

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Impact of coronavirus disease on the HIV testing and health care delivery at a university hospital in Taiwan, 2020-2021

Pei-Ying Wu, Hsin-Yun Sun, Wang-Huei Sheng, Szu-Min Hsieh, Yu-Chung Chuang, Yu-Shan Huang, Wang-Da Liu, Kuan-Yin Lin, Sung-Ching Pan, Hsi-Yen Chang, Yu-Zhen Luo, Ling-Ya Chen, Chien-Ching Hung

PII: S1684-1182(22)00184-0

DOI: https://doi.org/10.1016/j.jmii.2022.10.001

Reference: JMII 1588

To appear in: Journal of Microbiology, Immunology and Infection

Received Date: 20 June 2022

Revised Date: 14 September 2022

Accepted Date: 6 October 2022

Please cite this article as: Wu P-Y, Sun H-Y, Sheng W-H, Hsieh S-M, Chuang Y-C, Huang Y-S, Liu W-D, Lin K-Y, Pan S-C, Chang H-Y, Luo Y-Z, Chen L-Y, Hung C-C, Impact of coronavirus disease on the HIV testing and health care delivery at a university hospital in Taiwan, 2020-2021, *Journal of Microbiology, Immunology and Infection*, https://doi.org/10.1016/j.jmii.2022.10.001.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. All rights reserved.

Ms. Ref. No.: JOUMII-D-22-00186R1

Impact of coronavirus <u>disease</u> on the HIV testing and <u>health care</u> delivery at a university hospital in Taiwan, <u>2020-2021</u>

Pei-Ying Wu,¹ Hsin-Yun Sun,² Wang-Huei Sheng,² Szu-Min Hsieh,² Yu-Chung Chuang,² Yu-Shan Huang,² Wang-Da Liu,^{2,3} Kuan-Yin Lin,^{1,2} Sung-Ching Pan,^{1,2} Hsi-Yen Chang,¹ Yu-Zhen Luo,¹ Ling-Ya Chen,¹ Chien-Ching Hung^{2,4,5,6,7}

¹Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan ²Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan ³Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan ⁴Department of Internal Medicine, National Taiwan University Hospital Yunlin

Branch, Yunlin, Taiwan

⁵Department of Tropical Medicine and Parasitology, National Taiwan University

College of Medicine, Taipei, Taiwan

⁶Department of Medical Research, China Medical University Hospital, Taichung, Taiwan

⁷China Medical University, Taichung, Taiwan

Corresponding author: Chien-Ching Hung, MD, PhD

Department of Internal Medicine, National Taiwan University Hospital,

7 Chung-Shan South Road, Taipei, Taiwan

E-mail address: <u>hcc0401@ntu.edu.tw</u>

FAX: +886-2-23707772

Telephone: +886-2-23123456 ext. 67552

Journal Prevention

1	Ms. Ref. No.: JOUMII-D-22-00186R1
2	
3	Impact of coronavirus <u>disease on the HIV testing and health care delivery at a</u>
4	university hospital in Taiwan <u>, 2020-2021</u>
5	
6	
7	
8	Short title: Covid-19 and HIV care delivery
9	Keywords: SARS-CoV-2; lockdown; social distancing; non-pharmacologic
10	intervention; voluntary counseling and testing; care cascade; antiretroviral therapy
11	
12	
13	Total Word count:
14	Abstract: 250 words
15	Text: <u>3314</u> words
16	
17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	

