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Abstract

Background: Whole genome duplication (WGD) events are common in the evolutionary history of many living
organisms. For decades, researchers have been trying to understand the genetic and epigenetic impact of WGD
and its underlying molecular mechanisms. Particular attention was given to allopolyploid study systems, species
resulting from an hybridization event accompanied by WGD. Investigating the mechanisms behind the survival of a
newly formed allopolyploid highlighted the key role of DNA methylation. With the improvement of high-
throughput methods, such as whole genome bisulfite sequencing (WGBS), an opportunity opened to further
understand the role of DNA methylation at a larger scale and higher resolution. However, only a few studies have
applied WGBS to allopolyploids, which might be due to lack of genomic resources combined with a burdensome
data analysis process. To overcome these problems, we developed the Automated Reproducible Polyploid
EpiGenetic GuIdance workflOw (ARPEGGIO): the first workflow for the analysis of epigenetic data in polyploids. This
workflow analyzes WGBS data from allopolyploid species via the genome assemblies of the allopolyploid’s parent
species. ARPEGGIO utilizes an updated read classification algorithm (EAGLE-RC), to tackle the challenge of sequence
similarity amongst parental genomes. ARPEGGIO offers automation, but more importantly, a complete set of
analyses including spot checks starting from raw WGBS data: quality checks, trimming, alignment, methylation
extraction, statistical analyses and downstream analyses. A full run of ARPEGGIO outputs a list of genes showing
differential methylation. ARPEGGIO was made simple to set up, run and interpret, and its implementation ensures
reproducibility by including both package management and containerization.

Results: We evaluated ARPEGGIO in two ways. First, we tested EAGLE-RC’s performance with publicly available
datasets given a ground truth, and we show that EAGLE-RC decreases the error rate by 3 to 4 times compared to
standard approaches. Second, using the same initial dataset, we show agreement between ARPEGGIO’s output and
published results. Compared to other similar workflows, ARPEGGIO is the only one supporting polyploid data.

Conclusions: The goal of ARPEGGIO is to promote, support and improve polyploid research with a reproducible
and automated set of analyses in a convenient implementation. ARPEGGIO is available at https://github.com/
supermaxiste/ARPEGGIO.
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Background
Polyploidy, also known as whole genome duplication
(WGD), is a process leading to the formation of an or-
ganism with more than two sets of chromosomes. There
are two types of polyploidy: autopolyploidy, the doubling
of an entire genome in a single species, and allopoly-
ploidy, the hybridization of two different species
followed by whole genome duplication [1]. Both of these
processes influenced the evolutionary history of many
living organisms such as nematodes, arthropods, chor-
dates, fungi, oomycetes and plants [1–3]. Of all these lin-
eages, the most extensive research on polyploidy has
been done on land plants [1–8], where about 35% of all
species were estimated to be recent polyploids [7, 8] and
at least one ancient WGD was inferred in the ancestry
of every lineage [3].
To understand the successful prevalence of WGD and

the underlying mechanisms, particular attention was
given to early stages of polyploidy in allopolyploids [4,
9–11]. Among several observed genomic and epige-
nomic changes [4, 10, 12], DNA methylation was shown
to play an important role to ensure the survival of a
newly formed allopolyploid [13–19]. A well-studied ex-
ample comes from Madlung and colleagues [13] in
which they chemically treated synthetic Arabidopsis sue-
cica allotetraploids to remove DNA methylation over the
whole genome. With this treatment, they observed many
phenotypic disorders such as abnormal branching or
homeotic abnormalities in flowers, mostly leading to
sterility. These abnormalities were not observed when
treating the parent species or the natural allopolyploid,
highlighting the importance of DNA methylation in the
first generations after allopolyploidization. Follow-up
studies focused on the epigenetic regulation in other
resynthesized allopolyploid species with varying out-
comes. In allopolyploid wheat, Tragopogon, Spartina and
rice, DNA methylation changes indicated gene repres-
sion favoring one parental genome over the other [15–
20]. This was not the case in Arabidopsis, where similar
DNA methylation and expression changes were observed
on both parental genomes [21]. In Brassica, both previ-
ously mentioned outcomes were reported [15, 22], while
in cotton no changes were found [23]. All these studies
proposed different mechanisms to clarify the role of
methylation and its short and long term evolutionary
impact, but the discussion remains open [4]. One reason
that might complicate the grounds of such discussion, is
the variety of tools and methods used to analyze DNA
methylation data. To better control discrepancies be-
tween findings caused by methodological differences, a
standardized set of tools would be ideal.
Despite the potential significance of DNA methylation

in allopolyploid evolution, many of the previously men-
tioned findings were limited by low-throughput

methods. These methods, such as methylation-sensitive
amplified length polymorphisms (MSAP), were unable
to capture changes at a whole genome level [24]. With
advances in technology, new high-throughput methods
such as whole genome bisulfite sequencing (WGBS) are
able to obtain methylation information at individual nu-
cleotides over the whole genome [25].
At the whole genome level, DNA methylation is sepa-

