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Disruption of Sarcoendoplasmic Reticulum Calcium
ATPase Function in Drosophila Leads to Cardiac
Dysfunction
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Abstract

Abnormal sarcoendoplasmic reticulum Calcium ATPase (SERCA) function has been associated with poor cardiac
function in humans. While modifiers of SERCA function have been identified and studied using animal models,
further investigation has been limited by the absence of a model system that is amenable to large-scale genetic
screens. Drosophila melanogaster is an ideal model system for the investigation of SERCA function due to the
significant homology to human SERCA and the availability of versatile genetic screening tools. To further the use of
Drosophila as a model for examining the role of SERCA in cardiac function, we examined cardiac function in adult
flies. Using optical coherence tomography (OCT) imaging in awake, adult Drosophila, we have been able to
characterize cardiac chamber dimensions in flies with disrupted in Drosophila SERCA (CaP60A). We found that the
best studied CaP60A mutant, the conditional paralytic mutant CaP60A%™7°, develops marked bradycardia and
chamber enlargement that is closely linked to the onset of paralysis and dependent on extra cardiac CaP60A. In
contrast to prior work, we show that disruption of CaP60A in a cardiac specific manner results in cardiac dilation and
dysfunction rather than alteration in heart rate. In addition, the co-expression of a calcium release channel mutation
with CaPB60A xm'70 js sufficient to rescue the cardiac phenotype but not paralysis. Finally, we show that CaP60A
overexpression is able to rescue cardiac function in a model of Drosophila cardiac dysfunction similar to what is
observed in mammals. Thus, we present a cardiac phenotype associated with Drosophila SERCA dysfunction that
would serve as additional phenotyping for further large-scale genetic screens for novel modifiers of SERCA function.
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Introduction

Derangements in calcium handling have been implicated as
common pathway in cardiac dysfunction. A major regulator of
myocyte calcium homeostasis is the sarcoendoplasmic
reticulum ATPase pump (SERCA), which is responsible for
removing a significant fraction of calcium from the cytosol into
the sarcoplasmic reticulum after cardiac contraction [1]. Each
cardiac contraction represents the coordinated action of
calcium into and removal out of the cytosol. Perturbations in
this finely coordinated mechanism, such as in altered SERCA
function, can lead to cell and, ultimately, organ dysfunction
over time [2]. Regulators of SERCA function in mammals, such
as phospholamban [3] and sarcolipin [4], have been examined
as potential therapeutic targets. In preclinical models of and in
humans suffering from dilated cardiomyopathy, manipulation of
SERCA function, through overexpression of SERCA or the
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manipulation of known modifiers, has been shown to improve
cardiac function [5,6]. Whether additional modifiers of SERCA
function exist in mammals is unknown.

The search for novel modifiers of SERCA in mammalian
model systems is limited by cost, complexity and the lack of
available genetic tools for screening. However, Drosophila
melanogaster is a model system that has robust genetic tools
and has been uniquely adapted to perform large-scale genetic
screens [7]. In addition, publicly available Drosophila stocks,
including those bearing mutant alleles, transgenic RNAI,
molecularly defined deletions and insertional disruptions of
genes, present a large arsenal of tools to investigate the
molecular underpinnings of gene function. Drosophila express
one thapsigargin sensitive Calcium ATPase channel (called
Calcium ATPase at 60A or CaP60A) [8], whereas vertebrates
have multiple isoforms of SERCA [9]. The high degree of
conservation between Drosophila SERCA and human SERCA
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make it an ideal model system for studying its function in vivo
[10]. Interestingly, while a number of functional domains are
conserved (ATP and thapsigargin binding site) the
phospholamban binding site is not, suggesting that Drosophila
may modulate SERCA function in a manner which may be
different but potentially relevant to mammals [11]. In fact, a
novel gene called sarcolamban has been recently identified
that encodes small bioactive peptides and modulates
Drosophila Ca-P60A [12]. Additionally, alterations in Drosophila
SERCA function have been shown to have profound effects on
skeletal muscle function [13] and affect larval heart rate [11],
although its role in adult cardiac function is not well understood.