33 Abstract

34	Background: To contain the coronavirus disease 2019 (Covid-19) pandemic,
35	non-pharmacologic interventions, including lockdown and social distancing, may
36	have adverse impact on access to HIV testing and care. This study investigated the
37	impact of Covid-19 on HIV testing and care at a major hospital in Taiwan in 2020-
38	2021.
39	Methods: The numbers of clients seeking anonymous HIV voluntary counseling and
40	testing were compared 2 years before (2018-2019) and 2 years after Covid-19
41	outbreak (2020-2021). People living with HIV (PLWH) who sought care at the hospital
42	during 2018-2021 were included to examine the status of HIV care delivery and
43	disposition.
44	Results: The annual number of HIV screening tests performed had significantly
45	decreased from 2,507 and 2,794 in 2018 and 2019, respectively, to 2,161 and 1,737
46	in 2020 and 2021, respectively. The rate of discontinuation of HIV care among PLWH
47	was 3.7% in 2019, which remained unchanged in 2020 (3.7%) and 2021 (3.8%). The
48	respective percentage of annual plasma HIV RNA testing <2 times increased from
49	8.4% and 7.8% in 2018 and 2019 to 7.0% and 10.7% in 2020 and 2021, so was that of
50	annual syphilis testing <2 times (<u>10.1% and 8.8% to 7.9% and 12.0%</u>). The rates of
51	plasma HIV RNA <200 copies/ml ranged from 97.0% to 98.1% in 2018-2021.

- 52 Conclusions: During the Covid-19 pandemic, access to HIV counseling and testing
- 53 was significantly limited. While the number of HIV-related testing decreased, the
- 54 impact of Covid-19 on the continuity of antiretroviral therapy and viral suppression
- 55 among PLWH appeared to be minimal in Taiwan.
- 56
- 57

ournal Prevension

58 Introduction

59	Coronavirus disease 2019 (Covid-19) has spread rapidly around the world since the
60	first report from Wuhan in China in December 2019. ¹ Covid-19 may have short-term
61	and long-term detrimental health impact on the immune system, respiratory system,
62	cardiovascular system, neurological system and mental health. ² During this Covid-19
63	pandemic, the World Health Organization (WHO) estimates that approximately 37.7
64	million people living with HIV (PLWH) worldwide are at risk for infection with severe
65	acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ³ To contain the pandemic,
66	wearing personal protective equipment, travel restrictions, social distancing, and
67	lockdown have been implemented, which could potentially have adverse impact on
68	HIV testing and care delivery, including initiation of antiretroviral therapy (ART) and
69	retention in HIV care. ⁴⁻⁸ Because of non-pharmaceutical interventions (NPIs) and
70	concerns about acquisition of SARS-CoV-2, people at risk may become hesitant to
71	undergo timely testing for HIV and more likely to delay in seeking care when HIV
72	infection is confirmed, which could potentially lead to delayed initiation of
73	antimicrobial prophylaxis and ART and increased disease severity and
74	complications. ^{9, 10} In a retrospective cohort study conducted in four continents, the
75	number of HIV tests performed was reduced by 35.4% in 2020 as compared with
76	that in 2019. ⁶ In hospital-based studies, the new patient encounters decreased by

77	23.5% to 35.0% during the lockdown in the USA and the Netherlands. ^{5, 7} Moreover,
78	ART initiation was shown to decrease from a median of 571 per week before
79	lockdown to 375 per week after lockdown in 65 South African primary care clinics. ⁴
80	While the extent to which the adverse impact of the pandemic may have
81	depends on the severity of the pandemic, preparedness of public and private
82	sectors, and efficiency of strategies to contain the pandemic, the patients with
83	chronic health conditions, including HIV, will be most severely hit in the long-term. ¹⁰
84	A modelling study predicted that modest Covid-19-related disruptions to HIV testing,
85	initiation pre-exposure prophylaxis (PrEP) and PrEP adherence, condom use, ART
86	initiation and viral suppression could lead to increases in new HIV infections and HIV-
87	related deaths. ¹¹ To minimize the adverse impact on the provision of HIV prevention
88	to key populations and the delivery of appropriate care to PLWH during the
89	pandemic, prevention and treatment programs need to be flexible and innovative
90	and to partner with non-governmental organizations. ¹²⁻¹⁴
91	In this study, we aimed to investigate the impact of Covid-19 pandemic on the
92	HIV testing and care delivery at a university hospital in Taiwan during the outbreak in
93	2020 to 2021.
04	