rated into three different sequence contexts: CG, CHG
and CHH (where H = A, T or C). Each context is regu-
lated by different families of enzymes and depending on
the species, some contexts might be more important
than others [26]. For example, in mammals, methylation
occurs mainly in CG context, while in plants it occurs in
all three contexts [26].
Although WGBS is considered to be the gold standard

in whole-genome DNA methylation studies [24, 27], re-
search on allopolyploid species using WGBS is limited,
with most of the studies coming from crop study sys-
tems [28–30]. On the one hand, these systems have
excellent genomic resources to provide valuable insights,
while on the other, it is unclear whether these insights
can be extended to wild organisms in nature given their
artificial selection [4].
In other polyploid study systems, two major challenges

prevent the use of WGBS: limited genomic resources
(i.e. genome assemblies) and a laborious data analysis
process. The number of plant genome assemblies has
been increasing exponentially in the last years [31], but
polyploid genome assemblies are still an intensive, com-
plex and expensive task [32, 33], preventing the develop-
ment of genetic and epigenetic studies using polyploids.
For allopolyploids, this obstacle can be avoided by using
the genome assemblies of the two (known) parent spe-
cies [34], usually diploid.
Besides limited genomic resources, another challenge

in WGBS comes from a laborious and complex data
analysis process [35–37]. In standard WGBS data ana-
lysis pipelines, complexities related to polyploids are
often not taken into account. For example when map-
ping reads originating from an allopolyploid, high se-
quence similarity between parents can be challenging for
read mapping algorithms [38, 39] and the outcome can
have strong bias, especially when the quality of the as-
semblies is asymmetric [40]. To tackle this problem, sev-
eral methods were developed to improve the
categorization of allopolyploids’ reads to the correct par-
ental genome. HomeoRoq [41] and PolyDog [40] take
into account alignment quality from both parental ge-
nomes to assign reads, while PolyCat [42] and EAGLE-
RC [34] also use explicit genotype differences between
parent genomes to classify reads. EAGLE-RC outper-
formed HomeoRoq in estimating homeolog expression
with data from tetraploid Arabidopsis and hexaploid

Milosavljevic et al. BMC Genomics          (2021) 22:547 Page 2 of 12



wheat [34]. When comparing EAGLE-RC and PolyCat
using Gossypium RNA-seq data, both tools outper-
formed other pipelines and had similar performance
[43]. Among all the tools, only PolyCat supports
bisulfite-treated WGBS data, but only with available
variant information (i.e. SNPs) between subgenomes,
which represents an additional obstacle for most allo-
polyploid systems [44].
To promote and support allopolyploid DNA methyla-

tion research, we developed the Automated Reprodu-
cible Polyploid EpiGenetic GuIdance workflOw (ARPE
GGIO). ARPEGGIO is a specialized workflow to process
raw WGBS data utilizing the assemblies of the allopoly-
ploid’s parent species (hereafter referred to as progeni-
tors) or independently phased subgenomes of an
allopolyploid. ARPEGGIO includes all the steps from
raw WGBS data to a list of genes showing differential
methylation: conversion check, quality check, trimming,
alignment, read classification, methylation extraction,
statistical analysis and downstream analysis. More details
about the prerequisites, setup, tools and outputs are dis-
cussed in the implementation section.
To handle sequence similarity between two genomes,

ARPEGGIO exploits an updated version of EAGLE-RC
that supports bisulfite-treated reads and does not require
variant information between subgenomes. This version
of EAGLE-RC was evaluated using three WGBS datasets,
and showed better performance compared to a genome
concatenation approach.
ARPEGGIO’s implementation combines the Snake-

make workflow management system [45] with the Conda
package manager [46] and Singularity containers [48] to

ensure both ease of use and reproducibility. For ease of
use, a centralized configuration file controls all parame-
ters related to ARPEGGIO and through Conda, all the
tools required by the workflow are automatically
installed.

Implementation
Design, concepts and challenges
ARPEGGIO’s design had three main objectives, each
dealing with different aspects and challenges of the
workflow: allopolyploid support, ease of use and repro-
ducibility. These aspects will be discussed at high-level
here and more details about their implementation can
be found in the following sections.
To support allopolyploids, ARPEGGIO first needed to

allow for different experimental designs (i.e. sample
comparisons). For allopolyploids without a genome as-
sembly, but progenitor assemblies available, there are
two possible comparisons: allopolyploid against progeni-
tors or allopolyploid against allopolyploid (Fig. 1a, b).
The former compares the two allopolyploid’s subge-
nomes to the progenitors, while the latter compares dir-
ectly the two subgenomes in different experimental
conditions. An additional third comparison allows two
groups of individuals from a species with an available
(phased) genome assembly (Fig. 1c), regardless of the
ploidy level. After choosing a comparison, the next
allopolyploid-specific step is read classification.
To analyze allopolyploid data with progenitor assem-

blies, we run two separate workflows in parallel, one per
progenitor (Fig. 2). The separation occurs at the align-
ment and deduplication step, where two separate