A limitation in the study of SERCA function in the Drosophila
heart has been the ability to assess and accurately quantify
cardiac function in the adult fly. Previously, we described a
technique to non-invasively assess cardiac function in awake,
adult flies using optical coherence tomography (OCT) [14]. This
technique provides detailed functional data of the adult fly heart
in a manner similar to echocardiography in humans and has
been exploited for screening of genetic modifiers with
relevance to cardiac function [15-19]. Using OCT, we
assessed cardiac function in publicly available models of
SERCA loss of function, including the paralytic mutant
CaP60Ax™70 and gain of function using cardiac specific
overexpression of SERCA. To test whether modifiers of
SERCA function could be identified using OCT; we investigated
the effect of co-expressing a calcium release channel mutation
on the CaP60Axm'70 phenotype. Finally, we tested whether
SERCA overexpression can augment cardiac function in a
manner similar to that observed in mammals, using a model of
Drosophila cardiac dysfunction. Thus, we show that SERCA
dysfunction leads to abnormal cardiac function in the adult fly,
manifested as both alterations in chamber dimension and in
rhythmicity, that the manipulation of other non-SERCA
elements of calcium signaling can modify these phenotypes
and the SERCA overexpression can rescue cardiac function.
Taken together, these data show that disruption of Drosophila
SERCA results in a cardiac phenotype that shares some
similarities to mammals and, depending on the screening
approach, Drosophila melanogaster can be used as a powerful
model system to identify novel modifiers of SERCA.

Material and Methods

Drosophila Stocks

CaP60Akm170 JAS- CaP60A RNAI, ITP-r83AMB0611  Df(2R)
BSC60, CaP60AXC570 and Rya-44F'® stocks were obtained
from the Bloomington Drosophila Stock Center. All stocks were
maintained on standard yeast protein media at room
temperature. The tinC-Gal4 stock was kindly provided by
Manfred Frasch [20]. The TARGET system was used based on
pre-existing stocks to generate p{tubulin-Gal80™}; p{tinC-Gal4}
stocks based on previously described methods [21].

Generation of CaP60A Transgenic Stocks

The cDNA encoding wild type CaP60A and CaP60Akm170
were isolated by RT-PCR from w''"® and CaP60A"™™ flies,
subcloned into pCasper5 and verified by sequencing.
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Transgenic Drosophila harboring either the wild type CaP60A
or CaP60Axm170 were generated by established methods [20].

Post Developmental Expression of siRNA

Flies bearing UAS-RNAi to CaP60A were bred with tubulin-
Gal80™S; tinC-Gal4 stocks, creating a fly bearing these
transgenes. Flies were bred at 18°C until eclosion, at which
time half were moved to 27°C. At 27°C, Gal80 repression of
Gal4 is released and siRNA to CaP60A is expressed. Flies
were kept at either 18°C (control condition) or 27°C (transgene
is on) for 7 days, after which time cardiac function was
assessed.

Cardiac Measurements using OCT

Cardiac function in adult Drosophila was measured using a
custom built OCT microscopy system (Bioptigen, Inc, Durham,
NC) as previously described [14].

Briefly, adult female Drosophila between 7 and 10 days post
eclosion were briefly subjected to CO,, placed on a soft gel
support, and allowed to fully awaken based on body
movement. OCT M-modes were recorded and images were
processed using Imaged software using a 125um standard.
End-diastolic (EDD) and end-systolic (ESD) were determined
from three consecutive heartbeats. Heart rate was determined
by counting the total number of beats which occurred during a
2.6 second or 5.2 second recording and calculating the number
of beats per minute (bpm). Fractional shortening (FS) was
calculated as [EDD-ESDJ}/EDD x 100. Fractional shortening is a
calculation of the percentage change in cardiac chamber
dimensions during contraction and a decrease in fractional
shortening is interpreted as a reduction in systolic function.

Induction of paralysis by heat shock was accomplished in the
following manner: awake flies were transferred to a glass vial
using a funnel and without anesthesia, glass vials were then
immersed in a water bath heated to 40°C for 10 minutes and
then moved to a clean plastic vial for 1 hour prior to
assessment of cardiac function. To minimize the potential
effect of CO, on heart rate in the paralytic mutants, paralyzed
flies were embedded in the gel support without the use of CO,.

