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PURPOSE. Sjögren syndrome is an autoimmune disease that occurs primarily in women, and is
associated with lacrimal gland inflammation and aqueous-deficient dry eye. We hypothesize
that sex-associated differences in lacrimal gland gene expression are very important in
promoting lymphocyte accumulation in this tissue and contribute to the onset, progression,
and/or severity of the inflammatory disease process. To test our hypothesis, we explored the
nature and extent of sex-related differences in gene expression in autoimmune lacrimal
glands.

METHODS. Lacrimal glands were collected from age-matched, adult, male and female MRL/MpJ-
Tnfrsf6lpr (MRL/lpr) and nonobese diabetic/LtJ (NOD) mice. Glands were processed for the
analysis of differentially expressed mRNAs by using CodeLink Bioarrays and Affymetrix
GeneChips. Data were evaluated with bioinformatics and statistical software.

RESULTS. Our results show that sex significantly influences the expression of thousands of
genes in lacrimal glands of MRL/lpr and NOD mice. The immune nature of this glandular
response is very dependent on the Sjögren syndrome model. Lacrimal glands of female, as
compared with male, MRL/lpr mice contain a significant increase in the expression of genes
related to inflammatory responses, antigen processing, and chemokine pathways. In contrast,
it is the lacrimal tissue of NOD males, and not females, that presents with a significantly
greater expression of immune-related genes.

CONCLUSIONS. These data support our hypothesis that sex-related differences in gene
expression contribute to lacrimal gland disease in Sjögren syndrome. Our findings also
suggest that factors in the lacrimal gland microenvironment are critically important in
mediating these sex-associated immune effects.

Keywords: sex differences, Sjögren syndrome, lacrimal gland, gene expression, MRL/lpr-lpr/
lpr mice, nonobese diabetic mice

Sjögren syndrome is an autoimmune disease often accompa-

nied by chronic and extensive inflammation of the lacrimal

glands.1,2 This lymphocyte infiltration may severely damage

acinar and ductal epithelial cell function, resulting in a

significantly diminished output of aqueous tears.1 In conse-

quence, Sjögren syndrome is a leading cause of aqueous-

deficient dry eye disease.1

One of the most compelling features of Sjögren syndrome is

that it affects predominantly females.3–5 In fact, female sex is a

significant risk factor for the development of Sjögren syndrome,

given that 93% of the patient population is female.3–5 This

sexual dichotomy is frequently linked to fundamental sex-

related differences in the immune system.4,6,7 Women have a

more potent and competent systemic immune capability than

men, and this heightened immunological activity is believed to

contribute to the much greater incidence of many autoimmune

diseases in females.3,4,6,7 Indeed, women constitute almost 80%

of the 20 million people in the United States with autoimmune
disease.8

We hypothesize that sex-associated differences in lacrimal
gland gene expression are also very important in promoting
lymphocyte accumulation in this tissue and contribute to the
onset, progression, and/or severity of the inflammatory disease
process. Consistent with this hypothesis is our discovery that
the expression of a number of proto-oncogenes and apoptotic
genes are significantly increased in the inflamed lacrimal tissues
of female, as compared with male, MRL/lpr mice.9

To continue to test our hypotheses, we sought to explore
further the nature and extent of sex-related differences in gene
expression in autoimmune lacrimal glands. Toward that end,
we examined and compared the gene expression in lacrimal
glands of female and male MRL/MpJ-Tnfrsf6lpr (MRL/lpr) and
nonobese diabetic/LtJ (NOD) mice, respectively. The extent of
lacrimal and salivary gland inflammation in MRL/lpr mice is, as
in humans, far greater in females as compared with males.10 In
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contrast, although the salivary gland immunopathology in
NOD mice is more extensive in females, the magnitude of
lacrimal gland inflammation is far worse in NOD males (Toda I,
et al. IOVS 1997;34:ARVO Abstract 434).10,11 We believe that
this differential autoimmune expression in lacrimal glands of
MRL/lpr and NOD mice reflects, in large part, the influence of
local tissue, as compared with systemic, factors.

MATERIALS AND METHODS

Animals and Tissue Collections

Adult male and female MRL/lpr and NOD mice were obtained
from the Jackson Laboratories (Bar Harbor, ME, USA). Mice (n¼
15 to 18/sex/strain) were housed in constant temperature
rooms with fixed light/dark intervals of 12 hours’ length. When
indicated, mice were killed by CO2 inhalation and exorbital
lacrimal glands were removed for molecular biological
procedures. Lacrimal gland samples were prepared by com-
bining tissues from five to six mice/sex/group. Three different
sample preparations were made for each tissue/sex/group and
then processed for the analysis of gene expression.

All research experiments with mice were approved by the
Institutional Animal Care and Use Committee of The Schepens
Eye Research Institute and adhered to the ARVO Statement for
the Use of Animals in Ophthalmic and Vision Research.

Molecular Biological Procedures

Total RNA was extracted from lacrimal glands by using TRIzol
reagent (Invitrogen Corp., Carlsbad, CA, USA) and purified
with RNAqueous spin columns (Ambion, Austin, TX, USA). The
lacrimal gland RNA samples were treated with RNase-free
DNase (Invitrogen), analyzed spectrophotometrically at 260
nm to determine concentration, and evaluated with an RNA
6000 Nano LabChip and an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) to confirm RNA integrity.
The RNA samples were then stored at �808C until further
processing.

Gene expression was examined by the use of two
procedures. One involved the processing of RNA samples for
hybridization to CodeLink UniSet Mouse 20K I Bioarrays (n ~
20,000 genes/array; Amersham Biosciences/GE Healthcare,
Piscataway, NJ, USA), according to detailed methods.12 cDNA
was synthesized from RNA (2 lg) with a CodeLink Expression
Assay Reagent Kit (Amersham) and purified with a QIAquick
purification kit (Qiagen, Valencia, CA, USA). Samples were
dried, and cRNA was generated with a CodeLink Expression
Assay Reagent Kit (Amersham), recovered with an RNeasy kit
(Qiagen) and quantitated with an UV spectrophotometer.
Fragmented, biotin-labeled cRNA was then incubated and
shaken at 300 rpm on a CodeLink Bioarray at 378C for 18
hours. After this time period, the Bioarray was washed,
exposed to streptavidin-Alexa 647, and scanned by using
ScanArray Express software and a ScanArray Express HT
scanner (Packard BioScience, Meriden, CT, USA) with the laser
set at 635 nm, laser power at 100%, and photomultiplier tube
voltage at 60%. Scanned image files were evaluated by using
CodeLink image and data analysis software (Amersham), which
yielded both raw and normalized hybridization signal intensi-
ties for each array spot. The intensities of the approximately
20,000 spots on the Bioarray image were standardized to a
median of 1. Normalized data, with signal intensities greater
than 0.50, were analyzed with bioinformatic software (Geo-
spiza, Seattle, WA, USA). This sophisticated software also
created gene ontology, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and z-score reports. The ontologies

encompassed biological processes, molecular functions, and
cellular components and were organized according to the
recommended guidelines of the Gene Ontology Consortium
(http://www.geneontology.org/GO.doc.html).13

The second method to examine differential gene expression
involved the hybridization of each cRNA (20 lg) sample to a
GeneChip Mouse Genome 430A 2.0 Array (Affymetrix, Santa
Clara, CA, USA) according to the manufacturer’s protocol.
Reagents for the fragmentation and hybridization steps were
from a GeneChip HT One-Cycle Target Labeling and Control
Kit, and materials for the washing and staining steps came from
a GeneChip HWS kit (Affymetrix). Hybridized GeneChips were
scanned with an Affymetrix Model 700 Scanner and expression
data files were created from array images by using Affymetrix
Microarray Suite 4.0 software. GeneChip data were standard-
ized by choosing the default scaling in Affymetrix GeneChip
Operating Software, which yields a trimmed mean intensity of
500 for each GeneChip microarray. Normalized data with a
quality value of 1.0 were then analyzed with Geospiza
GeneSifter software (Geospiza).

Counts of unique mappings of probes to gene identifica-
tions in the CodeLink and Affymetrix arrays showed that there
were 15,711 and 13,265 unique genes, respectively, in these
arrays. Analysis of the intersection of these lists demonstrated
that there was an overlap of 11,299 genes.