Fig. 1 Schematic view of the experimental designs supported by ARPEGGIO. There are 3 possible comparisons: a) polyploid species without
assembly against its progenitors, b) same polyploid without assembly in two different experimental conditions and c) diploid species or polyploid
species with an available phased assembly in two different experimental conditions. All comparisons are about whole genome DNA
methylation patterns
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alignments are performed for the same allopolyploid
data, one for each progenitor. With each allopolyploid
read being mapped twice, a read classification algorithm
must choose one of the two progenitors; for the classifi-
cation, ARPEGGIO uses EAGLE-RC. In short, EAGLE-
RC applies a probabilistic method that compares the two
mappings for each read and classifies its progenitor ori-
gin or deems it ambiguous (equal probabilities for both
progenitors’ sides). Two parameters were added to
EAGLE-RC to deal with bisulfite data from allopoly-
ploids. The first is called “no genotype information”
(NGI) and allows EAGLE-RC to be used with no infor-
mation about variants in the genome. This mode is espe-
cially useful to reduce prerequisites for using ARPE
GGIO. The second parameter is called “bisulfite” (BS)
and it causes bisulfite treatment to be taken into account
when a bisulfite-treated read is mapped to a genome.
This parameter considers C-T as a match (forward
strand), G-A as a match (reverse strand) or both.
Both experimental design and EAGLE-RC’s inclusion

had a major impact on ARPEGGIO’s structure and im-
plementation, but other important aspects were also
taken into account. For example, allopolyploids can be
found in different lineages such as plants and mammals,
meaning that different approaches should be considered
for conversion efficiency checks and the selection of
methylation contexts.
Once the general design of ARPEGGIO was established,

the next challenge was to make the workflow easy to set
up, run and interpret. ARPEGGIO requires the users to
install the Conda package management system [46], then
Snakemake [45] via Conda and, optionally, Singularity
[48]. No other tools need to be installed as ARPEGGIO

will take care of automatically installing what is needed.
To prepare ARPEGGIO for a new dataset, input files have
to be prepared and ARPEGGIO’s settings have to be de-
fined. Input files include raw data in FASTQ format and
the progenitors’ reference genome assemblies. To run
downstream analyses, annotation files for both assemblies
are also required. ARPEGGIO’s settings are defined with a
configuration file and a metadata file. The configuration
file has different sections, each including parameters that
define how ARPEGGIO will be run, while the metadata
file contains information about samples such as filename,
sequencing strategy, origin (allopolyploid or progenitor)
and experimental condition (if present). A small dataset
with its own configuration and metadata file is provided in
ARPEGGIO’s repository as an example. To run ARPE
GGIO, only one command is needed and its main options
are related to reproducibility (discussed below) and
parallelization (i.e. multiple core usage). After ARPEGGIO
is successfully run, the number of files in the output folder
can be significant. For this reason, a map of the output is
available in ARPEGGIO’s user documentation: this map
shows the general output structure with all the main
folders and their contents. For each folder, there’s a sec-
tion describing the folder itself, sub-folders and all the files
included in it.
Another key goal of ARPEGGIO was to ensure repro-

ducibility. Considering the variety of tools and number
of steps in the workflow, by letting users (or Conda) de-
fine the version of each tool, the outcome could be vari-
able and lead to future reproducibility problems. To
overcome this, we fixed all the versions of the tools and
we combined ARPEGGIO with Conda and Singularity
containers. The user can choose to use either only

Fig. 2 Schematic overview of ARPEGGIO’s structure. All the shapes follow the flowchart standardized symbols [47]. Ovals show the beginning and
ends of the workflow. Diamonds represent conditional rules in ARPEGGIO’s configuration file and those rules make ARPEGGIO more adaptable to the
needs of the user. Each conditional rule can be set to “true” (tick) or “false” (cross). Besides the first conditional rule, all other rules stop the workflow at
the given point when set to “false”. The different grey backgrounds and the white background represent different Conda environments used by ARPE
GGIO to carry out different steps of the analyses. In the scheme, the background of each step represents the environment that the step is part of. The
bottom of each background shows the name of the file used to create the environment. At the top all the tools used by ARPEGGIO are shown and
vertically aligned their corresponding step in the workflow. From the alignment and deduplication step, ARPEGGIO executes two workflows in parallel
for each progenitor side, both highlighted by the dashed areas
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Conda or Conda and Singularity together. The main dif-
ference between the two modes lies on potential issues
between the user’s system and Conda. When these issues
happen, Singularity offers a containerized run of Conda.
Both these options can be specified with one or two pa-
rameters respectively when running ARPEGGIO. Aside
from tool version differences, which we addressed above,
the configuration file specifies all parameters that were
used in a workflow run. Associating results to a specific
set of parameters further aids reproducibility. The con-
figuration file may also be shared to other researchers
aiming to reanalyze a given dataset.

