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Abstract

The basic chemical structure of most prostate specific membrane antigen (PSMA) inhibitors 
which are now in pre-clinical and clinical studies is Glu-Ureido-based peptides. Synthesis of 
urea-based PSMA inhibitors includes two steps: 1- isocyanate intermediate formation and 2- 
urea bond formation. In current methods, isocyanate is formed in liquid phase and then reacts 
with amine existing in liquid phase or bound to solid phase for urea bond formation. In this 
study, we developed a new facile method for formation of both isocyanate and urea on solid 
phase under standard peptide coupling conditions. The solid phase-bound isocyanate served 
as intermediate to form urea bond. To monitor reaction progress qualitative test (Kaiser Test) 
and On-Bead FT-IR spectroscopy were used. The structure of Glutamate-Urea-Lysine (EUK) 
was confirmed using LC-Mass and 1H-NMR. This novel method successfully was applied 
to synthesize of another urea-based peptide containing a sequence of Glu-Urea-Lys (OMe)-
GABA-Tyr-Tyr-GABA and the bifunctional linker hydrazinonicotinamide (HYNIC) as well. 
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Introduction

Prostate cancer (PCa) is the most diagnosed 
cancer in adult men and the second cause of 
cancer deaths in North American and European 
men. It is estimated that one of the six men may 

be afflicted with PCa during their lives (1). There 
are such handful factors increasing the risk of 
PCa as: age, race, genetics, and lifestyle (2,3,12–
21,4,22–24,5–11). The routine screening tests 
for diagnosis of PCa are prostate specific antigen 
(PSA) blood test and digital rectal examination 
(DRE) 25-26. In cases with high PSA level or any 
abnormal observations in DRE, prostate biopsy 
serves as an invasive method. CT-Scan, MRI, 
and prostate scintigraphy are main imaging 
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techniques for detection of metastasis (27). 
There are some known biomarkers associated 
with PCa like (28) prostate stem cell antigen 
(PSCA) (29–31), prostate specific G-protein 
coupled receptors (PSGR), PSA (32–37) and 
PSMA (32–35). Of these markers, PSMA has 
gained more interest so as to early detection of 
PCa due to several reasons: 1) Over-expression 
on prostate cancer cells as membrane antigens 
2) Broadly expression at all stages of prostate 
tumors 3) Up-regulation in androgen-insensitive 
and metastatic tumors 4) The absence on normal 
prostate cell surface with restricted expression in 
the brain, kidney, and small intestine. 5) Intrinsic 
enzymatic activity which makes it possible 
to design ligand-targeted drugs 6) Receptor-
mediated Endocytosis of PSMA-targeted ligands 
leads to ligand retention into tumor cells.

Two distinct types of probes are used for 
targeting PSMA. The first groups were designed 
based on monoclonal antibodies (MAbs) which 
are not widely applied today (38). Low molecular 
weight pepidomimetics as PSMA inhibitors are 
the second attractive agents because of easy 
synthesis, high affinity, better tissue penetration, 
rapid clearance, and low immunogenicity (39). 
According to published studies, the active 
site of PSMA is of a funnel-like structure with 
an arginine patch that can be occupied by two 
main parts of PSMA inhibitors: glutamic acid or 
derivatives which ensures high affinity binding 
and zinc binding groups such as: Phosphonate, 
Sulfamide, Hydroxamate, Carbamate, and Urea 
moiety (40–42).

The basic chemical structure of most PSMA 
inhibitors which are now in pre-clinical and 
clinical studies is urea-based peptide. The 
pharmacophore, Glu-urea-R, specifically binds 
to PSMA and inhibits its activity. The Glu-
Ureido-based inhibitors and its analogs are 
the most desirable probes since 2001. Relative 
simple synthesis and biological stability 
because of planar structure and neutral charge 
of ureido group might have made it 44-45. Four 
general urea containing pharmacophores have 
been introduced so far which are analogue of 
dipeptides: glutamate-urea-glutamate (EUE), 
glutamate-urea-cysteine (EUC), glutamate-
urea-tyrosine (GUT), and glutamate-urea-lysine 
(EUK) (45). Unlike MAbs, peptide scaffolds as 

small molecules are synthesized easily by SPPS 
and more resistant in extreme radiolabeling 
conditions (temperature, pH). This is why they 
have been compared to the best candidate for 
designing radiopharmaceuticals (39).