95 Methods

96 Study setting

97	On 21 January, 2020, the first person infected with SARS-CoV-2 was diagnosed in the
98	Taiwan. ¹⁵ As of 31 December, 2021, the total case number of SARS-CoV-2 infection
99	reported to the National Health Command Center (NHCC) was 14,603 cases in a
100	country with a population of around 24 million people. By the end of May 2022,
101	2,032,983 cases of SARS-CoV-2 infection were diagnosed with 2,255 deaths. ¹⁶ To
102	contain the epidemic, border control, mandatory quarantine for returned travelers
103	and individuals infected with SARS-CoV-2, vaccination, and several NPIs were
104	implemented; these NPIs included wearing face mask and social distancing, in
105	addition to promoting awareness of personal hygiene and sanitation. Selective
106	restrictions on entry into the hospital were implemented with check-up of body
107	temperature and review of sick contacts, vaccination, and recent travel. ¹⁷
108	Vaccination programs against SARS-CoV-2 started on March 22, 2021, which first
109	began to cover infectious disease prevention and control personnel at the central
110	and local governments and front-line workers at high risk of exposure. Adult people
111	with chronic illnesses, including PLWH, were prioritized in vaccination programs that
112	was initiated on 8 July, 2021. ¹⁸ A retrospective study in Taiwan suggested that
113	COVID-19 vaccination was clinically effective in preventing SARS-CoV-2 infection

114	among PLWH. ¹⁹ A	s of 31 May, 2022	, it was estimated	that 88.8% of the total
-----	-----------------------------	-------------------	--------------------	-------------------------

population had received the first dose, 81.9% the second, and 65.7% additional

116 doses of a Covid-19 vaccine in Taiwan.²⁰

117

118 *HIV testing, prevention and care delivery*

119 HIV testing are mandatory for individuals entering military service, prisons and

- 120 correctional facilities. Opt-out HIV testing program has been implemented for
- 121 women receiving antenatal care since 2005. Free-of-charge HIV screening testing is

also provided at the designated hospitals and clinics. The program of home HIV

- 123 testing was implemented in 2020, in which the free-of-charge testing kits are
- available at vending machines as well as convenience stores around Taiwan after

125 registration on-line with the Taiwan Center for Disease Control (CDC).

126 According to the national HIV treatment guidelines in Taiwan, PLWH have free-

127 of-charge access to HIV care, including ART and monitoring of CD4 and plasma HIV

- 128 RNA load, at designated hospitals around Taiwan. Antiretroviral-naïve PLWH are
- 129 counseled to start ART regardless of CD4 count since 2015. ²¹ Several single-tablet
- 130 regimens (STRs), including regimens containing second-generation integrase

inhibitors, were introduced into clinical use in 2016. Initiation of ART within 7 days of

132 HIV diagnosis was recommended in 2018; after introduction of

133	immunochromatographic testing to facilitate rapid confirmation of HIV diagnosis in
134	2020, same-day ART initiation was recommended in 2021. ²² Once ART is initiated,
135	follow-up of virologic response is conducted at 1 month of ART, and subsequently
136	every 3 months during the first year and every 6 months once PLWH have achieved
137	viral suppression on stable ART. ²³ The annual number of newly diagnosed HIV
138	infection reported to the Taiwan CDC reported has been on the decline for four
139	consecutive years since 2018. ²⁴
140	During the epidemic, HIV care provided at designated hospitals around Taiwan
141	was not interrupted, including PrEP and post-exposure prophylaxis (PEP), HIV
142	screening, ART, and management of opportunistic illnesses. PLWH who stayed
143	abroad or were quarantined could have their ART refilled at the designated hospitals
144	and delivered by mail with the assistance of their families, friends, or volunteer
145	workers at non-governmental organizations (NGOs). PLWH can refill ART by making
146	on-line appointments with designated hospitals or pharmacies.
147	
148	Study population and design

In this retrospective cohort study, we included PLWH receiving care at the National
Taiwan University Hospital (NTUH), the major designated hospital providing inpatient

151

8

and outpatient care, in 2018-2021. To examine the impact of Covid-19 on HIV testing,