Workflow overview
ARPEGGIO includes eight processes: conversion check,
quality checks, trimming, alignment and deduplication,
read classification, methylation extraction, differential
methylation analysis and downstream analyses (Fig. 2).
These processes are divided into six steps, each repre-
sented by a black diamond in Fig. 2. Step 1 includes con-
version check, a quality check specific to WGBS data,
where reads are aligned to an unmethylated control gen-
ome (usually plastid genome for plants and lambda gen-
ome for others) to assess the efficiency of the bisulfite
conversion; the lower the mapping rate, the better the
conversion [27]. This process is executed by Bismark
[49]. The conversion check is followed by quality checks
and trimming (step 1 and 2), executed by FastQC [50]
and Trim Galore [51], respectively. Both processes are
common procedures to assess read quality and remove
noise. Step 3 performs read alignment to a reference
genome, followed by deduplication, which removes du-
plicated reads. Both of these are carried out by the Bis-
mark suite [49]. From this point of the workflow
allopolyploid data is separated into two parallel work-
flows: one per progenitor side. These workflows intersect
in the next, allopolyploid-specific read classification step
(step 4), executed by the updated version of EAGLE-RC
[34]. Here, EAGLE-RC will classify allopolyploid reads
after comparing the read alignment on each progenitor’s
side. After read classification (from step 5 on), the two
workflows are independent, but execute the same steps.
During methylation extraction via Bismark, methylation
information is extracted for each cytosine from classified
reads to produce a methylation count table. This table is
used for differential methylation analyses (step 5), per-
formed by the R/Bioconductor package dmrseq [52], to
output a list of tested differentially methylated regions
(DMRs). Finally, downstream analyses (step 6) consist of
a series of R scripts for computing overlaps between sta-
tistically significant DMRs and annotated gene regions
provided by the user (if available). More specifically, by
default ARPEGGIO uses q-value < 0.05 to define a sig-
nificant DMR. With this cutoff, ARPEGGIO looks for

overlaps of at least 1 base pair between significant re-
gions and gene regions based on the annotations. Before
ARPEGGIO finishes a run, all reports (conversion check,
quality checks, trimming, alignment, deduplication and
methylation extraction) are combined into one inter-
active HTML report with MultiQC [53].
Each part in ARPEGGIO is optional and the user can

specify which parts of the workflow to execute in the
configuration file. It must be noted that skipping some
parts will stop the workflow at a specific step (Fig. 2).
Assuming that all prerequisites are met, ARPEGGIO
goes from raw sequencing data to a list of genes showing
differential methylation. Some useful intermediate out-
puts are also produced: an interactive HTML report
merging all quality, alignment and methylation reports
and an Rdata file with the output from the dmrseq ana-
lysis, which can be used to visualize DMRs or for other
custom analyses.

Implementation details
ARPEGGIO is written in Snakemake, a Python based
language for workflow development [45]. With Snake-
make, a workflow is broken down into a series of rules.
One rule can be seen as one step in the workflow with a
defined input and output. Rules are related to each other
based on their input and output files. Once all the rules
are set, to run a Snakemake workflow, a target file (or
multiple) needs to be requested. Snakemake will auto-
matically build the workflow to obtain the target file
based on the input/output relationships between rules
(dependencies). If the relationships are successfully
established, the workflow will be run. To illustrate these
principles, an example with ARPEGGIO’s rules is given
in Additional File 1. This figure shows all the input/out-
put relationships between rules when running ARPE
GGIO with single-end data, comparing an allopolyploid
to its progenitor species (default experimental design).
In addition to the core features of Snakemake, ARPE

GGIO takes advantage of the integrated Conda package
management system [46]. Conda creates environments
containing a specific set of software and users can switch
between different environments depending on the soft-
ware package(s) they need. An environment can be cre-
ated in several ways. ARPEGGIO creates environments
through YAML files, specifying all the packages to be in-
cluded and the channels from which the packages are
searched. The integration of Conda in Snakemake allows
rules to be run within a specific environment and during
the execution of a workflow, Snakemake takes care of
switching between environments if different rules re-
quire different environments. From a user perspective,
once Conda and Snakemake are installed, ARPEGGIO
will take care of installing all the tools needed for the
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analyses, running them and switching automatically be-
tween environments when needed (Fig. 2).
Making the workflow specific for allopolyploids pre-

sented major challenges with both Snakemake and
Conda. Snakemake rules in ARPEGGIO had to be struc-
tured to allow for any combination between sequencing
strategies and experimental designs. This meant combin-
ing rules for six workflows in one: three experimental
designs, each with two sequencing strategies. In addition,
since EAGLE-RC could not be installed as a Conda
package, a Conda environment with a specific set of
rules was created to take care of downloading, extracting
and installing EAGLE-RC.
In practice, any user can take advantage of all the

