSF algorithm with respect to the number of sensors are shown in
Figure 9. The computational complexity is measured by using the operation time function
of MATLAB and the specifications of the computer include an Intel(R) Core(TM) i7-6700
CPU @ 3.40 GHz (Santa Clara, CA, USA). The operation time of the SpSF is 229.25 s. It
can be verified in Figure 9 that the computational complexity of the proposed scheme is
significantly lower than that of the SpSF. The proposed scheme is more efficient than SpSF
by considering both aspects of the performance of DOA estimation and computational com-
plexity.

For the reliability of the proposed scheme, the experiments were conducted based on
the measured data. The measurement data used in this paper are the received data from
the underwater horizontal nested sensor array. The moving signal source passes over the
nested sensor array, which is shown in Figure 10 and it emits 21 tonal frequencies.

The results for one of them is shown in this paper. The received data from the sensor
array was collected for 66 min. During the collection, objects other than the moving target
to be detected appeared and disappeared. Information, such as the nested sensor array
specifications and the design frequencies, is confidential, so every frequency-related piece
of information is normalized by a pilot signal frequency, and the structure of the sensor
array is shown in Figure 11.
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Figure 8. Spectrum of the proposed scheme, SpSF and the conventional beamforming algorithm
when the number of sensors is 10, the number of samples is 1000 and the incident angles are −10◦

and 20◦ (SNR = 5 dB).
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Figure 10. The moving trajectory of the target and the location of the horizontal nested sensor array
of the measured data.

Figure 11. Structure of the horizontal nested sensor array.

The number of sensors of the underwater horizontal nested array is 120 and the nested
sensor array can make a uniform linear sensor array by using 48 sensors for each design
frequency. The parameters of the experiments based on measured data can be seen in
Table 1.

Table 1. Parameters of the measured data.

Parameter Value

The number of sensors 15
Sampling frequency 2.625 Hz
Design frequencies 0.128 Hz, 0.256 Hz, 0.512 Hz, and 1.025 Hz

Search range of DOA −90◦ : 1◦ : 90◦

The pilot signal frequency 1 Hz
Signal frequencies 0.142 Hz, 0.37 Hz

The DOA estimation experiments, which are based on the measured data, are con-
ducted using the beamforming-based DOA estimation methods (the conventional beam-
forming algorithm and minimum variance distortionless response (MVDR)), and the
compressive-sensing-based covariance-fitting DOA estimation methods, which include the
SpSF and the proposed scheme.

The DOA estimation performances of the proposed scheme, which is the SpSF algo-
rithm, the conventional beamforming algorithm and MVDR based on the measured data,
are shown in Figures 12–23.
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Figures 12–23 illustrate the bearing time records (BTRs) of the four DOA estimation
methods when the signal frequencies are 1 Hz, 0.142 Hz and 0.37 Hz.

The BTR is a figure that sequentially stacks the DOA estimation results of the measured
data divided by 10 s. Through the corresponding BTR, the moving paths of the targets,
which were detected by the nested sensor array for 66 min, can be estimated. In the SpSF,
a noise variance of a received signal should be provided in advance. Therefore, a value
of the noise variance for each received datum used for one instance of DOA estimation is
obtained through preprocessing.

Figure 12. Bearing time records of the SpSF: 66 min, pilot signal frequency = 1 Hz.

Figure 13. Bearing time records of the proposed scheme: 66 min, pilot signal frequency = 1 Hz.
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Figure 14. Bearing time records of the CBF: 66 min, pilot signal frequency = 1 Hz.

Figure 15. Bearing time records of the MVDR: 66 min, pilot signal frequency = 1 Hz.

Figures 12–15 show the case where the pilot signal with an abnormally large signal
level is emitted from the moving signal source in order to accurately estimate the moving
trajectory of the target using the nested sensor array, so the trajectories of the other ships
do not appear in the BTR, but only that of the target. The compressive-sensing-based DOA
estimation methods have superior performance than the beamforming-based methods.
Therefore, in Figures 12 and 13, the compressive-sensing-based methods show the trajectory
of the moving target with higher resolution on the BTR than the beamforming-based
methods in Figures 14 and 15. The proposed scheme and the SpSF have practically the
same performance regarding the DOA estimation.
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Figure 16. Bearing time records of the SpSF: 66 min, signal frequency = 0.142 Hz.