152	the numbers of clients seeking anonymous HIV voluntary counseling and testing
153	(VCT) in the same periods in 2018-2021 were compared. To evaluate the linkage to
154	care for those testing HIV-positive, the interval between HIV diagnosis and first visit
155	at HIV clinics as well as that between confirmed HIV diagnosis and ART initiation
156	were recorded.
157	We systematically extracted and validated all laboratory and clinical data from
158	the electronic medical records. Patients were included if they had at least one
159	medical visit at NTUH between January 1, 2018, and December 31, 2021.
160	Discontinuation of HIV care was defined as individuals having less than 1 medical visit
161	within 6 months. Follow-up was censored at death or at the end of study on 31
162	December, 2021. Outcomes assessed included attendance at the HIV clinics by PLWH
163	themselves, family, friends or non-governmental organizations; performance of HIV
164	care-related testing such as rapid plasma reagin (RPR) for syphilis, hepatitis C virus
165	(HCV) antibodies or HCV RNA, and plasma HIV RNA; and plasma HIV RNA <200
166	copies/ml or <50 copies/ml. These variables were chosen to assess the HIV care
167	continuum that encompasses a series of HIV care-related steps from HIV diagnosis to
168	linkage to care, retention in care, and to viral suppression. ²⁵
169	

170 Laboratory investigations

171	Plasma HIV RNA load was quantified using the Cobas HIV-1/HIV-2 Qualitative nucleic
172	acid test (Cobas 6800 System, Roche Diagnostics Corporation, IN, USA) with the
173	lowest detection limit of 33 IU/mL (1 copy=1.67 IU). CD4 counts were determined
174	using FACFlow (BD FACS Calibur, Becton Dickinson, CA, USA). ASI's nontreponemal
175	RPR test screens (CPT Code 86593, Springville, UT, USA) was used for the
176	diagnosis of syphilis. Anti-HCV antibodies were determined with the use of a
177	fourth-generation enzyme immunoassay (Dia.Pro Diagnostic Bioprobes S.r.l. Italy).
178	The detection of HCV RNA was performed using Roche Cobas [®] 6800 system
179	(AmpliPrep HCV Test, v2.0, Roche, USA), with a detection limit of 15 IU/ml. In June
180	2019, pooled-plasma HCV RNA testing program was implemented to facilitate early
181	diagnosis of HCV viremia and linkage to direct-acting antiviral (DAA) treatments
182	among PLWH at risk for HCV acquisition, such as PLWH newly diagnosed with
183	sexually transmitted infections (STIs), elevated aminotransferases, and recent
184	clearance of HCV with DAAs or spontaneously; those included in the program
185	underwent HCV RNA testing every 12 weeks for 48 weeks. ²⁶
186	

187 Statistical analysis

188 We used descriptive statistics to summarize the VCT testing for HIV and clinical data

among PLWH before and after Covid-19 outbreak. The variables included in this

- analysis were the number of HIV tests performed and the percentage of clients
- testing HIV-positive at the VCT service; and the coverage of Covid-19 vaccination and
- the number of attendance at the HIV clinics, and plasma HIV RNA and RPR tests
- performed. Differences in the numbers of HIV tests and percentages of clients testing
- HIV-positive for the four consecutive study years were compared by p for trend. SAS ra
- (version 9.4) was used for all analyses.

201 **Results**

202 Trends of HIV testing performed at VCT service

- 203 The number of HIV tests performed at VCT service had significantly decreased, from
- 204 2,507 and 2,794 in 2018 and 2019, respectively, to 2,161 and 1,737 in 2020 and
- 205 2021, respectively, a 37.8% decrease from 2019 to 2021 (Figure 1). However, the
- 206 percentages of clients testing HIV-positive remained relatively stable during the 4-
- 207 year study period, from 0.8% (n=20) and 1.1% (31) in 2018 and 2019, respectively, to
- 208 0.6% (13) and 1.4% (25) in 2020 and 2021, respectively (*P* for trend, 0.34) (Figure 1).
- 209 The rate of linkage to care for the clients testing HIV-positive at VCT service was
- 210 85.0% (17/20), 93.5% (29/31), 100% (13/13), and 96.0% (24/25) in 2018, 2019, 2020,
- 211 and 2021, respectively.
- 212

213 SARS-CoV-2 vaccine coverage

- 214 Types of vaccines available in Taiwan included ChAdOx1 nCoV-19 (AZD1222),
- 215 BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), and MVC-COV1901 (Medigen);
- 216 PLWH traveling to China might receive CoronaVac (Sinovac) or BBIBP-CorV
- 217 (Sinopharm) vaccines. From February 2 2021 to December 31, 2021, 87.0%
- 218 (2974/3420) PLWH had received 2 vaccine doses (Figure 2); the types of vaccines
- administered were 96.5% (2870/2974) homologous vaccines (AZD1222-AZD1222,