Gene expression data were examined without log transfor-
mation and statistical analyses of these data were performed
with Student’s t-test (two-tailed, unpaired) by using the
GeneSifter software. Our statistical approach was not tailored
for multiple comparisons. Genes that were expressed in the
same direction in different groups were identified by using
GenBank accession numbers and an intersector program
(Geospiza). Data used for these CodeLink and Affymetrix
arrays are accessible for free download through the National
Center for Biotechnology Information’s Gene Expression
Omnibus via series accession number GSE5876.

RESULTS

Influence of Sex on Gene Expression in Lacrimal
Glands of MRL/lpr and NOD Mice

To determine the influence of sex on gene expression in
lacrimal glands of autoimmune mice, tissues were obtained
after disease onset10 from MRL/lpr (n¼18 mice/sex; age¼19.8
6 0.3 weeks old) and NOD (n¼15 mice/sex; age¼21.4 weeks
old) mice. Glands were pooled according to sex and group (n¼
10–12 glands/sex/sample; n ¼ 3 samples/sex/group), pro-
cessed for the isolation of total RNA, and examined for
differentially expressed mRNAs by using CodeLink Bioarrays
and Affymetrix GeneChips. Microarray data were analyzed with
Geospiza bioinformatics software.

Our findings demonstrate that sex has a significant impact
on the expression of thousands of genes in lacrimal glands of
MRL/lpr and NOD mice (Table 1). Non-sex chromosome
genes with the greatest differences in terms of expression
ratios in MRL/lpr mice are shown in Table 2. Genes, such as
pancreatic lipase-related protein 1, asialoglycoprotein recep-
tor, S100 calcium-binding proteins A8 and A9, and growth
differentiation factor 5, were increased in females, and
lymphocyte antigen 6 complex, locus F and cytochrome
P450, family 2, subfamily j, polypeptide 13 in were higher in
males, and the results were similar with both CodeLink and
Affymetrix microarrays.

Additional genes of interest included that for cathepsin S,
which is significantly increased in the tears of Sjögren
syndrome patients,14 and is more highly expressed in lacrimal
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tissues of female MRL/lpr mice (CodeLink ¼ 2.85-fold;
Affymetrix ¼ 3.03-fold). Also notable were the increased
expression of X-chromosome genes, such as X inactive specific
transcript (Xist) (CodeLink ¼ 32.0-fold), domesticus antisense
RNA from the Xist locus (Affymetrix ¼ 27.7-fold), and moesin
(Affymetrix ¼ 3.45-fold) in females, and the X (androgen
receptor; CodeLink ¼ 1.7-fold) and Y (eukaryotic translation
initiation factor 2, subunit 3; CodeLink¼ 60.1-fold; Affymetrix
¼ 205.2-fold) chromosome genes in males.

Genes with many of the highest expression differences in
terms of ratios in NOD mice are shown in Table 3. Some of
these genes (e.g., female [F] > male [M], pancreatic lipase-
related protein 1 and asialoglycoprotein receptor; M>F,
cytochrome P450, family 2, subfamily j, polypeptide 13, and
neuromedin U) showed analogous degrees of difference in
both the CodeLink and Affymetrix microarrays. Elevated levels

of Y chromosome genes, including gene eukaryotic translation
initiation factor 2, subunit 3 (CodeLink¼ 48.8-fold; Affymetrix
¼ 10.1-fold) and DEAD box polypeptide 3 (Affymetrix¼ 115.1-
fold) were also found in lacrimal glands of males, whereas the
expression of the X-chromosome gene, androgen receptor
(Affymetrix¼ 3.06-fold), was greater in female lacrimal tissues.
In contrast to the results with MRL/lpr mice, the expression of
cathepsin S (CodeLink¼ 3.85-fold; Affymetrix¼ 6.06-fold) and
the X-linked gene moesin (Affymetrix ¼ 6.32-fold) were
significantly higher in male lacrimal glands, as compared with
those of females.

Most of the lacrimal gland genes in MRL/lpr and NOD
female and male mice, respectively, which were identified as
differentially expressed by the CodeLink and Affymetrix
microarrays, were unique to each platform. As shown in
Table 4, relatively few genes displaying sex-related differences
were expressed by both microarrays. These findings are
consistent with our previous investigations,15–17 as well as
those of others,18–21 which discovered little agreement
between CodeLink and Affymetrix microarrays in the detection
of differential gene expression. Although these platforms seem
to measure different things,20 most gene expression changes
revealed by each of the platforms are thought to be biologically
correct.19,20

Comparison of gene expression between the inflamed
lacrimal glands of MRL/lpr (F>M) and NOD (M>F) mice
showed that 465 genes were common (CodeLink). The
alternate comparison (i.e., MRL/lpr, M>F; NOD, F>M) revealed
187 genes in common (CodeLink).

TABLE 1. Number of Genes With Significant, Sex-Related Differences
in Expression in Lacrimal Glands of MRL/lpr and NOD Mice

Mouse Strain/Array Genes F>M Genes M>F Total Genes

MRL/lpr

CodeLink 2674 1880 4554

Affymetrix 1316 1237 2553

NOD

CodeLink 3292 1721 5013

Affymetrix 1531 1569 3100

The expression of listed genes was significantly (P < 0.05)
upregulated between the groups.

TABLE 2. Influence of Sex on Gene Expression in Lacrimal Glands of MRL/lpr Mice

Accession No. Gene Ratio P Ontology

F>M, CodeLink

NM_018874 Pancreatic lipase-related protein 1 960.8 0.0183 Lipid metabolic process

NM_009714 Asialoglycoprotein receptor 1 67.6 0.0011 Endocytosis

NM_009114 S100 calcium-binding protein A9 37.0 0.0059 Chemotaxis

NM_011105 Polycystin and REJ 28.0 0.0012 Transport

NM_013650 S100 calcium-binding protein A8 27.2 0.0039 Chemotaxis

NM_008109.1 Growth differentiation factor 5 16.4 0.0013 Cell differentiation

F>M, Affymetrix

NM_018874 Pancreatic lipase-related protein 1 629.9 0.0015 Lipid metabolic process

U09362 Asialoglycoprotein receptor 1 66.6 0.0048 Endocytosis

NM_013650 S100 calcium-binding protein A8 24.5 0.0119 Chemotaxis

NM_009114 S100 calcium-binding protein A9 21.3 0.0054 Chemotaxis

NM_008109 Growth differentiation factor 5 11.8 0.0128 Cell differentiation

M93428 Endothelial ligand for L-selectin 11.8 0.0095 Cell adhesion

M>F, CodeLink

NM_145548 Cytochrome P450, family 2, subfamily j, polypeptide 13 462.2 0.0005 Monooxygenase activity

NM_146592 Olfactory receptor 1086 130.3 0.0004 Signal transduction

NM_008530 Lymphocyte antigen 6 complex, locus F 105.3 0.0000 Intrinsic to membrane

NM_133221 Solute carrier family 24, member 6 70.9 0.0002 Transport

NM_153419 Glutamate-rich WD repeat containing 1 69.5 0.0004 Ribosome biogenesis

NM_145967.1 V-set and transmembrane domain containing 2A 64.1 0.0010 Cell differentiation

M>F, Affymetrix

AY079153 Melanocortin 2 receptor accessory protein 244.1 0.0002 Positive regulation of cAMP biosynthetic process

M16360 Major urinary protein V 202.7 0.0015 Transport

NM_008530 Lymphocyte antigen 6 complex, locus F 171.0 0.0000 Intrinsic to membrane

NM_008644 Mucin 10 146.0 0.0420 Negative regulation of peptidase activity

BC016446 Cytochrome P450, family 2, subfamily j, polypeptide 13 84.6 0.0001 Monooxygenase activity

NM_010232 Flavin-containing monooxygenase 5 57.7 0.0041 Monooxygenase activity

Non-sex chromosome genes with the greatest differences in terms of expression ratios in MRL/lpr mice are listed. Relative ratios were calculated
from CodeLink and Affymetrix data by comparing the degree of gene expression in lacrimal glands from female and male MRL/lpr mice.
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Impact of Autoimmune Disease on Immune-
related Biological Process, Molecular Function,
and Cellular Component Ontologies in Lacrimal
Glands of MRL/lpr Female and NOD Male Mice

Autoimmune disease had a dramatic impact on the expression
of numerous immune-related gene ontologies in the lacrimal

glands of female MRL/lpr and male NOD mice. Many of these
ontologies were identified by both CodeLink and Affymetrix
platforms.