Statistical Analysis

Comparisons of chamber dimensions or heart rates were
determined by an analysis of variances (ANOVA) with Tukey’s
test for multiple comparisons when necessary. GraphPad
Prism statistical software (GraphPad Software Inc.) was used
for all analyses.

Results

Previous work suggested that SERCA primarily maintains
heart rate in Drosophila [11,13], a finding that differs from the
observed function of SERCA in the mammalian heart to
maintain normal contractile function [22] and may be due to
limitations of the techniques to measure adult Drosophila
cardiac function. On the basis of previous findings, we tested
whether global disruption of SERCA in adult flies would affect
heart function due to dysregulation of cardiac calcium handling.
To address this, we first examined the cardiac function of
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paralytic mutant CaP60A™'7° using optical coherence
tomography (OCT). The CaP60A*™'7° mutant was isolated
from an ethyl methanesulfonate genetic screen designed to
identify  temperature-sensitive  paralytic  mutants  [13].
CaP60Axm170 flies bear a point mutation in Drosophila SERCA,
which is an amino acid replacement of glutamic acid for lysine
at position 442 (E442K). The E442K mutation is located in the
hinge domain of SERCA and has been proposed to potentially
influence either ATP binding or conformational state of the
molecule [13]. For our studies, we also used w'''®, a common
laboratory stock, as a control. The cardiac and paralysis
phenotype of the CaP60A*™7 flies were induced by exposure
to heat shock at 40°C for 10 minutes. We examined the effect
of varying duration of heat shock on both paralysis and cardiac
function. All CaP60A*m7° subjected to a 7 or 10-minute
duration of heat shock developed paralysis, while 20% of flies
receiving a 5-minute heat shock developed paralysis (Figure
1A). CaP60Axm170 flies that developed paralysis did not recover
normal function for up to 72 hours after heat shock (Figure 1A).
Heart rate measurements were made using 2.6 second or 5.6
seconds recordings, which were then used to calculate the
number of heart beats per minute. OCT images revealed an
inverse relationship between heart rate and the duration of heat
shock with a 72% reduction in heart rate after 10-minute heat
shock (Figure 1B & 1C), which was coupled with 19% increase
in end diastolic dimension (EDD). However, there was no
significant change in fractional shortening, a surrogate for
cardiac function, with increasing duration of heat shock. In
comparison, w''"® flies did not develop paralysis or significant
changes in cardiac function or heart rate.

In order to investigate whether the changes in heart rate in
the CaP60A™70 were due to intrinsic cardiac process, we
generated transgenic Drosophila that specifically
overexpressed either wild type SERCA (tinC-wtCaP60A) or the
CaP60Axm170 mutant SERCA (tinC-CaP60Ax™170) in cardiac
tissue. Cardiac specific overexpression of wild type or mutant
SERCA was not sufficient to induce paralysis after heat shock
(Figure 2A). However, overexpression of CaP60Axm!70 resulted
in both cardiac dilation (Figure 2B, 2D) and diminished cardiac
function (Figure 2B, 2E) that was independent of exposure to
10 minutes of heat shock compared to w'''® No significant
decrement in cardiac function was noted in the presence of
overexpression of wild type SERCA in comparison to w'''8,
Unlike the flies that globally express CaP60A*™'7, flies with
cardiac specific overexpression CaP60A*m'70 did not have a
decreased heart rate with heat shock (Figure 2C). Next, we
sought to determine whether the altering calcium release in
Drosophila would affect the cardiac function of CaP60Am170
flies using a genetic approach. To accomplish these we
introduced a mutation in Ryanodine (Rya-r44F’¢) into the
CaP60Am170 genetic background and assessed the effect on
both paralysis and cardiac function. Rya-r44F'® encodes a
mutation in the Ryanodine receptor resulting in a deletion that
extends from the p{lacW}Rya-r44F+°4*3 insertion to include the
first coding exon and the first and second introns resulting in a
hypomorphic allele [23]. The Rya-r44F'® mutant exhibits
diminished cardiac function that is independent of heat shock
(Figure 3B & 3E), but does not exhibit any heat shock induced
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paralysis (Figure 3A) or change in heart rate (Figure 3C).
Addition of Rya-r44F'® in the context of CaP60A%™" (Rya-
r44F'; CaP60A*™7%) did not result in any change in the
paralysis phenotype of the CaP60A™'7° (Figure 3A). However,
the addition of Rya-r44F'® rescued the heart rate phenotype
CaP60A"™70 mutant (Figure 3C) and improved -cardiac
dysfunction phenotype of the Rya-r44F'® mutant (Figure 3E).
No significant changes in end diastolic dimensions or fractional
shortening were noted in the Rya-r44F'®; CaP60Axm170 at
baseline or after heat shock. These data suggest that the heart
rate phenotype observed in the CaP60A*™7° mutant flies result
from extracardiac effects of SERCA and can be effectively
uncoupled from the paralysis phenotype through introduction of
sarcoplasmic reticulum calcium release mutation.