220	n=1,736; BioNTech-BioNTech, n=384; Moderna-Moderna, n=610; Medgen-Medgen,
221	n=118; Sinovac- Sinovac, n=14, Sinopharm- Sinopharm, n=8); and 3.5% (104/2974)
222	heterologous vaccines (AZD1222-BioNTech, n=31; AZD1222-Moderna, n=72;
223	AZD1222-Medgen, n=1).
224	
225	HIV care delivery to people who were newly diagnosed with HIV infection
226	The numbers and clinical characteristics of PLWH who sought HIV care during the
227	four study years are shown in Table 1. The majority of the included PLWH were male
228	(ranging from 95.9% to 96.2%) and men who have sex with men (from 90.9% to
229	91.9%). The annual case number of people who were newly diagnosed with HIV
230	infection and sought care at this hospital had decreased from 85 and 86 in 2018 and
231	2019, respectively, to 55 and 53 in 2020 and 2021, respectively. The median CD4
232	count at HIV diagnosis of those people newly diagnosed with HIV infection had
233	decreased from 278 and 259 cells/mm ³ in 2018 and 2019, respectively, to 222 and
234	257 cells/mm ³ in 2020 and 2021, respectively; and the proportion of those who had
235	CD4 counts <200 cells/mm ³ at HIV diagnosis remained high, 35.3%, 36.0%, 45.5%,
236	35.8% in 2018, 2019, 2020, and 2021, respectively (p for trend, 0.38). The interval
237	(median [IQR], days) between confirmed HIV diagnosis to ART initiation had
238	shortened from 5 (IQR, 2-7) to 0 (IQR, 0-1) days in 2018-2021 (Table 1). Overall,

- 239 85.7% (239/279) started ART within 7 days of HIV diagnosis for all people newly
- diagnosed with HIV during the four study years; and 24.7% (69/279) started ART on

241 the same day of HIV diagnosis. The percentage of people newly diagnosed with HIV

- 242 infection and started ART on the same day of HIV diagnosis had increased from
- 243 11.3% in 2018 to 69.8% in 2021.
- 244
- 245 Trends of retention in care among PLWH
- 246 During the 4-year study period, a total of 3,420 PLWH sought HIV care. At the end of
- 247 2018, 3,116 continued to receive care at NTUH. The rate of discontinuation of HIV
- care of those having sought HIV care in 2018 was 3.7% in 2019, which remained
- unchanged in 2020 (3.7%) and 2021 (3.8%) (Table 2). Overall, 88 (2.6%) PLWH who
- 250 stayed abroad had their ART refilled and delivered with the assistance of their

families, friends, or volunteer workers of NGOs in 2019-2021.

252

253 Trends of HIV-related testing

254 In addition to ART refills and the rates of loss to follow-up, we used the numbers of

- 255 RPR testing, CD4 count and plasma HIV RNA as surrogates for HIV care delivery
- during the 4-year study period (<u>Table 1</u>). Before the pandemic, the total number of
- 257 RPR tests performed for syphilis was 7,816 in 2018 and 7,895 in 2019, which had

258	decreased to 7,545 in 2020 and 7,207 in 2021. The total numbers of anti-HCV
259	antibody or HCV RNA testing were 3,216 and 4,276 in 2018 and 2019, respectively,
260	which had increased to 4,783 in 2020 and 4,823 in 2021. The average number of anti-
261	HCV antibody or HCV RNA testing per year had increased from 1.03 in 2018 to 1.51
262	times in 2021. The proportion of PLWH without anti-HCV or HCV RNA testing had
263	decreased from 33.3% in 2018 to 7.8% in 2021 (Table 1). The total numbers of
264	plasma HIV RNA testing were 7,927 and 7,839 in 2018 and 2019, respectively, which
265	had decreased to 7,509 in 2020 and 7,205 in 2021. However, the proportions of
266	plasma HIV RNA \leq 200 copies/ml in the on-treatment populations were similar,
267	97.0% in 2018, 97.3% in 2019, 98.1% in 2020, and 97.7% in 2021, so were the rates of
268	plasma HIV RNA ≤ 50 copies/mI in the modified intention-to-treat populations for the
269	four study years (Table 1).
270	
271	