Conda and Snakemake features discussed above with a
central configuration file. Here, we will discuss the first
three sections of this file, that consist of parameters con-
cerning the workflow as a whole: general parameters,
conditional rules and experimental designs. All the other
sections in the configuration file are related to tool-
specific parameters for each of the main steps in ARPE
GGIO. More details about these parameters can be
found in ARPEGGIO’s user documentation. General pa-
rameters include the location of the output folder, the
location of the metadata file and a parameter to define
the sequencing strategy. Conditional rules are shown as
black diamonds on Fig. 2. Those rules are set to “True”
or “False” to define which parts of the workflow to run.
Practically, only the initial steps of ARPEGGIO, quality
check and trimming, can be skipped; otherwise, the
workflow will stop for any other step that is set to
“False”. Finally, experimental designs are implemented
via special modes. By default, ARPEGGIO compares a
polyploid species against its two progenitor species (Fig.
1a). With the special mode “POLYPLOID_ONLY”,
ARPEGGIO compares a polyploid species from two dif-
ferent experimental conditions (Fig. 1b), while the mode
“DIPLOID_ONLY” compares a diploid species from two
different conditions (or a polyploid species with an avail-
able phased assembly, Fig. 1c).

Results & discussion
Performance of read classification
A simple and common way to analyze polyploid datasets
is to concatenate the genome assemblies of the two pro-
genitor species and let the aligner assign a mapping pos-
ition. The position would define the origin of the read
depending on which of the two subgenomes the read
was mapped to. We define this approach as the
“concatenated” approach.
The performance of EAGLE-RC was assessed using

ARPEGGIO v3.0.0 while shell scripts were used to evalu-
ate the concatenated approach (see Availability of data

and materials). In both cases, the same versions of tools
as in ARPEGGIO were used.
For the evaluation, we used six datasets from three pairs

of progenitor species that form an allopolyploid or a hy-
brid, and we compared EAGLE-RC’s classification error to
that of the concatenated approach in a similar fashion as
[34]. In short, each progenitor dataset was treated as an al-
lopolyploid dataset, meaning that all the reads were
assigned to a progenitor’s side. With datasets coming from
progenitors, the true origin of the reads was known, thus
reads assigned to the wrong progenitor’s side were used to
calculate a classification error rate.
Two datasets were from Mimulus guttatus and Mimu-

lus luteus, obtained from [54], with four technical repli-
cates each. Those two species are the progenitors of the
allopolyploid Mimulus peregrinus. Data from Gossypium
arboreum and Gossypium raimondii was obtained from
[29] and consisted of two technical replicates each.
Those two species are the progenitors of the hybrid Gos-
sypium arboreum x raimondii. The last datasets were
produced in-house (Additional File 3) from Arabidopsis
halleri and Arabidopsis lyrata with two biological repli-
cates each. Those two species are the progenitors of the
allopolyploid Arabidopsis kamchatica [55].
EAGLE-RC showed a lower error rate in all datasets

compared to the concatenated approach (Table 1). The
error rate was consistently between 3 to 4 times less
with EAGLE-RC. When looking at absolute values, the
improvement from read classification varied: from
changes below 0.1% in Gossypium to almost 20% when
using Mimulus data. These differences could be attrib-
uted to many factors, such as divergence between spe-
cies, quality of genome assembly, and sequence data
quality. We assessed divergence for two out of three pro-
genitor pairs using the average nuclear identity [56] and
the two Gossypium genomes had lower similarity com-
pared to the two Arabidopsis species (Table 1). This was
consistent with the known divergence in genome size
between G. raimondii (0.8Gb) and G. arboreum (1.7Gb)
and contributed to make the read classification task eas-
ier (Additional File 4). From a qualitative point of view,
Mimulus had lower quality assemblies compared to the
other species, and this difference might also explain the
higher error rates in both methods.
Overall, EAGLE-RC showed a lower error rate with

minimal loss of reads classified as ambiguous (Add-
itional File 4). On the one hand, EAGLE-RC showed a
lower error rate, while on the other, the absolute num-
ber of correctly assigned reads was lower in EAGLE-RC
compared to the concatenated approach (Additional File
4). This happened because the reads classified as “am-
biguous” reduced the amount of the correctly classified
reads (both true negative and true positive reads). When
focusing on the difference in true positive reads between
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EAGLE-RC and concatenation, values are negligible for
both Arabidopsis and Gossypium datasets, representing
< 0.01% of uniquely mapped reads. In the case of Mimu-
lus, the number of true positive reads is ~ 10% higher in
the concatenated approach, but the error-rate is also 3
to 4 times higher compared to EAGLE-RC. Taken to-
gether, these results suggest that EAGLE-RC has a clear
advantage when analyzing allopolyploid WGBS data,
where higher accuracy in subgenome recognition is
required.
In this evaluation, we have not examined in detail the

effect of the genetic divergence between progenitor ge-
nomes and allopolyploid genomes. Divergence results
from DNA mutations happening after polyploidization
and leading to changes on both progenitor sides in the
polyploid’s genome. The magnitude of differences is pro-
portional to the number of generations, i.e. time, since
polyploidization. As an example, M. peregrinus is a 140-
years old polyploid, and thus the changes in its genome
might be very few. We speculate that ARPEGGIO
should be tolerant for older allopolyploids, as both
EAGLE-RC and HomeoRoq have shown good perform-
ance with both DNA and RNA-seq data of A. kamcha-
tica, which is estimated to have originated around 20,
000–250,000 years ago [41, 57, 58].