Synthesis of urea-based PSMA inhibitors 
includes two steps: 1) isocyanate intermediate 
formation and 2) urea bond formation (43,45–
50). The isocyanate intermediate is synthesized 
from the reaction of appropriate amino acid with 
tri/diphosgene in liquid phase under controlled 
conditions of temperature and pH. In the next 
step, the urea bond is formed from the reaction of 
amino acid free amine with isocyanate. Overall, 
these current methods involve conjugation of 
free amine whether in liquid phase 44,46,51-52 or 
bound to solid phase (46) with isocyanate formed 
in solution phase before. 

In recent years, a variety of radioligands 
targeting prostate-specific membrane antigen 
(PSMA) have been clinically developed as a new 
class of radiopharmaceuticals for prostate cancer. 
Sigurdsson et al. in 1999 prepared isocyanate 
from aliphatic amines using trichloromethyl 
chloroformate (diphosgene) at 0 °C in presence 
of the non-nucleophilic base (51). Kozikowski et 
al. in 2001 reported the synthesis of urea-based 
glutamate carboxypeptidase II (NAALADase) 
inhibitors in which triphosgene has been used 
for carbonylation of amine in liquid phase at -78 
º C. Afterwards, the corresponding intermediate 
reacted with free amine of the other amino acid 
to form urea moiety (43). Hiller et al. in 2009 
synthesized a series of Glu-urea-X heterodimers 
as PSMA inhibitors, which X is a derivatized 
lysine (Lys). The compounds were radioiodinated 
and theirs affinity to prostate cancer cells were 
determined. The urea linkage was synthesized in 
liquid phase utilizing two routes: acylimidazole 
intermediate afforded by Carbonyldiimidazole 
(CDI) (route A) and isocyanate intermediate 
prepared by Triphosgene (route B) (Figure 1) 
(45).

Kularatne et al in 2009 prepared a series of 
(Glu-urea-Glu)-based PSMA inhibitors. At first, 
The Glu-urea-Glu pharmacophore (EUE) was 
synthesized through isocyanate intermediate 
formation in liquid phase using triphosgene 
under controlled conditions. Then, one of the 
carboxylate groups in the Glu-urea-Glu was 
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de-protected via catalytic hydrogenation and 
subsequently conjugated to N-terminal of resin-
bound peptide to furnish final peptide. Actually, 
in this procedure both solid phase and solution 
phase peptide synthesis techniques have been 
applied (Figure 2) (47).

Al-momani et al. in 2012 only took 
advantage of solution phase peptide synthesis 
method to prepare Glu-Urea-Tyr. The reaction 
of triphosgene in CH2Cl2 with bis (tert-butyl)-
L-glutamate.HCl using triethylamine as a base, 
at -77 °C under argon, resulted in isocyanate 
intermediate. In next step, L-Tyrosine tert-

butyl ester were activated by triethyamine and 
conjugated with isocyanate to afford urea linkage 
(Figure 3) (50).

Eder et al in 2012 synthesized Glu-NH-CO-
NH-Lys (Ahx)-HBED-CC. To form urea bond, 
the isocyanate of glutamyl moiety (Glu-N = C 
= O) was synthesized in liquid phase and then 
reacted with free α-amino group of resin-bound 
ε-allyloxycarbonyl (Alloc) protected lysine. So, 
the peptide chain elongation was completed in 
solid phase (Figure. 4) (46).

Zhang et al. in 2016 used similar liquid phase 
procedures using triphosgene under controlled 

Figure 1. Synthesis of glu-urea-lys (EUK) in solution phase (45).
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conditions (temperature, pH, anhydrous and N2) 
for synthesis of four analogs of Glu-Urea-R. 
They also determined the affinities of synthesized 
compounds to PSMA (49). 