Although it remains unclear how global SERCA modulation
affects heart rate, these data indicated that modulation of
cardiac SERCA affected other important aspects of heart
function, so we next sought to characterize alternative
Drosophila models of SERCA dysfunction using OCT. To
accomplish this, we studied the effect of cardiac specific RNAI
targeting SERCA transcription (tinC>CaP60A RNAI), p-element
disruption of SERCA (CaP60AXc%57%) and heterozygous
genomic deficiency of SERCA (Df(2R) BSC601) on cardiac
function and paralysis. Heat shock induced paralysis was only
observed in the CaP60A"“™'" flies, but not in the other SERCA
mutation stocks (Figure 4A) and this was accompanied by a
marked decrease in heart rate (Figure 4B, 4E). In contrast to
the  CaP60Ax™7°  phenotype, CaP60A RNAi post-
developmentally driven in cardiac tissue resulted in a
significantly diminished fractional shortening and increased end
systolic dimension (ESD) (Figure 4B & 4E). Of note, no flies
were obtained when CaP60A RNAi driven in cardiac tissue
throughout development suggesting significant lethality. Df(2R)
BSC601 flies exhibited a slow heart rate phenotype in a non-
heat shocked condition, although this is far less prominent in
comparison to CaP60Ax™70 (Figure 4E), smaller EDDs (Figure
4D) and preserved systolic function (Figure 4C and 4F). These
data suggest that the loss of SERCA function results in heart
rate and chamber dimension phenotypes, which are variable
amongst the tested mutants. Diminished cardiac function,
which is observed in the mammalian phenotype of cardiac
SERCA dysfunction [22], is present in the cardiac specific RNAI
knockdown SERCA but is not seen in other mutants.

The overexpression of SERCA has been shown to improve
cardiac function in mammals [5,24], however it is not known
whether the overexpression of CaP60A would improve cardiac
function in Drosophila. To test whether a similar phenomenon
occurs in Drosophila, we next investigated the effect of
CaP60A overexpression on the cardiac phenotype seen in
held-up? (hdp?) mutant. Previous work revealed that the hdp?
mutant, that are homozygous for a point mutation in troponin I,
has enlarged cardiac dimension and diminished cardiac
function [14]. Consistent with this work, we found that the hdp?
mutant has significantly diminished cardiac function in
comparison to w''"® (Figure 5A, 5D & 5E). The cardiac specific
overexpression of two copies of wild type CaP60A (tinC-
wtCaP60A) in the genetic background of homozygous hdp?
mutant (hdp? tinC-wtCaP60A) resulted in a significant
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Figure 1. CaP60A*m'7 mutant has altered heart rate and cardiac dimensions after heat shock. A. Percent paralysis after
heat shock. CaP60A<™'0 heterozygote flies were exposed to heat shock of varying durations (no heat shock defined as 0 min
(closed circle), 5 min (closed triangles), 7 min (open triangles), or 10 min (open circles)) and observed for up to 72 hours. All flies
receiving a heat shock of greater than 7 minutes developed irreversible paralysis; while a smaller percentage of flies developed
paralysis after 5-minute heat shock. B. Representative optical coherence tomography (OCT) recordings from w'''® and CaP60A™70
after varying durations of heat shock (HS). End diastolic dimension (EDD) and end systolic dimension (ESD) are denoted in red; A
125 micron standard and one-second bar are shown. C. Heart rates measured from 3 second OCT recordings show a progressive
decline in heart rate with increasing durations of heat shock. D. End diastolic dimensions (EDDs) increase with increasing duration
of heat shock. E. Fractional shortening is not markedly altered with heat shock in the CaP60A"™7° mutants. *p<0.05, + p<0.005,
$p<0.0001 in comparison to 0 minutes heat shock by one-way ANOVA with Tukey’s multiple comparisons test. N= 16, 12, 16, 4, 22
for 0, 5, 6, 7 and 10 minute groups, respectively.