272 Discussion

273	In this retrospective observational study, we showed that the number of HIV
274	screening tests performed at VCT service had significantly decreased by nearly 40%
275	after the Covid-19 outbreak in 2020 and 2021. During the 4-year study period, the
276	annual rates of loss to follow-up remained stable (3.7-3.8%). While the total annual
277	number of plasma HIV RNA testing had decreased from 7,927 in 2018 to 7,205 in
278	2021, the rates of viral suppression among those who had their plasma HIV RNA
279	determined remained high. Despite the negative impact of Covid-19 outbreak on HIV
280	testing and HIV care delivery, the intervals from HIV diagnosis to ART initiation
281	continued to shorten with the introduction of immunochromatographic assay to
282	facilitate rapid confirmation of HIV infection and single-tablet antiretroviral regimens
283	to improve adherence and tolerability in Taiwan. ²²
284	Covid-19 pandemic could have negative impact on HIV care delivery and result
285	in the increases of the number of HIV late presenters, STIs and new HIV infections. 11
286	The finding of significant decreases of HIV testing provided at hospital-based VCT
287	service in our study was similar to those observed in previously studies. ^{4, 6} During the
288	pandemic, access to testing could be significantly hindered because of restrictions on
289	entry into the hospital and lockdown; moreover, people may have concerns about
290	contracting SARS-CoV-2 during traveling to the hospitals or at the hospitals. Delays in

291	seeking HIV testing may increase the risk of late presentation of HIV infection, as
292	shown in the observational study in the Netherlands, which demonstrated a higher
293	proportion of late presentation among the new HIV referrals after lockdown due to
294	Covid-19 outbreak. ⁵ In this study, we found that the proportions of people newly
295	diagnosed with HIV infection who presented with CD4 counts <200 cells/mm ³ were
296	<u>35%-36% in 2018-2019 to 36-46% in 2020-2021 (p for trend, 0.38)</u> . Delayed HIV
297	diagnosis may potentially increase the risk of HIV transmission, and late presentation
298	may increase the risk of developing opportunistic illnesses and mortality and the
299	medical expenditure in managing the opportunistic illnesses. To overcome the
300	adverse impact of Covid-19, programs and strategies have been developed, including
301	telephone screening of clients for COVID-19 symptoms before they visit testing
302	services, syndromic management of STIs symptoms by telemedicine, and home-
303	based self-testing for HIV and STIs under the supervision of program staff in the
304	USA. ¹²
305	Previous studies have shown that ART initiation, clinic visits, plasma HIV RNA
306	testing and virologic suppression among PLWH decreased during the Covid-19
307	pandemic. ^{4, 7} The HIV testing and ART initiation were most affected due to a paucity
308	of personal protective equipment and space for physical distancing in clinics, as well
309	as shortened clinic opening times and staff being redeployed from HIV testing to

310	Covid-19 response activities. ^{4, 27} To minimize the disruptions on ART, differentiated
311	service delivery programs were implemented and the clinics and pharmacies were
312	able to facilitate ART provision through strategies such as multi-month dispensing,
313	ART provision outside of conventional healthcare facilities. ^{12, 28} During the Covid-19
314	pandemic, the development of alternative options for health care delivery were
315	accelerated, which included telemedicine, scheduled facility-based appointments,
316	home-base appointments, extended ART dispensation/refill, ART dispensation at
317	satellite clinics, and home delivery of drugs. In our study, we found that the
318	disruptions to ART initiation, hospital- or pharmacy-based ART refills and clinic visits
319	were minimal. Although our infectious diseases physicians were the main task force
320	to be in charge of infection control and care of people with COVID-19 in Taiwan,
321	these same infectious diseases physicians continued to provide HIV care services in
322	collaboration with HIV case manager, consultation staff and researchers for PLWH.
323	While the numbers of plasma HIV RNA testing decreased for two consecutive years
324	into Covid-19 pandemic, the rates of viral suppression remained high and the rates of
325	discontinuation and loss to follow-up remained low throughout the four consecutive
326	study years. Moreover, rapid and same-day ART initiation programs implemented
327	were not affected for those who newly received HIV diagnosis.
222	