As shown in Tables 5 and 6, the expression of immune-
related ontologies in lacrimal tissues of female MRL/lpr and
male NOD mice was significantly increased in all three major
gene function areas, including biological processes (e.g.,

TABLE 3. Effect of Sex on Gene Expression in Lacrimal Glands of NOD Mice

Accession No. Gene Ratio P Ontology

F>M, CodeLink

NM_018874 Pancreatic lipase-related protein 1 3757.0 0.0001 Lipid metabolic process

NM_011857 ODZ3 29.1 0.0003 Signal transduction

NM_019752 HtrA serine peptidase 2 25.4 0.0009 Proteolysis

NM_145561 Transmembrane protease, serine 11d 22.4 0.0101 Proteolysis

AK002477 Plasma membrane proteolipid 20.9 0.0005 Transport

NM_009714 Asialoglycoprotein receptor 1 19.2 0.0003 Endocytosis

F>M, Affymetrix

NM_018874 Pancreatic lipase-related protein 1 3679.0 0.0001 Lipid metabolic process

M16360 Major urinary protein V 30.6 0.0327 Pheromone binding

NM_007814 Cytochrome P450, family 2, subfamily b, polypeptide 19 29.6 0.0002 Epoxygenase P450 pathway

AY061807 Calmodulin-like 4, transcript variant 1 22.1 0.0015 Calcium ion binding

NM_009349 Indolethylamine N-methyltransferase 21.2 0.0009 Metabolic process

U09362 Asialoglycoprotein receptor 1 15.3 0.0005 Endocytosis

M>F, CodeLink

NM_145548 Cytochrome P450, family 2, subfamily j, polypeptide 13 533.7 0.0002 Oxidation-reduction process

NM_019515 Neuromedin U 206.7 0.0005 Neuropeptide signaling pathway

NM_008957 Patched homolog 1 53.9 0.0002 Branching involved in ureteric bud

morphogenesis

BC012259 Major urinary protein 2 46.4 0.0002 Pheromone binding

NM_145967 V-set and transmembrane domain containing 2A 40.3 0.0001 Cell differentiation

NM_020277 Transient receptor potential cation channel,

subfamily M, member 5

39.1 0.0002 Signal transduction

M>F, Affymetrix

BC016446 Cytochrome P450, family 2, subfamily j, polypeptide 13 341.4 0.0008 Oxidation-reduction process

NM_133997 Apolipoprotein F 105.4 0.0010 Lipid metabolic process

NM_008599 Chemokine (C-X-C motif) ligand 9 81.0 0.0001 Inflammatory response

NM_019515 Neuromedin U 77.7 0.0000 Neuropeptide signaling pathwayal Process:

BC025936 Cytochrome P450, family 4, subfamily a, polypeptide 12a 45.6 0.0001 Alkane 1-monooxygenase activity

NM_010232 Flavin-containing monooxygenase 5 45.3 0.0000 Metabolic process

Genes with many of the highest expression differences in terms of ratios in NOD mice are shown. Relative ratios were determined from
CodeLink and Affymetrix data by comparing the degree of gene expression in lacrimal glands from female and male NOD mice.

TABLE 4. Comparison of Gene Expression Data Between CodeLink and Affymetrix Microarrays

Genes M>F Genes F>M Total Genes

MRL/lpr

CodeLink

Unique CodeLink genes, not expressed by Affymetrix 1683 2364 4047

Affymetrix

Unique Affymetrix genes, not expressed by CodeLink 1025 979 2004

CodeLink versus Affymetrix

Genes changed in same direction 181 307

Genes changed in opposite direction 8

NOD

CodeLink

Unique CodeLink genes, not expressed by Affymetrix 1454 2923 4377

Affymetrix

Unique Affymetrix genes, not expressed by CodeLink 1256 1161 2417

CodeLink versus Affymetrix

Genes changed in same direction 265 318

Genes changed in opposite direction 4

Data were analyzed without log transformation. Genes labeled as ‘‘unique’’ were significantly (P < 0.05) increased on one, but not the other,
microarray. The phrase ‘‘Genes changed in the same (or opposite) direction’’ means that the findings were significant (P < 0.05) on both platforms.
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inflammatory response), molecular functions (e.g., chemokine
activity), and cellular components (e.g., major histocompati-
bility complex [MHC] protein complex). These aspects, as
defined by the Gene Ontology Consortium (http://www.gen
eontology.org/page/ontology-documentation), address the bio-
logical programs accomplished by multiple molecular activities
(i.e., biological processes), the molecular-level activities
performed by gene products (i.e., molecular functions), and
the locations relative to cellular structures in which a gene
product performs a function (i.e., cellular components).

An example of the degree of autoimmune influence was

demonstrated by analysis of biological process ontologies in

male NOD lacrimal glands, which showed that 41 of the 53

most highly significant ontologies (‡ 50 genes/ontology; z-

score ‡ 6.0) were all immune-related. One such ontology,

inflammatory response, displayed a significant increase in

multiple inflammatory genes by both CodeLink and Affymetrix

microarrays in female MRL/lpr (Table 7) and male NOD (Table

8) mouse lacrimal tissues. Twenty-six of these inflammatory

TABLE 5. Immune Gene Ontologies Upregulated in Lacrimal Glands of Female MRL/lpr Mice

Ontology CodeLink Genes � Affymetrix Genes � CodeLink z-Score Affymetrix z-Score

Biological process

Immune system process 228 147 6.26 8.24

Defense response 141 85 6.12 6.37

Immune response 133 84 5.89 7

Leukocyte activation 100 67 5.51 6.93

Immune effector process 74 46 5.38 5.87

Cytokine production 72 33 5.12 2.9

Leukocyte proliferation 47 4.96

Lymphocyte proliferation 46 4.95

Lymphocyte activation 84 57 4.84 6.32

Inflammatory response 71 44 4.8 5.12

Regulation of response to stress 98 53 4.73 3.84

Regulation of cytokine production 62 4.65

Response to stress 166 4.6

Regulation of immune response 77 44 4.38 4.33

Cellular response to stress 142 65 4.35 2.04

Regulation of immune system process 119 76 4.29 5.59

Regulation of lymphocyte activation 51 4.12

Regulation of leukocyte activation 56 4.11

Regulation of immune effector process 42 4

Positive regulation of immune system process 85 57 3.99 5.36

Regulation of defense response 60 33 3.79 3.29

Leukocyte mediated immunity 43 3.78

Positive regulation of immune response 59 39 3.72 4.94

T-cell activation 55 42 3.53 6.03

Response to cytokine stimulus 49 3.34

Innate immune response 56 40 3.15 5.15

Positive regulation of defense response 39 3.14

Hemopoietic or lymphoid organ development 47 2.82

Immune system development 48 2.56

Activation of immune response 41 2.52

Leukocyte differentiation 50 2.22

Molecular function

Immunoglobulin G binding 5 5.04

Chemokine activity 14 9 4.18 4.19

Chemokine receptor binding 16 11 4.15 4.54

Immunoglobulin binding 5 3.17

Antigen binding 7 7 2.95 5.03

Cytokine activity 34 2.12

Cellular components

MHC class II protein complex 6 4 4.04 3.95

MHC protein complex 9 7 3.81 4.74

MHC class I protein complex 3 3.01

Immunological synapse 4 2.77

B-cell receptor complex 3 2.61

T-cell receptor complex 4 2.54

Biological process (‡ 50 genes/ontology), molecular function (‡ 5 genes/ontology) and cellular component (‡ 4 genes/ontology) immune
ontologies were identified following the analysis of nontransformed CodeLink and Affymetrix data. A z-score is a statistical rating of the relative
expression of genes, and demonstrates how greatly they are over- or underrepresented in a given gene list.22 Positive z-scores reflect a higher
number of genes meeting the criterion than is expected by chance, and values >2.0 are significant. These immune ontologies were not upregulated
in lacrimal gland samples from male MRL/lpr mice. Terms: CodeLink Genes � - number of genes upregulated in female lacrimal tissues, as
determined with a CodeLink Bioarray; Affymetrix Genes � - number of genes upregulated in female lacrimal glands, as calculated with Affymetrix
GeneChips; z-score: specific score for the upregulated genes in the CodeLink and Affymetrix tissues.
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TABLE 6. Immune Gene Ontologies Significantly Increased in Lacrimal Glands of Male NOD Mice