Example run with Mimulus data
To illustrate a full run of ARPEGGIO, we analyzed pub-
licly available data coming from the natural allopolyploid

Mimulus peregrinus and its progenitors M. guttatus and
M. luteus [59].
First, we downloaded the raw WGBS data consisting

of four technical replicates for each species, the genome
assemblies of the progenitors with their annotation and
a chloroplast genome to check conversion efficiency (de-
tails in Availability of data and materials). For WGBS
data, genome assemblies and annotations we made sure
that all files were formatted according to ARPEGGIO’s
user guidelines.
Second, we created a metadata file specifying for each

sample the sequencing strategy, single end, and the ori-
gin of the samples, i.e. M. guttatus samples were labeled
“parent1”, M. luteus samples “parent2” and M. peregri-
nus samples “allopolyploid”.
With the input files ready, the configuration file was

set up in two rounds. In the first round the general pa-
rameters were configured with the locations of output
folder and metadata file, and data was specified as single
end. By default, ARPEGGIO compares allopolyploid to
progenitors (Fig. 1a), meaning that no specific changes
needed to be done to include the experimental design
for this dataset. Then, all conditional rules were set to
false and ARPEGGIO was run to only perform quality
checks. With this round we were able to get more details
for the trimming step. In the second round, all the pa-
rameters were set for all the different steps in the work-
flow and all conditional rules were set to true to
perform a full run of ARPEGGIO with eight cores. The

Table 1 Overview of the read assignment accuracy of EAGLE-RC against the concatenation method with real datasets. The first part
of the table provides details on each dataset such as the species of origin, the type of replication (biological or technical), the
sequencing strategy and the divergence between the two progenitor species, represented by the two-way average nuclear identity
(ANI). The sequencing strategy includes the sequencing layout (PE = paired-end, SE = single-end) followed by the read length in bp.
The two-way ANI was obtained using the ANI calculator from [56] with default parameters. The ANI value for Mimulus could not be
calculated because of excessive computation time requirements (> 6′000 CPU hours). The second part of the table shows the
average number of uniquely mapped reads for each approach, which was used to calculate the average error rate on the third part
of the table. The error rate was obtained by the number of reads assigned to the wrong genome divided by the total number of
reads that were uniquely mapped and deduplicated

Datasets Average number of uniquely
mapped reads

Average error rate

Species Type of
replicate (#)

Sequencing layout and
read length

Two-way average
nuclear identity

Concatenated
genome

Read
classification

Concatenated
genome

Read
classification

Arabidopsis
halleri

Biological (2) PE150 94.29 ± 3.94% 17′258’758 18′311’330 3.98% 1.16%

Arabidopsis
lyrata

Biological (2) PE150 22′204’342 23′301’056 5.94% 1.45%

Mimulus
guttatus

Technical (4) SE150 N.A. 1′420’116 1′288’800 26.78% 7.52%

Mimulus
luteus

Technical (4) SE150 3′889’458 3′760’614 9.80% 2.29%

Gossypium
arboreum

Technical (2) PE125 91.07 ± 4.68% 253′912’667 254′261’702 0.0044% 0.0013%

Gossipyium
raimondii

Technical (2) PE125 242′590’069 246′935’598 0.0039% 0.0019%
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configuration file, the MultiQC report and ARPEGGIO’s
output for the statistical and downstream analyses can
be found in Availability of data and materials. The run-
time of the full run on a Debian system, using eight
CPU cores Intel(R) Xeon(R) CPU E5–4640 at 2.40GHz
was approximately 24 h. The average times for each step
can be found in Additional File 2, where for each step, a
per-sample average over twelve samples in total is
shown, with the exception of statistical analyses for
which the average runtime is per methylation context
over three contexts in total.
After comparing the methylation pattern of M. peregri-

nus to its progenitors, a total of 760 significant DMRs
were found in the allopolyploid, most of them coming
from the M. luteus side (Table 2). Downstream analyses
found very few genes overlapping with these significant
regions, suggesting that most of the methylation changes
occur in intergenic rather than genic regions. For the M.
guttatus side, 35 genes were found, mostly associated
with changes in CG and CHG context, while for the M.
luteus side only 2 genes were found in CG context.
These genes represent a very small proportion of the
total number of annotated genes in M. guttatus, almost
30′000, and M. luteus, almost 50′000. Taken all to-
gether, these results suggest almost no change in the
global methylation pattern of genes in the natural allo-
polyploid compared to the two progenitors.
Our analyses use a different approach and different

tools compared to [54], but Edger and colleagues also
looked at changes in methylation pattern from progeni-
tor to allopolyploid. The authors observed were similar
methylation patterns within gene bodies, when compar-
ing progenitors to natural allopolyploids. This is consist-
ent with ARPEGGIO’s downstream analyses showing
few genes overlapping with DMRs. Additionally, further
analyses in [54] showed that most of the methylation
changes happened in transposable elements, another re-
sult in agreement with the number of intergenic DMRs
found by ARPEGGIO.