328 Our study showed reductions in the numbers of RPR testing among PLWH.

329	While it is not clear whether lockdown or social distancing would have any impact on
330	the acquisition of STIs, the decreases of RPR testing raised concerns about delay in
331	detection of syphilis and other STIs. However, we found that the numbers of HCV
332	testing, including anti-HCV antibody and HCV RNA testing, continued to increase in
333	2018-2021. Because Taiwan government has committed to HCV elimination by 2025,
334	implementation of HCV testing programs and improvement in accessing DAA
335	treatments by lifting the restrictions might have encouraged health care providers to
336	perform HCV testing. ²⁹ The implementation of pooled-plasma HCV RNA testing
337	program among high-risk PLWH would increase the numbers and proportions of
338	PLWH undergoing HCV testing after 2019. ²⁶ Our recent finding of declining incidence
339	and prevalence of HCV viremia among PLWH at this hospital suggests that Covid-19
340	did not have negative impact on our progress toward HCV microelimination. ³⁰
341	There are several limitations to our study. First, it is an observational study
342	conducted at a single center. While the HIV care follows the national treatment
343	guidelines and HIV care, including ART and laboratory testing, is fully reimbursed, our
344	findings might not be generalizable to other designated hospitals for HIV care around
345	Taiwan. Second, the case number of Covid-19 recorded in Taiwan remained relatively
346	smaller compared to those in other countries during the study period, which might
347	be contributory to the relatively minimal impact observed on HIV care delivery. Our

348	observation in Taiwan could not be generalized to those in other settings where
349	medical facilities are overwhelmed in providing care to people with Covid-19. Third,
350	the impact of significant decreases in HIV testing at VCT service needs further
351	attention, though the government has increased the distribution of HIV testing kits
352	through the vending machines and convenient stores islandwide. <u>Fourth, this current</u>
353	study spanned 2018-2021 and did not include 2022; therefore, the findings observed
354	in this study might not be generalizable to the situation in 2022, when Omicron
355	variants have become predominant.
356	In conclusion, our study showed that the Covid-19 pandemic has led to
357	reductions of the numbers of HIV screening testing at VCT service and the numbers
358	of most HIV care-related testing; however, the programs of rapid and same-day ART
359	initiation, continuity of ART and achievement of viral suppression with ART appeared
360	to be minimally affected by Covid-19 in Taiwan.
361 362	

364 Conflict of Interest

- 365 None of the authors has known competing financial interests or personal
- 366 relationships that could have appeared to influence the work reported in this paper
- 367

368 Funding Source

- 369 This research did not receive any specific grant from funding agencies in the public,
- 370 commercial, or not-for-profit sectors.
- 371

372 Ethical Approval statement

- 373 The study was approved by the Research Ethics Committee (registration number,
- 374 202111018RIND).
- 375