Ontology

CodeLink

Genes �
Affymetrix

Genes �
CodeLink

z-score

Affymetrix

z-score

Biological process

Immune response 152 137 15.16 13.98

Immune system process 227 215 14.62 14.34

Positive regulation of immune system process 102 93 12.13 10.93

Regulation of immune response 90 75 11.75 9.72

Defense response 134 112 11.7 9.14

Regulation of immune system process 128 114 11.66 10.27

Immune effector process 81 73 11.65 10.82

Positive regulation of immune response 75 64 11.48 9.81

Leukocyte activation 99 97 10.89 11.19

Innate immune response 69 61 10.11 9.08

Leukocyte mediated immunity 53 50 10.1 10.02

Adaptive immune response based on somatic recombination of

immune receptors built from immunoglobulin

48 51 10.08 11.67

Adaptive immune response 48 51 9.88 11.32

Lymphocyte activation 83 85 9.72 10.71

Lymphocyte-mediated immunity 45 9.6

Activation of immune response 55 47 9.56 8.44

Regulation of immune effector process 47 8.99

Regulation of lymphocyte activation 54 49 8.81 8.02

T-cell activation 60 60 8.74 9.35

Immune response-regulating signaling pathway 46 8.71

Regulation of leukocyte activation 58 50 8.71 7.34

Immune response-activating signal transduction 45 8.6

Regulation of lymphocyte proliferation 37 8.23

Positive regulation of lymphocyte activation 39 8.19

Regulation of mononuclear cell proliferation 37 8.16

Positive regulation of leukocyte activation 41 8.11

Regulation of leukocyte proliferation 37 8.03

Cytokine production 63 53 7.94 6.51

Lymphocyte proliferation 43 42 7.93 7.99

Mononuclear cell proliferation 43 7.88

Leukocyte proliferation 43 42 7.72 7.78

Positive regulation of response to stimulus 125 7.53

Regulation of T-cell activation 39 7.47

B-cell activation 38 7.34

Regulation of cytokine production 54 46 7.21 6.02

Regulation of defense response 55 43 6.95 4.77

Inflammatory response 58 45 6.75 4.41

Response to stress 218 217 6.64 7.63

Response to cytokine stimulus 45 45 6.21 6.52

T-cell differentiation 32 6.06

Positive regulation of defense response 37 6.02

Molecular function

Cytokine binding 30 22 7.37 4.64

Antigen binding 9 10 6.2 7.06

Peptide antigen binding 6 6 6.15 5.95

Chemokine activity 13 12 5.81 5.53

Chemokine receptor binding 14 14 5.43 5.63

Chemokine binding 9 7 5.05 3.51

Cytokine activity 33 5.01

Chemokine receptor activity 8 7 4.69 3.82

G-protein chemoattractant receptor activity 8 4.69

Immunoglobulin binding 5 7 4.58 5.87

C-C chemokine receptor activity 6 4.12

MHC protein binding 5 3.94

C-C chemokine binding 6 3.89

Cytokine receptor binding 29 27 3.87 3.46

MHC class I protein binding 4 3.79

Cytokine receptor activity 12 9 3.5 2.35

CCR chemokine receptor binding 4 3.11
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genes were the same in both female MRL/lpr and male NOD
mice.

Effects of Autoimmune Disease on Immune-related
KEGG Pathways in Lacrimal Glands of MRL/lpr
Female and NOD Male Mice

Lacrimal gland samples from female MRL/lpr and male NOD
mice also showed a significant increase in the expression of
immune-related KEGG pathways (Tables 9 and 10). These
included pathways related to antigen processing (Tables 11 and
12), chemokines (Tables 13 and 14), and Fcc R-mediated
phagocytosis (Table 10), as well as those linked to type 1
diabetes mellitus and systemic lupus erythematosus (SLE)
(Tables 9 and 10). Inflammation in these tissues also
significantly enhanced the expression of lysosome pathways
(Affymetrix; MRL/lpr female, 19 genes upregulated �, z-score¼
2.43; NOD male, 25 genes �, z-score ¼ 3.68).

Of interest, an average of more 95% of the ribosome KEGG
pathways were significantly increased in lacrimal glands of
female MRL/lpr (CodeLink, 47 genes �, z-score ¼ 9.64;
Affymetrix, 17 genes �, z-score ¼ 3.03) and NOD (CodeLink,
53 genes �, z-score ¼ 10.78; Affymetrix, 59 genes �, z-score ¼
17.5) mice. Similarly, more that 81% of the proteasome KEGG
pathways were significantly higher in lacrimal tissues of female
MRL/lpr (Codelink, 22 genes �, z-score ¼ 5.87; Affymetrix, 10
genes �, z-score ¼ 2.77) and NOD (CodeLink, 21 genes �, z-
score ¼ 5.09; Affymetrix, 20 genes �, z-score ¼ 7.4) mice.

DISCUSSION

Our results demonstrate that sex significantly influences the
expression of thousands of genes in lacrimal glands of MRL/lpr
and NOD mice. The nature of this sex-related expression,
especially with regard to immune-associated genes, is very
dependent on the specific mouse model of Sjögren syndrome.
Lacrimal glands of female, as compared with those of male,
MRL/lpr mice contain a significant increase in the expression
of genes related to inflammatory responses, antigen process-
ing, and chemokine pathways. In contrast, it is the lacrimal
tissue of NOD males, and not NOD females, that presents with
a significantly greater expression of immune-related genes.
These findings support our hypothesis that sex-related
differences in gene expression contribute to the onset,
progression, and/or severity of the lacrimal gland inflammatory
disease process. Our results also suggest that factors in the

lacrimal gland microenvironment are critically important in
mediating these sex-associated immune effects.

Our finding that significant sex-related differences exist in
lacrimal gland gene expression in MRL/lpr and NOD mice was
not unexpected. Significant, sex-associated differences are
known to be present in the anatomy, physiology, and
pathophysiology of the lacrimal gland. These differences are
found in multiple species and include variations between
males and females in the mean area and density of acinar
complexes; the quantity of intercalated, intralobular, and
interlobular ducts; the membrane contours, cytoplasmic
appearance, vesicular content, and turnover of acinar epithelial
cells; the position, size, and shape of acinar epithelial cell
nuclei; the number of intranuclear inclusions; the prominence
of nucleoli; the frequency of intercellular channels; the
quantity of capillary endothelial pores; the expression of
numerous genes; the synthesis, activity, phosphorylation, and
affinity of many proteins, enzymes, and receptors; the
population of lymphocytes; the expression of secretory
immunity; the response to neural stimulation and drugs; the
secretion of specific proteins; and the susceptibility to focal
adenitis, fibrosis, atrophy, viral replication, and autoimmune
disease.5

Three genes of particular interest that showed sexual
dimorphism are those encoding ASGPR1, tripartite motif-
containing 21 (TRIM21), and major urinary protein V (MUPV).
First, expression of the ASGPR1 gene was many-fold greater in
lacrimal glands of female, as compared with male, MRL/lpr
mice. This receptor mediates the intracellular uptake of
hepatitis C virus (HCV),23 thereby facilitating viral infection
and increasing glandular inflammation.23–25 Chronic HCV
infection, in turn, is linked to an enhanced prevalence of
keratoconjunctivitis sicca26 and mimics the clinical manifesta-
tions of Sjögren syndrome.24,25,27,28 In addition, ASGPR is an
autoantigenic target of both T and B cells.29 However, the
ASGPR1 gene was also upregulated in lacrimal tissues of female
NOD mice, which indicates that it is not a strain-independent
inducer of inflammation.