User’s experience and best practices
ARPEGGIO’s user documentation, available through the
GitHub Wiki, offers additional information for more and
less experienced users. For less experienced users, the
documentation offers a step-by-step guide of how to
setup and run ARPEGGIO on a given dataset: data and
system requirements, input files needed, configuration
file instructions, commands to run the workflow and a
map of the output structure. For experienced users, we
tried to be as transparent as possible about ARPEGGIO’s
code and its architecture to make any customization of
scripts and code easier.
As a whole, ARPEGGIO is meant to simplify reprodu-

cible data analysis, but best practices, such as data diag-
nostics and information sharing should be kept in mind.
The complete ARPEGGIO pipeline should be run once
data quality and potential sources of errors are assessed.
To have more control over the analysis process, users
also have the option to run ARPEGGIO steps one by
one. By modifying the configuration file to add further
steps, the workflow will rerun only the parts that need
to be updated. To ensure reproducibility when using
ARPEGGIO, there are three specifications that need to
be included with the datasets: the configuration file set-
tings, the metadata file and the version of ARPEGGIO.

Software choice
Many alternative tools exist to perform some of ARPE
GGIO’s steps. For example, several aligners exist for
short-read bisulfite sequencing data such as bwa-meth
[60], BSmap [61], BitMapperBS [62], SNAP [63] and
gemBS [64]. The Bismark suite was selected because it
included tools to perform alignment, deduplication and
methylation extraction for any context all in one central-
ized package. Most if not all of the other aligners depend
on external packages for downstream analyses of align-
ment files.
Similarly, many tools exist for DMRs discovery in

whole-genome bisulfite sequencing data for all methyla-
tion contexts: BSmooth [65], metilene [66], MOABS
[67], BiSeq [68], MethylKit [69] and others [70].
In the case of dmrseq, the tool was chosen because of

its two step approach: first selecting candidate regions
and then evaluating their statistical significance by taking
into account both biological variability and spatial cor-
relation. This approach offers important advantages such
as limited loss of power and better FDR control, both
critical aspects when detecting DMRs [71].
The selection of an appropriate alignment or statistical

tool for WGBS data would require an independent
benchmark of such tools. An ideal benchmark should
evaluate tools on a variety of conditions and provide
some guidelines about their suitability and use. Cur-
rently, no such benchmarks exist, and a thorough

Table 2 Summary of ARPEGGIO’s downstream analyses on the
dataset from Edger and colleagues. The table is divided in two
parts, one per progenitor. For each progenitor, the table shows
the number of differentially methylated regions (DMRs) for each
context, the number of genes overlapping with DMRs and the
total number of genes found over all contexts

Methylation context Mimulus guttatus Mimulus luteus

CG CHG CHH CG CHG CHH

DMRs 65 126 23 277 211 58

Total DMRs 214 546

Genes overlapping DMRs 13 20 2 2 0 0

Total genes 35 2
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evaluation was out of the scope of this paper. ARPE
GGIO provides a convenient implementation of the se-
lected tools and its architecture allows future modifica-
tions as long as the input/output structure of the
Snakemake rules is preserved.
This means that if any of the tools included in the

workflow are shown to be underperforming compared
to others, ARPEGGIO can be adapted accordingly.

Comparison to other workflows
To compare ARPEGGIO to other workflows, we selected
key steps specifically related to WGBS data analysis
(Table 3). The results included workflows able to work
with raw bisulfite reads from WGBS and excluded highly
specialized (i.e. alignment only or downstream only) and
commercial workflows.
ARPEGGIO is the only workflow specifically targeted

at polyploids, making it the main unique feature com-
pared to other available workflows. Other features that
were lacking in other workflows, but present in ARPE
GGIO, were downstream analyses and reproducibility.
Around half of the workflows investigated included
downstream analyses [73, 74, 77, 79, 80]. The lack of this
feature might be due to downstream analyses being
highly variable according to biological context, question,

and aim of the research. With ARPEGGIO, the aim was
to consolidate performant tools into a common ap-
proach that could be used as a start for further investiga-
tion; in our case downstream analyses leading to a list of
genes. Reproducibility was another main feature present
in ARPEGGIO that was lacking in many workflows, but
appeared to be more prevalent in more recent publica-
tions [73, 75, 80, 81]. Enhancing and promoting repro-
ducibility is essential to ensure that discoveries stand the
test of time [82]. Other features were very similar across
workflows. All workflows support diploid data, which is
considered the same as polyploid data with an available
polyploid phased assembly. When comparing the pres-
ence of quality check, alignment and statistical analyses,
most workflows included them all together, but some
didn’t include either quality check [75, 79, 80] or statis-
tical analyses [76]. For methylation contexts, only two
workflows focused on CpG context only [72, 81], while
all the other allowed analyses for all contexts (CpG,
CHG and CHH).
One feature not implemented in ARPEGGIO, but

present in other workflows, is visualization of DMRs.
This step, similar to downstream analyses, is highly con-
text dependent. The dmrseq package offers ways to
visualize DMRs, but this was not included in ARPE