In the present study, we introduce a rapid 
method for solid phase synthesis of isocyanate 
and urea moiety using peptide coupling reagents.

Experimental

Materials 
Reagents: All protected amino acids 

and 2-chlorotrityl chloride (2-CTC) resin 
were of analytical grade from Novabiochem 
(Merck, Darmstadt, Germany). Triphosgene 
was purchased from Merck Co. (Germany), 

TBTU (O-(Benzotriazol-1-yl)-N, N, N′, 
N′-tetramethyluronium tetrafluoroborate), 
DIPEA (Diisopropylethylamine), TFA 
(Trifluoroaceticacid), TIS (Triisopropylsilan) and 
solvents such as: DCM (Dichloromethane), MeOH 
(Methanol), and DMF (Dimethylformamide) 
were obtained from Sigma-Aldrich (USA) 
and used as received. High-resolution LC-MS 
Triple Quad 6410 (Agilent) with a series 1200 
HPLC column (Japan) (C-18, 250 Å~4.6 mm, 
5 µm) were used for recording Mass Spectra of 
peptide. Mobile phase: A: H2O + 0.1 % TFA, 
B: Acetonitrile, flow rate: 1 mL/min, volume 
of injection 20, total run time: 40 min. Bruker 
AVANCE III HG 44 MHz NMR was used for 
1H-NMR spectra of peptide. 
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Synthesis method
Synthesis of Glu-Urea-Lys (EUK): The EUK 

was synthesized using a standard Fmoc strategy 
by 2-chlorotrityl chloride (2-CTC) resin as a 
solid phase. Briefly, Fmoc-Glu (OtBu)-OH (2 
mmol) was attached to 2-CTC resin (1.0 g) using 
DIPEA (8 mmol) in anhydrous DCM/DMF (10 
mL, 1:1) for 2 h at room temperature (Figure 5, 
A). 

Then, the reaction mixture was filtered. The 
remaining trityl chloride groups of the resin 
were capped by 24 mL solution of DCM/MeOH/
DIPEA (17:2:1) within 30 min. The resin was 
washed with DMF (3 × 5 mL) and DCM (1 × 
5 mL) and filtered off. The Fmoc group was 
removed using 25 % piperidine/DMF (13 mL) 
for 30 min (Figure 5, B).

To form isocyanate intermediate, in a round 
bottom flask, DIPEA (4.5 mmol) and triphosgene 
(0.6 mmol) in 10 mL of dry DCM was added to 
resin (resin-Glu-NH2). The mixture was stirred 
for 6 h at 0 ºC in sealed conditions (Figure 5, C). 

After this period, the mixture was moved to 
the reaction vessel, filtered, and washed with 
dry DCM (3 × 5 mL). The completeness of the 
reaction was checked by Kaiser Test. In the 
next step, H-Lys (Z)-OtBu (2 mmol) dissolved 
in 5 mL dry DCM and DIPEA (4.5 mmol) 
were added into reaction vessel and agitated at 
ambient temperature overnight. Afterwards, the 
solution was filtered and resin was washed 3 
times using 5 mL of DCM and 100 µL of DIPEA 

to remove unreacted Lysine. The end-point of 
lysine attachment to isocyanate was indicated by 
positive Kaiser Test (Figure 5, D). 

The peptide was cleaved from surface of the 
resin using 100 mL of 1% TFA in DCM and 
neutralized with 50 mL 4% pyridine in MeOH. 
The solvents were removed under reduced 
pressure in a rotary evaporator, and the peptide 
was precipitated in distilled water. All side-chain 
protecting groups of the peptide sequence (OtBu) 
were deprotected by treatment with a cleavage 
cocktail TFA/TIS/H2O (95:2.5:2.5). According 
to Albert Isidro-Llobet and et al (2009), the Z 
group was partially removed in presence of 
cocktail TFA/scavenger as well (52) (Figure 5, 
E).