Second, TRIM21, also known as Ro52/SSA, is a prominent
antigen in Sjögren syndrome. Expression of TRIM21 was higher
in lacrimal glands of female MRL/lpr mice (Affymetrix ¼ 2.12-
fold; CodeLink¼ 1.72-fold) and male NOD mice (Affymetrix¼
2.71-fold; CodeLink¼ 1.45-fold). Antibodies targeting TRIM21/
Ro52 are common in Sjögren syndrome patients and may be
present years before diagnosis.30 Anti-TRIM21/Ro52 autoanti-
bodies have also been detected in MRL/lpr and NOD mice.31,32

TRIM21/Ro52 is a ubiquitin E3 ligase that may be induced by
interferons (type I or type II) and has immunomodulatory

TABLE 6. Continued

Ontology

CodeLink

Genes �
Affymetrix

Genes �
CodeLink

z-score

Affymetrix

z-score

Cellular components

MHC protein complex 12 13 8 9.15

MHC class II protein complex 8 8 7.87 8.18

T-cell receptor complex 7 4 7.29 3.94

Alpha-beta T-cell receptor complex 4 5.2

B-cell receptor complex 4 5 5.2 6.95

Immunoglobulin complex 4 5 5.2 6.95

MHC class I protein complex 4 3.94

Immunological synapse 5 6 3.64 4.3

CD40 receptor complex 4 3.32

Immune ontologies related to biological processes (‡50 genes/ontology, ‡6.0 CodeLink z-score), molecular functions (‡5 genes/ontology, ‡2.0
z-score) and cellular component (‡4 genes/ontology, ‡2.0 z-score) were identified after the evaluation of nontransformed CodeLink and Affymetrix
data. These immune ontologies were not significantly increased in lacrimal tissue samples from female NOD mice. Terms are described in the Table
5 legend.
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TABLE 7. Increased Expression of Genes in Inflammatory Response Ontology in Lacrimal Glands From Female MRL/lpr Mice

Gene

CodeLink

Ratio

Affymetrix

Ratio

CodeLink

P Value

Affymetrix

P Value

Indoleamine 2,3-dioxygenase 1 9.82 0.0014

Chemokine (C-X-C motif) ligand 13 7.29 5.5 0.0021 0.0060

Chitinase 3-like 3 6.43 0.0015

Serine (or cysteine) peptidase inhibitor, clade A, member 1B 5.59 8.53 0.0002 0.0267

Strain SJL/J small inducible cytokine A4 5.47 0.0028

Tachykinin 1 4.88 3.88 0.0146 0.0142

Calcitonin receptor-like 4.48 0.0049

Complement component 3 4.38 3 0.0050 0.0255

Interleukin 4 receptor, a 4.35 0.0039

Amine oxidase, copper containing 3 4.26 0.0377

Chemokine (C-X-C motif) ligand 9 4.21 3.45 0.0053 0.0243

Elastase 2, neutrophil 3.96 0.0088

Tryptase b2 3.9 0.0067

Serum amyloid A 3 3.66 0.0174

CD14 antigen 3.51 3.44 0.0025 0.0195

Adiponectin, C1Q and collagen domain containing 3.43 2.32 0.0022 0.0166

Chemokine (C-C motif) receptor 1 3.4 0.0025

Toll-like receptor 2 3.31 2.54 0.0033 0.0044

Integrin b2 3.24 2.2 0.0334 0.0167

Acid phosphatase 5 3.14 0.0004

C-type lectin domain family 7, member a 3.11 3.63 0.0025 0.0092

Mediterranean fever 3.05 0.0483

Phospholipase A2, group VII 3.02 0.0120

Interleukin 23 receptor 3 0.0001

Lymphocyte antigen 86 2.99 2.65 0.0081 0.0047

Lipopolysaccharide binding protein 2.93 0.0104

Transglutaminase 2, C polypeptide 2.91 0.0014

Phospholipase A2, group IVA 2.9 2.05 0.0040 0.0472

Peroxisome proliferator activated receptor c 2.87 0.0080

Fc receptor, IgG, high affinity I 2.85 0.0299

Yamaguchi sarcoma viral oncogene homolog 2.83 0.0082

Fc receptor, IgG, low affinity IIb 2.79 2.63 0.0101 0.0207

Fatty acid binding protein 4, adipocyte 2.73 3.16 0.0055 0.0182

Fcc receptor III 2.73 3.03 0.0174 0.0080

Complement component factor h 2.6 0.0008

Orosomucoid 1 2.56 0.0237

Chemokine (C-C motif) ligand 8 2.44 2.03 0.0071 0.0285

AXL receptor tyrosine kinase 2.39 0.0107

Lysosomal acid lipase A, transcript variant 1 2.38 0.0131

CD47 antigen 2.35 0.0432

Complement component 4B 2.35 0.0021

Toll-like receptor 1 2.34 0.0083

Chemokine (C-C motif) receptor 2 2.31 2.02 0.0063 0.0419

Arachidonate 5-lipoxygenase activating protein 2.3 0.0019

CD55 antigen 2.29 0.0035

Interleukin 33 2.29 6.12 0.0253 0.0468

E74-like factor 3 2.25 0.0003

IkappaBNS 2.22 0.0023

Purinergic receptor P2X, ligand-gated ion channel, 1 2.22 0.0027

Cytochrome b-245, polypeptide 2.21 0.0057

Annexin A1 2.18 0.0209

Janus kinase 2 2.13 0.0062

CD44 antigen 2.12 0.0196

INAP for IL-1 inducible nuclear ankyrin-repeat protein 2.11 0.0034

Heme oxygenase 1 2.09 0.0027

Chemokine (C-X-C motif) ligand 11 2.07 0.0112

Chemokine (C-X-C motif) ligand 10 2.04 0.0324

Chemokine (C-C motif) ligand 5 2.05 0.0286

UDP-Gal:b.GlcNAc b 1,4- galactosyltransferase, polypeptide 1 2.03 2.28 0.0459 0.0185

Relative ratios were calculated from CodeLink and Affymetrix data by comparing the degree of gene expression in lacrimal glands from female
and male MRL/lpr mice. Listed genes were increased ‡2-fold. Italicized genes were also found to be upregulated in lacrimal glands of male NOD
mice (Table 8).
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TABLE 8. Increased Expression of Genes in Inflammatory Response Ontology in Lacrimal Glands From Male NOD Mice

Gene

CodeLink

Ratio

Affymetrix

Ratio

CodeLink

P Value

Affymetrix

P Value

Regenerating islet-derived 3 c 24.92 0.0008

Chemokine (C-X-C motif) ligand 9 15.74 81.01 0.0000 0.0001

Chemokine (C-C motif) ligand 20 13.04 44.52 0.0001 0.0001

Chemokine (C-X-C motif) ligand 10 10.13 6.79 0.0001 0.0055

CD28 antigen 8.44 0.0009

Serine (or cysteine) peptidase inhibitor, clade A, member 1B 6.9 17.57 0.0004 0.0013