Figure 17. Bearing time records of the proposed scheme: 66 min, signal frequency = 0.142 Hz.
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Figure 18. Bearing time records of the CBF: 66 min, signal frequency = 0.142 Hz.

Figure 19. Bearing time records of the MVDR: 66 min, signal frequency = 0.142 Hz.
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Figure 20. Bearing time records of the SpSF: 66 min, signal frequency = 0.37 Hz.

Figure 21. Bearing time records of the proposed scheme: 66 min, signal frequency = 0.37 Hz.
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Figure 22. Bearing time records of the CBF: 66 min, signal frequency = 0.37 Hz.

Figure 23. Bearing time records of the MVDR: 66 min, signal frequency = 0.37 Hz.

In Figures 16–19, the performance of the compressive-sensing-based covariance-fitting
methods and the beamforming-based methods are shown when the signal frequency, which
is 0.142 Hz, has a signal level that is 10 dB lower than the pilot signal frequency.

In Figures 20–23, the performance of the proposed scheme, which is the SpSF, the
conventional beamforming algorithm and the MVDR are shown when the signal frequency,
which is 0.37 Hz, has a signal level that is 20 dB lower than the pilot signal frequency.

In Figures 16–23, the compressive-sensing-based covariance-fitting methods can dis-
tinguish the trajectory of the moving signal source, and also the moving trajectories of
other ships around it with high resolution. In the beamforming-based methods, the res-
olutions are significantly lower than the compressive-sensing methods, so the moving
trajectories of the moving signal source and the other ships are unclear. These results verify
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that the DOA estimation performance of the proposed scheme is superior to that of the
conventional beamforming algorithm and the MVDR. In Figures 16, 17, 20 and 21, The
proposed scheme and the SpSF algorithm have practically the same performance regarding
the DOA estimation.

However, when comparing the BTRs of the SpSF algorithm and that of the beamform-
ing methods, it can be seen that a lot of information about the moving trajectories of the
other ships were removed from the BTRS of the SpSF algorithm. On the other hand, the
BTRs of the proposed scheme preserve more moving trajectories of the other ships than
that of the SpSF algorithm. It is verified through Figures 16–23 that the proposed scheme
is more appropriate than the SpSF algorithm when the DOAs of the target and the other
signal sources must be simultaneously estimated.

6. Conclusions

In order to improve the performance of the conventional smoothed l0 norm method
that performs sparse recovery using a single sample, the compressive-sensing-based
covariance-fitting smoothed l0 norm method was proposed in this paper. The conventional
method was extended based on the covariance-fitting method. By using the covariance ma-
trix, it is possible to solve the problem with a large number of optimization variables when
using multiple samples. The cost function and the null-projection term for the covariance
fitting was presented.

The advantages of the proposed scheme in terms of DOA estimation performance
and computational complexity were verified through the comparison simulations of the
DOA estimation performance and the operation time between the conventional smoothed
l0 norm method, while multiple snapshots-based smoothed l0 norm method, and the
proposed scheme.

The DOA estimation performance of the proposed algorithm was shown by comparing
the DOA estimation performance and resolution between the beamforming-based angle of
arrival estimation algorithm, the convex relaxation-based SpSF algorithm, and the proposed
algorithm using various simulation parameters. In addition, the computational efficiency
of the proposed algorithm was shown through the operation time comparison simulation
between the convex relaxation-based SpSF algorithm and the proposed algorithm. To verify
the performance of the proposed algorithm, the results of the path estimation experiment
of the moving signal source based on measured data were shown.

Furthermore, if only the dominant elements of the covariance matrix using the decom-
position method, as in [19], are used, then the optimization performance of the proposed
scheme can be further improved due to the reduction in computational complexity.
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