doi: 10.1371/journal.pone.0077785.g001

improvement in cardiac function (Figure 5A, 5D & 5E). Discussion
Interestingly, the heart rates of the hdp? mutant and hdp?; tinC-

wtCaP60 were mildly, but significantly, diminished in Our studies reveal that the disruption of CaP60A produces
comparison to w'"'® (Figure 5B). These results suggest that the altered cardiac function and rhythmicity in adult Drosophila.
overexpression of CaP60A can improve cardiac function in a The paralytic mutant CaP60A*™70 has a glutamic acid to lysine
model of Drosophila cardiomyopathy and provides further amino acid substitution at position 442 that is predicted to be
evidence that Drosophila can be used as a model system to located in the hinge region of CaP60A [13]. Previously, this
study SERCA function in vivo. mutation has been shown to cause a loss of CaP60A function
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Figure 2. The effects of cardiac specific overexpression of CaP60A*™'7° and wild type CaP60A on cardiac phenotypes. A.
Cardiac specific overexpression of wild type CaP60A (tinC—wtCaP60A) or mutant CaP60Ax™"° (tinC-CaP60A*™7%) in Drosophila is
not sufficient to phenocopy the paralysis phenotype of the global CaP60A%m'7° mutant. Each mutant had two copies of the
transgene; B. Representative OCT images from transgenic CaP60A overexpression flies in comparison to w'''® and global
CaP60Am170_ 125 micron standard and one-second bars are shown. C. Heart rate, D. End diastolic dimensions (EDD), E. Fractional
shortening (%) in w''"8, tinC—wtCaP60A and tinC-CaP60Ax™ 70 and CaP60Ax™'70 at baseline and after 10-minute heat shock. No
significant differences were noted in the heart rate in either tinC—wtCaP60A or tinC-CaP60A*™'7 at baseline and after heat shock
compared to w''"8, *p<0.05, **p<0.005 vs. w'"'® no heat shock, #p<0.05, # # p<0.005 vs. w'""® with heat shock, + p<0.0001 vs. w'''8
with heat shock, tinC-CaP60Ax™m70 with heat shock, tinC-CaP60Ax™7° with heat shock and CaP60A™70 no heat shock by one-way

ANOVA with Tukey’s multiple comparisons test.
doi: 10.1371/journal.pone.0077785.g002

that is associated with markedly diminished heart rates [13].
Using OCT imaging, we identified that the CaP60Axm!70
mutants exhibit significantly enlarged cardiac dimensions after
heat shock in comparison to the basal state that is inversely
related to heart rate, however systolic function remains largely
unchanged. These results, coupled with our findings using
cardiac specific overexpression of wild type CaP60A or
CaP60Axm170 suggest that the paralytic effects and cardiac
phenotypes exhibited by the CaP60A*™'70 mutants are driven
primarily by extracardiac CaP60A function in the presence of
heat shock stress. Loss of function of CaP60A using RNAI
(tinC>CaP60A RNAI), p-element disruption (CaP60AKE57%) or

PLOS ONE | www.plosone.org

heterozygous genomic deficiency of SERCA (Df(2R) BSC601)
did not phenocopy the paralysis phenotype. Although the
Df(2R) BSC601 did exhibit a mild decrease in heart rate in the
basal state, a diminished heart rate was not observed in either
the tinC>CaP60A RNAi or the CaP60AKC%570  animals.
Strikingly, the tinC>CaP60A RNAi exhibits decreased fractional
shortening, which is consistent with the phenotype of SERCA
disruption seen in mammals [22]. Previously published work
has shown that the overexpression of CaP60A*™70 in muscle
using a UAS-CaP60Axm 70 with a mef2-gal4 driver resulted in a
diminished heart rate, which was not seen the mutation was
overexpressed in nerve tissue using elav¢’®5-gal4 [11]. These
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Figure 3. The effects of Calcium Release mutations on the CaP60A*™ cardiac phenotypes. A. Heat shock induced