Chemokine (C-C motif) receptor 1 6.88 0.0013

Chemokine (C-X-C motif) ligand 13 6.69 8.03 0.0007 0.0028

Forkhead box P3 6.56 0.0007

Lymphocyte antigen 86 6.45 9.55 0.0001 0.0003

Chemokine (C-C motif) ligand 8 5.52 7.81 0.0001 0.0000

C-type lectin domain family 7, member a 5.45 6.08 0.0024 0.0000

Complement component 4B 5.38 6.94 0.0053 0.0002

Cytochrome b-245, a polypeptide 5.23 6.84 0.0007 0.0002

Chemokine (C-C motif) ligand 5 5.03 9.05 0.0012 0.0103

Sodium channel, voltage-gated, type IX, a 4.92 0.0016

Fc receptor, IgG, low affinity IIb 4.83 6.17 0.0005 0.0003

Adenosine A2b receptor 4.73 0.0023

Toll-like receptor 1 4.28 5.62 0.0094 0.0027

Chemokine (C-C motif) ligand 1 4.27 4.04 0.0052 0.0009

Tumor necrosis factor receptor superfamily, member 4 4.14 3.83 0.0029 0.0065

Tumor necrosis factor receptor superfamily, member 4 4.14 3.83 0.0029 0.0065

Integrin b2 4.07 7.53 0.0002 0.0011

Transforming growth factor, b1 3.94 0.0008

Interleukin 4 receptor, a 3.91 2.22 0.0025 0.0449

V-rel reticuloendotheliosis viral oncogene homolog A 3.71 0.0023

Fc receptor, IgE, high affinity I, c polypeptide 3.6 4.94 0.0038 0.0014

Nucleotide-binding oligomerization domain containing 2 3.54 0.0014

Chemokine (C-C motif) receptor 2 3.38 0.0028

CD55 antigen 3.36 2.96 0.0052 0.0264

Tumor necrosis factor receptor superfamily, member 1b 3.31 0.0246

Fc receptor, IgG, high affinity I 3.21 4.57 0.0006 0.0082

Phospholipase A2, group VII 3.2 4.45 0.0044 0.0003

Complement component 3 3.14 3.52 0.0050 0.0035

Toll-like receptor 2 3.04 0.0003

Toll-like receptor 7 3.03 0.0052

Chemokine (C-X-C motif) ligand 1 3.01 4.4 0.0068 0.0002

Coagulation factor XII 2.99 0.0012

Chemokine (C-C motif) receptor 5 2.9 0.0145

Arachidonate 5-lipoxygenase activating protein 2.83 2.77 0.0064 0.0101

Interleukin 1b 2.72 2.78 0.0001 0.0027

Neutrophil cytosolic factor 1 2.71 0.0468

Acid phosphatase 5 2.66 0.0007

Serine (or cysteine) peptidase inhibitor, clade B, member 9 2.53 0.0054

Mitogen-activated protein kinase 8 2.48 0.0198

Fcc receptor III 2.46 2.48 0.0001 0.0060

Janus kinase 2 2.4 0.0003

Mediterranean fever 2.39 0.0103

Chemokine (C-C motif) ligand 7 2.32 0.0092

Interleukin 10 2.32 0.0443

Carbohydrate sulfotransferase 2 2.26 0.0051

Toll-like receptor 6 2.26 0.0155

Heme oxygenase 1 2.26 0.0257

CD47 antigen 2.24 0.0015

Unc-13 homolog D 2.17 0.0033

Solute carrier family 11 2.12 0.0160

Annexin A1 2.11 0.0003

Phosphatidylinositol 3-kinase c isoform 2.01 0.0038

Relative ratios were determined from CodeLink and Affymetrix data by comparing the degree of gene expression in lacrimal glands from male
and female NOD mice. Listed genes were increased ‡2-fold. Italicized genes were also found to be upregulated in lacrimal glands of female MRL/lpr
mice (Table 7).
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functions including regulation of proliferation and cell death,
regulation of inflammatory cytokine production, and modula-
tion of antiviral responses.33–37 Although these roles were
largely described in immune cells, additional studies have
detected an increase in TRIM21/Ro52 protein in salivary gland
epithelial cell lines or salivary gland ductal epithelial cells from
Sjögren syndrome patients.38,39 Expression of TRIM21/Ro52
has not, to our knowledge, been reported in lacrimal gland
epithelial cells. Our findings of increased expression of
TRIM21/Ro52 in lacrimal glands of MRL/lpr and NOD mice
in the context of inflammation suggests this may contribute to
the role of TRIM21/Ro52 as an autoantigen in Sjögren
syndrome.

The third gene of particular interest is MUPV. This gene is
one of the most highly upregulated genes in lacrimal glands of
male MRL/lpr (202-fold) and female NOD (31-fold) mice.
Hence, MUPV expression is inversely correlated with inflam-
mation, and may possibly serve a protective function. Major
urinary proteins are pheromone-binding lipocalins40–43 and
implied effects include sexual attraction, aggression, hormone
modulation, individual recognition, and spatial learning.41,44,45

Little is known about the relation of MUPV to sex and the
immune system. However, considering that major urinary
proteins function as pheromone-binding proteins, the phero-
mones themselves may play a role.

Such pheromones could be exocrine gland secreting
peptides (ESPs), which are found in mice and exhibit sex-
specific expression.43,46–48 ESP1 is male-specific, and its
expression increases in response to androgen administration.46

In contrast, ESP36 is female-specific and is negatively regulated
by androgen.46 Further, it has been suggested that the
reception of ESPs in the vomeronasal system differs according
to sex.49 The vomeronasal system is an accessory olfactory
system, and pheromones also can be detected by the
anatomically distinct main olfactory system.46 Of note, our
CodeLink results showed that olfactory receptor 1086 is
significantly upregulated in male lacrimal glands in MRL/lpr
mice. This supports the concept of pheromone perception as
an important factor in sexually dimorphic responses.50

Research has also provided evidence that the olfactory
system may be inextricably linked to immunological func-
tion.51 For example, it has been shown that pheromone

TABLE 9. Immune KEGG Pathways Upregulated in Lacrimal Glands of Female MRL/lpr Mice

KEGG Pathway CodeLink Genes � Affymetrix Genes � CodeLink z-Score Affymetrix z-Score

Antigen processing and presentation 30 17 6.38 4.34

Systemic lupus erythematosus 27 18 4.96 3.95

Graft-versus-host disease 16 4.2

Phagosome 44 27 4.17 3.41

Natural killer cell–mediated cytotoxicity 36 20 3.94 2.53

Allograft rejection 15 3.76

B-cell receptor signaling pathway 24 14 3.47 2.83

Primary immunodeficiency 9 3.19

Type I diabetes mellitus 15 3.14

Chemokine signaling pathway 43 26 2.98 2.43

Autoimmune thyroid disease 14 2.52

Cell adhesion molecules 30 2.23

Immune-related KEGG pathways that were increased in female, as compared with male, MRL/lpr mice are listed.

TABLE 10. Immune KEGG Pathways Upregulated in Lacrimal Glands of Male NOD Mice

KEGG Pathway CodeLink Genes � Affymetrix Genes � CodeLink z-Score Affymetrix z-Score

Graft-versus-host disease 23 17 9.9 6.21

Antigen processing and presentation 30 27 9.21 7.73

Natural killer cell–mediated cytotoxicity 43 28 8.95 4.31

Allograft rejection 21 16 8.85 5.84

Autoimmune thyroid disease 21 16 7.69 4.57

Type I diabetes mellitus 20 16 7.5 4.99

Phagosome 43 44 7.13 7.24

Intestinal immune network for IgA production 17 14 6.45 4.37

Cytokine-cytokine receptor interaction 54 45 6.01 3.88

Primary immunodeficiency 15 15 6 6.04

Systemic lupus erythematosus 22 24 5.62 5.57

Cell adhesion molecules 32 32 5.43 5.09

Chemokine signaling pathway 40 50 5.38 7.75

B-cell receptor signaling pathway 20 23 4.37 5.79

Jak-STAT signaling pathway 30 24 4.07 2.54

Leukocyte transendothelial migration 24 3.53

NOD-like receptor signaling pathway 14 13 3.39 2.91

Toll-like receptor signaling pathway 21 19 3.35 2.68

Hematopoietic cell lineage 19 3.33

T-cell receptor signaling pathway 22 19 3.23 2.43

Complement and coagulation cascades 16 3.01

Fc c R-mediated phagocytosis 16 25 2.23 5.39

Immune-related KEGG pathways that were increased in male, as compared with female, NOD mice are listed.

Sex Effects on Autoimmune Lacrimal Glands IOVS j November 2018 j Vol. 59 j No. 13 j 5608



TABLE 11. Upregulated Genes in the Antigen Processing KEGG Pathway in Lacrimal Glands From Female MRL/lpr Mice

Ontology CodeLink Ratio Affymetrix Ratio CodeLink P Value Affymetrix P Value

Interferon-c 3.46 0.0071

Histocompatibility 2, O region b locus 3.14 0.0057

Cathepsin S 2.85 3.03 0.0166 0.0050

Histocompatibility 2, M region locus 3 2.75 0.0134

Histocompatibility 2, class II antigen A, a 2.64 2.87 0.0142 0.0096

Killer cell lectin-like receptor, subfamily D, member 1 2.44 2.15 0.0012 0.0151

Histocompatibility 2, class II, locus DMa 2.36 0.0215

Similar to histocompatibility 2, D region locus 1 2.35 0.0117

Histocompatibility 2, class II antigen A, b1 2.33 0.0209

Bactrianus MHC class II antigen H-2E a precursor 2.32 0.0382

Histocompatibility 2, class II antigen E b 2.30 1.98 0.0429 0.0195

CD8 antigen, a chain 1 2.27 0.0087

Cathepsin B 2.23 3.00 0.0164 0.0012

Histocompatibility 2, T region locus 10 2.20 0.0261

Histocompatibility 2, Q region locus 8 2.13 0.0000

Calnexin 2.11 0.0086

Heat shock protein 90, a, class A member 1 2.10 0.0008

Preprolegumain 2.00 2.25 0.0209 0.0144

Interferon c inducible protein 30 1.87 2.25 0.0161 0.0062

Heat shock protein 1.78 2.21 0.0145 0.0088

Relative ratios were determined from CodeLink and Affymetrix data by comparing the degree of gene expression in lacrimal glands from female
MRL/lpr to those of male MRL/lpr mice. Listed genes were increased ‡ 2.0-fold in either the CodeLink or Affymetrix platform.

