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An RNA methylation code to regulate protein translation
and cell fate

Dear editor,

In the past few decades, a flurry of studies has revealed the importance

of RNA methylation. These modifications are present in various types

of RNAs and collaborate with “writers”, “erasers” and “readers” to

influence RNA metabolism and regulate cell differentiation and trans-

formation. In particular, protein synthesis can be directly influenced by

RNA codon-recognition and structure-based factors or indirectly by

RNA methylation reader proteins. Here, we briefly describe the impor-

tant role of RNA methylation in tumorigenesis and stem cell differentia-

tion, and focus on how major RNA methylations alter translation rates

via ribosomal activity or codon usage. These regulatory mechanisms

potentially regulate protein diversity through amino acid polymor-

phisms. With the improvement of single-base modification and amino

acid sequencing technologies, the complex roles of RNA modifications

in ribosomal translation and cell fate determination are being revealed.

INTRODUCTION

In recent decades, with the development of next generation sequencing

(NGS), various detection methods for RNA modifications have been

gradually developed and refined. On this basis, a basic understanding of

the types, abundance and distribution patterns of RNA modifications

has been obtained.1,2 To date, more than 170 RNA modifications have

been identified in various types of RNAs, and interest in the biological

functions of these modifications has led to the establishment and

development of epigenetics and epitranscriptomics.3–5

Among the diverse types of RNA modifications, the main ones that

have been studied are N6-methyladenosine (m6A), 5-methylcytosine

(m5C), N1-methyladenosine (m1A), and N7-methyladenosine (m7G).

How do cells generate these modifications in response to internal and

external metabolism during cell fate determination, e.g., differentiation

and transformation? What are the implications of these modifications

in the process of genetic information transmission?

m6A IN CELL FATE DETERMINATION

m6A is a reversible modification present on the adenine residue of

many RNAs. A variety of methyl-group transferases, demethylases

and reader proteins work together to regulate the dynamics of this

modification, such as METTL3/14, FTO, YTHDF1-3 etc.6,7 Combined

with these protein factors, m6A is involved in multiple post-

transcriptional processes, including splicing,8 processing,9

translocation,10 RNA stability11 and translation efficiency.12

Although m6A modifications have been studied in a variety of bio-

logical processes, less attention has been paid to the role of m6A in

regulating codon-specific translation dynamics. The m6A-modified

codons in mRNA may reduce the accuracy of codon reading by tRNAs

and peptide release factors, and m6A-U pairings are possibly less sta-

ble relative to A-U pairings.13,14 The m6A located within the coding

region (CDS) directly leads to ribosome pausing. Conversely, CDS

m6A binding to YTHDC2 facilitates mRNA secondary structure open-

ing and increases translation efficiency.15 Additionally, when m6A is

present at the tRNA's anticodon stem and loop (ASL) domain, the

N6-adenosine electron clouds and dynamic structure of the ASL can

be altered to produce codon wobble, which affects translation fidelity

and causes protein noise.16 In the case of ribosomal rRNAs, 18S

m6A1832 and 28S m6A4220 are known to stabilize ribosome structure

and subunit assembly.17–19 These studies suggest that m6A regulates

codon diversity and protein translation, which alters the transmission

rate of genetic information. This could be another reason why this

modification plays an important role in regulating embryonic

development,20,21 stem cell differentiation,22,23 viral replication24–26

and tumour progression.27–29

m5C IN CELL FATE DETERMINATION

m5C is a class of cytosine methylation in many RNAs. It is mainly cata-

lyzed by NOL1/NOP2/sun domain family proteins (NSUNs) or DNA

methyltransferase 2 (DNMT2).2,30,31 Studies have shown that m5C

has an important role in regulating cell fate and development. For

example, during the maternal-to-zygotic transition (MZT) in zebrafish

embryogenesis, m5C-modified maternal mRNAs are more stabilized

by recruiting Y-box binding protein 1 (YBX 1) and poly (A) binding pro-

tein cytoplasmic 1a (Pabpc1a).32 In epidermal stem cells,

NSUN2-mediated m5C protects tRNA from cleavage into non-coding

50tRNA fragments, thereby affecting global protein synthesis pat-

terns.33 There is also evidence that m5C is present in the wobble
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position of tRNA anticodons, thereby regulating the translation effi-

ciency of leucine and proline, with resultant effects on the oxidative

stress response in yeast and the heat stress response in Caenorhabditis

elegans.34,35 Based on an analysis of in vitro translation efficiency,

m5C at any of the codon positions resulted in a 40% decrease in pro-

tein production.36

The emerging role of m5C in many cancers' progression has been

widely studied. The m5C methyltransferases (including NSUN2 and

DNMT2) are highly expressed in a variety of tumour tissues, causing

multiple oncogene mRNAs to be hypermethylated and stabilized.37–39

For example, NSUN2 increases the m5C content of heparin binding

growth factor's (HDGF) mRNA in bladder cancer, recruiting YBX1 and

ELAV-like RNA binding protein 1 (ELAVL1) to maintain the high

expression of HDGF mRNA, thereby promoting the proliferation and

invasion of bladder cancer cells.40

m1A AND m7G IN CELL FATE
DETERMINATION

Studies have shown that the level of m1A modification is about one-

tenth of that of m6A, and it is mainly distributed in tRNA, rRNA,

50UTR of mRNA and mitochondrial DNA-encoded transcripts.41–45

Similar to m6A, m1A has effects on the tertiary conformation of tRNA

and rRNA, and regulates overall translation efficiency. For instance,

AlkB homologue 1 (ALKBH1) was identified as a tRNA demethylase,

which mediates the demethylation of m1A, resulting in attenuated

translation initiation and reduced total protein synthesis.46 In addition,

26S rRNA m1A674 was found to be catalyzed by Rram-1 in

Caenorhabditis elegans,47 and 25S rRNA m1A645 was found to be cata-

lyzed by Rrp8 in yeast,48 with positive effects on ribosomal subunit

assembly. It has been shown that m1A drives cancer cell proliferation

and promotes the development of gastrointestinal cancer,49 bladder

uroepithelial cancer50 and hepatocellular carcinoma,51 but its role in

stem cell differentiation remains unclear.

The m7G was initially identified as a signature modification in

the mRNA 50 cap structure. Subsequently, m7G was also found in

rRNA, tRNA and internal mRNA, with an especially high enrichment

in the 50 UTR region and AG-rich regions.52,53 Studies have shown

that METTL1 catalyzes m7G in pri-miRNA, and this methylation

promotes miRNA processing by antagonizing G-quadruplex struc-

tures, thereby increasing let-7e-5p miRNA.54 In mESCs, the

Mettl1/Wdr4 complex regulates the tRNA m7G methylome,

thereby regulating global mRNA translation, stem cell self-renewal

and differentiation.55

CONCLUSIONS AND PERSPECTIVES

In recent decades, with the establishment of various new techniques

to detect rare RNA modifications, researchers have gradually revealed

the roles of m6A, m5C, m1A and m7G in many biological processes and

diseases. In collaboration with writers, readers and erasers, RNA

methylation codes affect the tertiary conformation, processing and

stability of RNA, with multiple effects on translation initiation, elonga-

tion and termination. In fact, due to the low abundance of these RNA

modifications (except for m6A perhaps), more sensitive detection

techniques are still needed, and the roles of RNA methylation in cell

differentiation and transformation remain to be further explored. On

the other hand, because the influence of RNA methylation on the

specificity of codon-anticodon pairing has direct relevance to Crick's

wobble hypothesis, the resultant amino acid polymorphisms in protein

distributions may be a very interesting biological phenomenon that

deserves further studies.
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