paralysis in heterozygous CaP60A*™70 flies as well as in transheterozygous mutants carrying both CaP60A*™'7° and a mutation in
Ryanodine receptor (Rya-r44F’®). No heat shock induced paralysis was noted in the single Rya-r44F'® mutants or w'''®. B.
Representative OCT images from w'''®, CaP60Ax™'70, Rya-r44F's, CaP60Axm'7°; Rya-r44F'¢ with and without 10-minute heat shock;
A 125 micron standard and one-second bar are shown. EDD= End diastolic dimension, ESD=End systolic dimension. C. Heart rate,
D. EDD and E. Fractional Shortening (%) in w'''®, CaP60Ax™70 Rya-r44F'®, CaP60A*™"0; Rya-r44F'® at baseline and after 10-
minute heat shock. *p<0.0002 vs. non-heat shock state of the same genotype, t p<0.0001 vs. CaP60Am'70 after heat shock,
#p<0.0001 vs. w'"'® of the same treatment condition, 1p<0.0002 vs. Rya-r44F'® of the same treatment condition by one-way ANOVA

with Tukey’s multiple comparisons test.
doi: 10.1371/journal.pone.0077785.g003

data, in conjunction with our findings, raise the possibility that
heart rate may in part be regulated by CaP60A function in non-
cardiac muscle while cardiac contraction is regulated by
CaP60A in cardiac tissue.

Mutations in calcium release channels can modify the
cardiac phenotype seen in the CaP60A™'70 mutants, which we
observed under conditions of the co-expression of the
CaP60Axm170 and Rya-r44F'® mutations. However, paralysis is
largely unaffected by the co-expression of CaP60A*™'7° and
Rya-r44F'¢. Our findings suggest that OCT can be used to
identify potential modifiers of CaP60A activity on cardiac
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function, which would be have been missed by scoring of the
paralysis phenotype alone.

The overexpression of SERCA is known to augment myocyte
function in mammals by increasing the amplitude of calcium
signals and increasing the rates of contraction and relaxation in
hearts [5]. Interestingly, we observed that the overexpression
of wild type CaP60A improved cardiac function in a Drosophila
mutant that has dilated cardiomyopathy due to a mutation in
troponin | (hdp?). These findings significantly broaden our
current understanding of how CaP60A affects cardiac function
in Drosophila melanogaster and provide a rationale for the use
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test.
doi: 10.1371/journal.pone.0077785.g004

of Drosophila as a model system to investigate mammalian
SERCA function.

To date, two molecules have been identified as major
regulators of calcium affinity of SERCA, phospholamban and
sarcolipin. Phospholamban is a transmembrane suppressor of
SERCA activity and the phosphorylation of phospholamban at
Ser16 by protein kinase A (PKA) or Thr17 by calcium/
calmodulin kinase Il (CaMKIl) results in a loss of SERCA
suppression and enhanced calcium reuptake [25-27]. Genetic
ablation of phospholamban results in augmented SERCA
function and has been shown to augment cardiac function in
muscle specific LIM protein deficient mice, a well characterized
model of mammalian cardiomyopathy [3]. For example,
myocytes from muscle specific LIM protein knockout mice had

PLOS ONE | www.plosone.org

attenuated amplitudes of calcium transients and myocytes from
the muscle specific LIM protein and phospholamban double
knockout mice had the calcium transients with a shortened
duration, faster decay, and preserved amplitude consistent with
improved SERCA function [28]. Like phospholamban,
sarcolipin is another regulator of SERCA function although is
not as well understood. Sarcolipin is found primarily in the atrial
tissue where it is co-expressed with and performs similar
functions to  phospholamban [4]. Interestingly the
phospholamban binding site is not conserved in Drosophila
CaP60A in comparison to mammalian SERCA, despite
significant sequence similarity in other domains [13]. The
recent discovery of sarcolamban represents novel insight into
the regulation of SERCA [12]. Taken together, our work
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doi: 10.1371/journal.pone.0077785.g005

suggests that Drosophila can be used to identify additional
modulators of SERCA function using OCT and would form the
basis of future genetic screens to identify enhancers or
sSuppressors.
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