Table 3 Comparison between ARPEGGIO and other available, non-commercial and general workflows able to work with raw WGBS
data. There were a total of 12 workflows found and different features were selected for this comparison. The language indicates the
main language(s) used to program the workflow. Polyploid support refers to support analysis of data from a polyploid with no
official genome assembly available. Diploid support refers to analysis of data from a diploid or a polyploid with an available official
genome assembly. Quality check, alignment, statistical and downstream analyses are all different steps in the data analysis process
with downstream analyses being defined as follow-up analyses on DMRs found by the statistical analyses. Methylation contexts are
3 in total: CpG, CHG and CHH and this feature is sometimes limited to CpG only. Visualization represents any script or function
allowing the user to visualize the DMRs found by the statistical analyses. Reproducibility is difficult to quantify and in this table a
tool was considered reproducible if the corresponding paper mentioned reproducibility as one of their goals

ARPE
GGIO

QUMA MOABS QuasR MethPipe bicycle RUbioSeq WBSA P3BSseq Methy-
Pipe

MethFlow snakePipes

Language Python,
R

HTML, Perl,
Javascript

C++,
Perl

R C++ Java Perl Perl, R Python Perl, R Python,
Perl, Java

Python, R

Polyploid
support

✓ X X X X X X X X X X X

Diploid
support

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Quality check ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ X X ✓

Alignment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Statistical
analyses

✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓

Methylation
context

All CpG only All All All All All All All All ? CpG only

Downstream
analyses

✓ X X ✓ ✓ X X ✓ X ✓ ✓ X

Visualization X X X ✓ ✓ X X ✓ X ✓ ✓ X

Reproducibility ✓ – – ✓ – ✓ – – – – ✓ ✓

Paper – [72] [67] [73] [74] [75] [76] [77] [78] [79] [80] [81]
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GGIO. Instead, the workflow outputs an Rdata file with
all information concerning DMRs that users can use in
their custom analyses. It is important to stress that
visualization is essential for high-throughput data ana-
lysis, and should happen at any step in the data analysis
process.
It is important to note that Table 3 focuses only on fea-

tures related to WGBS data analysis, the only data type
supported by ARPEGGIO. Some of the workflows support
additional data types and analyses: QuasR supports ChIP-
seq, RNA-seq, smRNA-seq and allele-specific data ana-
lyses, RUBioSeq supports single-nucleotide and copy
number variants (SNVs and CNVs) analyses and snake-
Pipes supports simple DNA-mapping, ChIP-seq, ATAC-
seq, HiC, RNA-seq and scRNA-seq data.
Overall, ARPEGGIO was the only workflow support-

ing polyploid data, and among all the different aspects
considered, one of the few workflows including down-
stream analyses that explicitly set reproducibility as one
of its main goals.

Conclusions
Research on DNA methylation in allopolyploids at a
whole genome level seems to be favoring established al-
lopolyploid species (i.e. crops). This can be partially at-
tributed to two factors: 1) challenges in generating
allopolyploid genome assemblies; and, 2) a laborious
data analysis process. Here we presented ARPEGGIO:
the first workflow for the analysis of allopolyploid
WGBS data. ARPEGGIO includes a read classification
algorithm, EAGLE-RC, to assign allopolyploid reads to
the correct progenitor’s side. EAGLE-RC showed better
performance against a common concatenation for six
different WGBS datasets. Read classification is part of a
full set of analyses included in ARPEGGIO, going from
raw sequencing data up to a list of genes showing differ-
ential methylation. The implementation of ARPEGGIO
aimed at ease of use and reproducibility, both essential
factors to have an accessible yet up-to-standard tool.
With ARPEGGIO, we provide a first step towards a fu-

ture of standardized tools and workflows in polyploid
research.

Availability and requirements
Project name: ARPEGGIO
Project home page: https://github.com/supermaxiste/

ARPEGGIO
Operating system: Linux
Programming language: Python and R
Other requirements: Python 3, Conda, [Singularity]
License: MIT

Abbreviations
WGBS: Whole genome bisulfite sequencing; DMRs: Differentially methylated
regions
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Mimulus data. Description: A plot with the average runtime for each
main step in the ARPEGGIO pipeline: conversion check, quality check,
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