After removing of the solvents, the peptide 
was precipitated into excess cold diethyl ether 
and finally valuable product was isolated by 
preparative HPLC. As a marker for free amine 
group, Kaiser Reagent (consists of 2 solutions, 
solution A: 80 g of Phenol in 20 mL of Ethanol, 
solution B: 2 mL of 2 M KCN in 100 mL of 
pyridine) was used, which in presence of free 
amine, resin seeds turn into dark blue. Chloranil 
test is also used to check it by 5 drops of both 
2% Chloranil solution and 2% Acetaldehyde 
solution which in the case of free amines, 
resin seeds appear as dark-blue. The schematic 
diagram for synthesis of EUK is illustrated in 
Figure 5. The identity of peptide was confirmed 
by LC-MS (Figure 6).

Figure 5. Schematic illustration of the synthesis route of glu-urea-lys (EUK) as a PSMA inhibitor.
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Synthesis of new urea-based peptide: To 
synthesize long peptide being of O-methylated 
derivative of EUK, H-Lys (Fmoc)-OMe was 
used instead of Z-protected Lysine. Firstly, 
the resin-bound Glu-Urea-Lys (OMe) was 
prepared as described above. After Fmoc 
deprotection of Lysine, a solution of the next 
amino acid (2 mmol), TBTU (2 mmol), and 
DIPEA (2.5 mmol) in 6 mL of DMF was added 
to assemble the third amino acid on resin (1 
h at room temperature). The deprotection, 
coupling, and washing cycles were repeated 
until assembly of Fmoc-protected GABA-Tyr-
Tyr-GABA-HYNIC peptide was complete. The 
bifunctional hydrazinonicotinamide (HYNIC) 
moiety was used so as to radiolabel of this new 
peptide scaffold in future studies. LC-Mass 
chromatogram was shown in Figure 7.  

Results

In this study, Glu-Urea-Lyz (EUK) was 

synthesized on solid phase under peptide 
coupling conditions. The LC‑MS (Figure 6) and 
1H NMR spectroscopy were used to confirm the 
identity of synthesized compound.

LC-MS (m/z): (M+H)+. Calculate for 
C12H21N3O7, 319; found, 320.

Glu-Urea-Lys: white powder, 1H NMR (400 
MHz, CDCl3): δ 0.87 (m, 1H), 1.09-1.33 (m, 
4H), 1.69-1.92 (m, 4H), 1.92 (m, 1H), 2.24 (m, 
2H), 2.77 (m, 3H), 4.08 (m, 4H), 5.00 (s, 1H, 
NH), 6.35 (s, 2H, NH), 7.35-7.68 (m, 5H). 

This novel method was used for synthesizing 
another urea-containing peptide, Glu-Urea-
Lys(OMe)-GABA-Tyr-Tyr-GABA-HYNIC: 
white powder. LC-MS (m/z): (M+H)+. Calculate 
for C45H60N10O14, 964.5; found, 965.5 (Figure 7).

Discussion

Regarding an increasing trend in prevalence 
of PCa in men over 40 years and its high 
mortality rate, researches are taking place for 
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early detection of prostate tumors (48). There 
are a few markers to be particularly found 
on prostate cancer cells. PSMA is a valuable 
specific antigen on the surface of tumor cells with 
enzymatic roles. Analysis of crystal structure of 
PSMA and active site of enzyme has resulted in 
design and synthesis of several classes of PSMA 
inhibitors including monoclonal antibodies, 
aptamers, and small molecules such as peptides. 
The more attractive targeted agents are urea-
based dipeptide scaffolds in which two amino 
acids are joined through α-amino groups by urea 
linkage. Based on structure activity studies of 
amino acids and potency of PSMA inhibitors, 
Glu-urea-R is an appropriate pharmacophore 
of PSMA inhibitors. A few urea-based small 
molecules for targeting PSMA are in pre-clinical 
and clinical studies. Glu-urea-R is synthesized 
via formation of the intermediate isocyanate 
which is formed in liquid phase. The traditional 
synthetic pathway to intermediate isocyanate 
formation is using carbonyl insertion reagents 

such as tri/diphosgene in liquid phase under 
controlled conditions of temperature and pH. 