TABLE 12. Upregulated Genes in the Antigen Processing KEGG Pathway in Lacrimal Glands From Male NOD Mice

Ontology CodeLink Ratio Affymetrix Ratio CodeLink P Value Affymetrix P Value

Histocompatibility 2, class II, locus Mb2 12.17 8.13 0.0000 0.0021

Histocompatibility 2, K1, K region 11.16 0.0001

MHC I¼H-2Kd homolog 10.48 0.0000

Histocompatibility 2, class II, locus Mb1 9.25 7.13 0.0000 0.0003

Histocompatibility 2, Q region locus 7 7.21 0.0007

Similar to histocompatibility 2, D region locus 1 6.53 8.67 0.0027 0.0016

Histocompatibility 2, blastocyst 6.44 0.0001

Histocompatibility 2, Q region a locus 8 6.20 6.52 0.0003 0.0004

Histocompatibility 2, class II antigen A, b1 5.87 5.45 0.0002 0.0001

Histocompatibility 2, O region b locus 5.83 0.0000

Histocompatibility 2, class II, locus DMa 5.42 0.0002

Histocompatibility 2, O region a locus 5.38 5.05 0.0019 0.0001

CD74 antigen 5.19 6.44 0.0041 0.0002

MHC class Ib antigen Qa-1 5.00 3.52 0.0224 0.0025

Histocompatibility 2, class II antigen E b 4.87 6.30 0.0001 0.0000

Histocompatibility 2, M region locus 3 4.79 6.80 0.0003 0.0002

Natural killer cell protein group 2-A2 4.76 0.0037

b2 microglobulin, segment 1, clones PBRCB-(1–3) 4.53 5.43 0.0002 0.0004

Histocompatibility 2, class II antigen A, a 4.22 6.05 0.0017 0.0000

MHC class II transactivator CIITA form IV 4.16 3.19 0.0026 0.0412

Histocompatibility 2, T region locus 10 4.13 4.53 0.0001 0.0004

Cathepsin S 3.85 6.06 0.0002 0.0001

Transporter 1 3.69 6.42 0.0007 0.0004

Proteasome 28 subunit, b 3.51 3.09 0.0148 0.0017

CD8 antigen, b chain 1 3.33 0.0069

Zinc finger and BTB domain containing 22 3.25 0.0001

Histocompatibility 2, Q region locus 1 2.85 7.16 0.0056 0.0002

CD8 antigen, a chain 2.84 4.06 0.0012 0.0016

Killer cell lectin-like receptor, subfamily D, member 1 2.81 8.71 0.0094 0.0110

Natural killer cell protein group 2-C2 2.39 0.0208

Interferon c inducible protein 30 2.00 1.80 0.0035 0.0002

Proteasome 28 subunit, a 1.93 2.60 0.0022 0.0001

Preprolegumain 1.89 2.08 0.0041 0.0016

Transporter 2, ATP-binding cassette, subfamily B 1.76 4.00 0.0234 0.0003

Relative ratios were determined from CodeLink and Affymetrix data by comparing the degree of gene expression in lacrimal glands from male
NOD to those of female NOD mice. Listed genes were increased ‡2.0-fold in either the CodeLink or Affymetrix microarray.
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treatment suppresses hepatic inflammation in mice.52 Whether
this effect has relevance to humans has not yet been
determined, but it indicates that pheromone-sensing organs
may have an underestimated value that warrants further
investigation. Thus, it has been shown that patients with SLE
have disturbances in olfactory function.50 The possible link
between smell and autoimmunity may be due to gene location,
considering that olfactory receptor gene clusters are located in
close proximity to key loci of susceptibility for autoimmune
disease, such as the MHC.50

In our study, a number of immune-related genes were
upregulated in the lacrimal glands of female MRL/lpr and/or
male NOD mice that may be important in the pathogenesis of
Sjögren syndrome. These include the following: many inter-
leukins, interferons, and their related proteins; the damage-
associated molecular pattern proteins S100A8 and S100A9,
which are expressed by neutrophils, monocytes, dendritic and
epithelial cells, act as Toll-like receptor (TLR) ligands, and
stimulate the production of multiple proinflammatory cyto-
kines; myeloid differentiation primary response 88, which is
used by most TLRs to activate nuclear factor-jB; B-cell linker,
which regulates B-cell receptor signaling and development; the
chemokines CXCL12, CXCL13, and CCL19, which promote the
formation and perpetuation ectopic lymphoid structures; and
the enzymes indoleamine 2,3-dioxygenase and kynurenine 3-
monooxygenase, which ultimately may lead to immune system
activation, inflammation, and the accumulation of potentially
neurotoxic compounds.53–57

Numerous ontologies and KEGG pathways that were
significantly upregulated in lacrimal tissues of female MRL/lpr

and/or male NOD mice have also been linked to Sjögren
syndrome. These ontologies encompass such immune system
processes as antigen binding, T- and B-cell activation, signaling
pathways, cytokine production, chemokine activity, and
inflammatory responses, all of which appear to play a role in
Sjögren syndrome pathogenesis.4,58,59 The increased expres-
sion of KEGG pathways related to lysosomes and Fcc R-
mediated phagocytosis was of particular interest, because they
have been reported as the only pathways common to the
development of the four autoimmune diseases type 1 diabetes
mellitus, SLE, multiple sclerosis, and rheumatoid arthritis.60

A major question in our research is what triggers the sex-
related inflammation in female MRL/lpr and male NOD lacrimal
glands. There are a number of possibilities, some of which may
be associated with sex chromosomes (i.e., X) and/or sex
steroids (i.e., androgens).5,53 Thus, several recent studies
suggest that the female prevalence of Sjögren syndrome is
due to an X-chromosome dose effect, and that individuals with
X-chromosome abnormalities like triple X syndrome (47 XXX)
and Klinefelter syndrome (47 XXY) have an increased risk for
developing the disease.61–63 In fact, attention has been drawn
to X-chromosome vulnerability as a possible explanation for
the high female prevalence of autoimmune diseases in
general.64–67 Therefore, the genes located on the X-chromo-
some are especially intriguing. One such gene is moesin, which
is significantly upregulated in female MRL/lpr and in male NOD
lacrimal tissues. Moesin is a membrane organizing protein that
plays a role in immunologic synapse formation, lymphoid cell
regulation, and T regulatory cell (Treg) differentiation.68,69 In
this last regard, there is evidence that a shift in the T helper cell

TABLE 13. Heightened Gene Expression in the Chemokine KEGG Pathway in Lacrimal Glands of Female MRL/lpr Mice