In this study, for the first time, we generated 
isocyanate intermediate on resin (Resin-Glu-
N=C=O) which has considerable advantages 
over liquid phase strategy. The Fmoc-amino 
acid (tert-butyl-protected Glutamic acid) was 
loaded onto the wang resin and the Fmoc group 
removed. The solid phase-bound glutamate was 
then reacted with triphosgene in the presence of 
DIPEA as a base. The corresponding isocyanate 
on solid phase was not isolated and directly 
reacted with H-Lys (Z)-OtBu to generate the 
urea linkage (Resin-Glu-NH-CO-NH-Lys). On-
Bead Fourier transform infrared (FT-IR, Agilent) 
spectroscopy of the intermediate isocyanate 
showed one major band at approximately 2250-
2270 cm-1 after reaction between the solid-phase 
bound amine and triphosgene. This band was 
absent in IR spectrum of deprotected glutamate 
bounded to the resin (Figure 8). The LC‑MS 
(Figure 6) and 1H NMR spectroscopy were 
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used to confirm the identity of the synthesized 
compound.

There are some positive aspects of using on-
resin generation of isocyanate versus isocyanate 
formation in liquid phase like ease of synthesis 
and reaction progress monitoring by qualitative 
test. Di-Glutamate and HCl can be formed 
during isocyanate formation step in liquid phase 
though. HCl will be neutralized by DIPEA 
present in the reaction mixture but there is no 
simple way to remove di-glutamate impurity 
from solution phase. In solid phase, isocyanate 
is prepared on-resin which makes the formation 
of di-glutamate impurity decrease. Furthermore, 
this impurity no longer participates in the next 
coupling reactions due to absence of Fmoc-
protected amine in its structure. The resin-
bound isocyanates are separated from unreacted 
triphosgene and glutamate after washing and 
filtration steps resulting in high purity of final 
product. 

The isocyanate formation on resin is also 
monitored via qualitative Chloranil or Kaiser 
Test within a few minutes. The light-yellow color 
of beads indicates the absence of free primary 
amino groups (-NH2) which have converted into 
isocyanate groups (-N=C=O). In addition to, 
FTIR spectroscopy a single resin bead can be 
used to monitor of the solid-phase reaction.

Two approaches have been adopted to convert 
isocyanate into urea. In the first approach, amino 
acid reacts with isocyanate in liquid phase to 
form urea linkage. In the second one, excess 
amounts of isocyanate in solution phase are 
reacted with amino acid bound to resin (46). In 
these approaches, the structure of isocyanate is 
not confirmed before the next step, while our 
procedure enables us to monitor isocyanate 
formation via Chloranil or Kaiser Test within a 
few minutes. 

To afford longer peptide sequence, some 
studies have employed solid-phase for 
conjugation of prepared urea-containing 
pharmacophore to the N-terminal of peptide 
bound to resin (47). The free carboxylic acid 
group of amino acid is required for this strategy. 

Herein, we introduce an applicable solid-
phase synthesis protocol that allows simple 
synthesis of Glu-Ureido–Based long peptides 
with high purity. The one-pot reaction between 

the amine, triphosgene and DIPEA gives 
isocyanate. The isocyanate on solid phase is 
not removed and reacts with amine for direct 
formation of urea bond. The method is similar 
to peptide synthesis on solid phase and can be 
easily adopted for solid phase synthesis (SPS) of 
urea-based peptides. 

Conclusion

In the present study, an efficient and versatile 
synthesis of Glu-Ureido–Based PSMA inhibitors 
using solid phase protocol was developed. In 
this method, the isocyanate and subsequent urea 
formation take place under standard peptide 
coupling conditions using triphosgene as an 
amino acid. Urea-containing peptides can be 
easily cleaved from resin at the end of the 
synthesis using acidic conditions. The aim of 
this study is to generate isocyanate intermediate 
directly on resin which is well suited for peptide 
chain elongation with high purity. 
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