Gene CodeLink Ratio Affymetrix Ratio CodeLink P Value Affymetrix P Value

Chemokine (C-X-C motif) ligand 13 7.29 5.5 0.0021 0.0060

Chemokine (C-X-C motif) ligand 16 6.95 2.49 0.0116 0.0350

Phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 5.76 0.0102

Strain SJL/J small inducible cytokine A4 5.47 0.0028

Chemokine (C-C motif) ligand 19 5.29 3.04 0.0047 0.0409

G protein–coupled receptor kinase 5 4.57 0.0037

Chemokine (C-X-C motif) ligand 9 4.21 3.45 0.0053 0.0243

Chemokine (C-C motif) ligand 6 3.8 4.5 0.0005 0.0097

Strain SJL/J small inducible cytokine A10 3.67 4.27 0.0120 0.0254

Chemokine subfamily B Cys-X-Cys 3.62 0.0036

Chemokine (C-C motif) receptor 1 3.4 0.0025

RAS-related C3 botulinum substrate 2 3.09 2.41 0.0035 0.0044

Chemokine (C motif) ligand 1 2.98 0.0018

Yamaguchi sarcoma viral oncogene homolog 2.83 0.0082

Inhibitor of kappaB kinase c 2.78 0.0379

Vav 1 oncogene 2.78 0.0008

Arrestin, b2 2.77 1.55 0.0025 0.0466

Dedicator of cyto-kinesis 2 2.68 0.0210

RAS-related protein 1b 2.68 0.0176

Chemokine (C-C motif) ligand 8 2.44 2.03 0.0071 0.0285

MIP2 c 2.39 0.0111

Chemokine (C-X3-C) receptor 1 2.34 0.0002

Chemokine (C-X-C motif) receptor 6 2.32 0.0226

Chemokine (C-C motif) receptor 2 2.31 2.02 0.0063 0.0419

Janus kinase 2, transcript variant 1 2.13 0.0062

Chemokine (C-X-C motif) ligand 11 2.07 1.98 0.0112 0.0177

Chemokine (C-C motif) ligand 5 2.05 0.0286

Chemokine (C-X-C motif) ligand 10 2.04 0.0324

Cell division cycle 42 homolog 2.01 0.0073

Chemokine (C-C motif) ligand 11 1.88 2 0.0306 0.0278

Relative ratios were calculated from CodeLink and Affymetrix data by comparing the degree of gene expression in lacrimal glands from female
MRL/lpr mice with those of male MRL/lpr mice. Listed genes were increased ‡2.0-fold in either the CodeLink or Affymetrix platform.
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17 (Th17)/Treg balance toward the proinflammatory Th17 axis

contributes to the development of Sjögren syndrome and other

autoimmune disorders.70–73 The reasons for this shift are not

completely known, but may be due, at least in part, to moesin

activity and other microenvironmental stimuli.52

Another gene of particular interest is the X-chromosome–

linked androgen receptor, the expression of which is increased

in male MRL/lpr and female NOD lacrimal glands. Androgen

receptors are members of the nuclear receptor superfamily of

ligand-inducible transcription factors and appear to mediate

almost all of the biological actions of androgens.74,75 Andro-

gens, in turn, appear to be very important in Sjögren

syndrome. For example, testosterone treatment of female

MRL/lpr mice causes a dramatic suppression of the inflamma-

tion in, and a significant increase in the function of, the

lacrimal gland.5,76 These effects are analogous to those found

TABLE 14. Increased Gene Expression in the Chemokine KEGG Pathway in Lacrimal Glands of Male NOD Mice

Ontology CodeLink Ratio Affymetrix Ratio CodeLink P Value Affymetrix P Value

Chemokine (C-C motif) receptor 7 15.88 0.0011

Chemokine (C-X-C motif) ligand 9 15.74 81.01 0.00003 0.0001

Chemokine (C-C motif) ligand 20 13.04 44.52 0.0001 0.0001

Chemokine (C-C motif) receptor 6 11 0.0038

chemokine (C-X-C motif) receptor 4 10.24 0.0043

Chemokine (C-X-C motif) receptor 5 10.14 0.0001

Chemokine (C-X-C motif) ligand 10 10.13 6.79 0.0001 0.0055

Gardner-Rasheed feline sarcoma viral oncogene homolog 9.32 0.0015

Chemokine (C-X-C motif) receptor 3 8.85 0.0055

P21 (CDKN1A)-activated kinase 1 8.66 0.0033

RAS-related C3 botulinum substrate 2 7.52 6.19 0.0000 0.0005

Chemokine (C-C motif) receptor 1 6.88 0.0013

Chemokine (C-X-C motif) ligand 13 6.69 8.03 0.0007 0.0028

Protein kinase C, b 6.28 10.96 0.0136 0.0007

Chemokine (C motif) ligand 1 6.12 0.0054

Wiskott-Aldrich syndrome protein 5.93 0.0305

Chemokine (C-C motif) ligand 19 5.58 9.83 0.0001 0.0020

Chemokine (C-C motif) ligand 8 5.52 7.81 0.0001 0.0000

Vav 1 oncogene 5.52 0.0000

Protein kinase B c 5.51 0.0168

Signal transducer and activator of transcription 1 5.36 7.89 0.0042 0.0001

Chemokine (C-C motif) ligand 5 5.03 9.05 0.0012 0.0103

Hemopoietic cell kinase 4.74 4.87 0.0005 0.0055

Chemokine (C-C motif) ligand 12 4.27 4.04 0.0052 0.0009

V-rel reticuloendotheliosis viral oncogene homolog A 3.71 0.0023

Dedicator of cyto-kinesis 2 3.5 3.92 0.0051 0.0170

Chemokine (C-X-C motif) receptor 6 3.43 13.81 0.0056 0.0001

Chemokine (C-C motif) receptor 2 3.38 0.0028

Strain SJL/J small inducible cytokine A10 3.3 0.0000

Chemokine (C-C motif) receptor 6 3.17 0.0137

P21 (CDKN1A)-activated kinase 1 3.15 0.0008

Chemokine (C-X-C motif) ligand 1 3.01 4.4 0.0068 0.0002

Adenylate cyclase 7, transcript variant 1 2.93 0.0031

Chemokine (C motif) receptor 1 2.81 0.0009

Guanine nucleotide-binding protein, a inhibiting 2 2.81 4.57 0.0005 0.0004

Neutrophil cytosolic factor 1 2.71 0.0468

Signal transducer and activator of transcription 2 2.6 0.0093

Guanine nucleotide-binding protein, c transducing activity

polypeptide 2 (Gngt2), transcript variant 1

2.42 0.0017

Janus kinase 2, transcript variant 1 2.4 0.0003

Chemokine (C-X3-C) receptor 1 2.38 0.0244

Chemokine (C-C motif) ligand 28 2.37 0.0053

Chemokine (C-C motif) ligand 7 2.32 0.0092

C-src tyrosine kinase 2.28 0.0004

Arrestin, b2 2.26 0.0242

Signal transducer and activator of transcription 2 2.1 0.0200

G protein–coupled receptor kinase 6, transcript variant 2 2.08 2.43 0.0031 0.0018

Phosphatidylinositol 3-kinase c isoform 2.01 0.0038

Chemokine (C-C motif) receptor 5 1.77 2.9 0.0254 0.0145

Chemokine (C-X-C motif) ligand 16 1.75 4.52 0.0142 0.0000

Growth factor receptor bound protein 2 1.73 2.07 0.0214 0.0022

Guanine nucleotide-binding protein, c 10 1.55 3.14 0.0279 0.0031

Relative ratios were determined from CodeLink and Affymetrix data by comparing the degree of gene expression in lacrimal glands from male
NOD mice with those of female NOD mice. Listed genes were increased ‡2.0-fold in either the CodeLink or Affymetrix microarray.
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in humans, wherein topical or systemic androgen administra-
tion significantly decreases dry eye disease signs and symp-
toms, and stimulates tear flow, in patients with Sjögren
syndrome.5,76 Indeed, androgen deficiency seems to be a risk
factor for the development of lacrimal gland inflammation in
women with Sjögren syndrome.5,76 In contrast, androgens
induce lymphocyte infiltration into the lacrimal glands of NOD
mice.5,77,78 This anomalous effect appears to be mediated
through the lacrimal gland microenvironment,11 as well as
male-specific factors that cause CD4(þ) CD25(þ) Foxp3(þ)
regulatory T-cell dysfunction.78 Further, this androgen re-
sponse differs markedly from the androgen-induced decrease
of inflammation in NOD salivary and pancreatic tissues.11,79,80

It is noteworthy that acinar and ductal epithelial cells
contain the androgen receptors that are the target for androgen
activity in lacrimal tissue.81 In addition, these cells are thought
to be the primary cells involved in the initiation and
perpetuation of glandular autoimmune reactivity in Sjögren
syndrome.82 We hypothesize that this androgen-epithelial cell
interaction induces the altered activity of specific genes in
lacrimal glands, and leads to the reduction of pathological
lesions and an improvement in glandular function in MRL/lpr,
and the opposite effects in NOD, mice. Further research is
required to test this hypothesis, and to identify those genes
that may underlie the sex- and hormonal-regulation of the
lacrimal gland in Sjögren syndrome.
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