376	References
377	1. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of
378	critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-
379	centered, retrospective, observational study. The Lancet Respiratory Medicine 2020;
380	8(5):475-481.
381	2. Leung TYM, Chan AYL, Chan EW, Chan VKY, Chui CSL, Cowling BJ, et al. Short- and
382	potential long-term adverse health outcomes of COVID-19: a rapid review. Emerg
383	Microbes Infect 2020; 9(1):2190-2199.
384	3. WHO. Key facts and latest estimateas on the global HIV epidemic-2020. Available
385	at: https://www.who.int/teams/global-hiv-hepatitis-and-stis-
386	programmes/hiv/strategic-information/hiv-data-and-statistics. [Accessed 31 May
387	2022].
388	4. Dorward J, Khubone T, Gate K, Ngobese H, Sookrajh Y, Mkhize S, et al. The impact
389	of the COVID-19 lockdown on HIV care in 65 South African primary care clinics: an
390	interrupted time series analysis. Lancet HIV 2021; 8(3):e158-e165.
391	5. Hensley KS, Jordans CCE, van Kampen JJA, Mollema FPN, Gisolf EH, El Moussaoui
392	R, et al. Significant Impact of Coronavirus Disease 2019 (COVID-19) on Human
393	Immunodeficiency Virus (HIV) Care in Hospitals Affecting the First Pillar of the HIV
394	Care Continuum. Clin Infect Dis 2022; 74(3):521-524.
395	6. Rick F, Odoke W, van den Hombergh J, Benzaken AS, Avelino-Silva VI. Impact of
396	coronavirus disease (COVID-19) on HIV testing and care provision across four
397	continents. HIV Med 2022; 23(2):169-177.
398	7. Norwood J, Kheshti A, Shepherd BE, Rebeiro PF, Ahonkhai A, Kelly S, et al. The
399	Impact of COVID-19 on the HIV Care Continuum in a Large Urban Southern Clinic.
400	AIDS Behav 2022.
401	8. Liu WD, Wang HY, Du SC, Hung CC. Impact of the initial wave of COVID-19
402	pandemic in Taiwan on local HIV services: Results from a cross-sectional online
403	survey. J Microbiol Immunol Infect 2022; 22;S1684-1182.
404	9. Chang AY, Cullen MR, Harrington RA, Barry M. The impact of novel coronavirus
405	COVID-19 on noncommunicable disease patients and health systems: a review. J
406	Intern Med 2021; 289(4):450-462.
407	10. Nundy S, Kaur M, Singh P. Preparing for and responding to Covid-19's 'second
408	hit '. <i>Healthc (Amst)</i> 2020; 8(4):100461.
409	11. Mitchell KM, Dimitrov D, Silhol R, Geidelberg L, Moore M, Liu A, et al. The
410	potential effect of COVID-19-related disruptions on HIV incidence and HIV-related
411	mortality among men who have sex with men in the USA: a modelling study. Lancet
412	HIV 2021; 8(4):e206-e215.
413	12. Beima-Sofie K, Ortblad KF, Swanson F, Graham SM, Stekler JD, Simoni JM. "Keep

414 It Going if You Can": HIV Service Provision for Priority Populations During the 415 **COVID-19 Pandemic in Seattle, WA**. *AIDS Behav* 2020; 24(10):2760-2763. 416 13. Armstrong WS, Agwu AL, Barrette EP, Ignacio RB, Chang JJ, Colasanti JA, et al. 417 Innovations in Human Immunodeficiency Virus (HIV) Care Delivery During the 418 Coronavirus Disease 2019 (COVID-19) Pandemic: Policies to Strengthen the Ending 419 the Epidemic Initiative-A Policy Paper of the Infectious Diseases Society of America 420 and the HIV Medicine Association. Clin Infect Dis 2021; 72(1):9-14. 421 14. Budak JZ, Scott JD, Dhanireddy S, Wood BR. The Impact of COVID-19 on HIV Care 422 Provided via Telemedicine-Past, Present, and Future. Curr HIV/AIDS Rep 2021; 423 18(2):98-104. 424 15. Taiwan timely identifies first imported case of 2019 novel coronavirus infection 425 returning from Wuhan, China through onboard quarantine. In. Taiwan CDC; 2020. 426 16. Press Releases Daily. Taiwan Centers for Disease Control; 2022. Available at: 427 https://www.cdc.gov.tw/En/Bulletin/Detail/MjPho1J fm1X8eKWb6b-428 qw?typeid=158. [Accessed 31 May 2022]. 429 17. Chiu YJ, Chiang JH, Fu CW, Hour MJ, Ha HA, Kuo SC, et al. Analysis of COVID-19 430 prevention and treatment in Taiwan. Biomedicine (Taipei) 2021; 11(1):1-18. 431 18. Huang HY, Chan PC, Huang YC, Lo HY, Lee PH, Yang CH, et al. An outbreak of 432 SARS-CoV-2 infections among people living with HIV and its successful 433 containment-Taiwan, May to August 2021. J Formos Med Assoc 2022. 434 19. Lin KY, Wu PY, Liu WD, Sun HY, Hsieh SM, Sheng WH, et al. Effectiveness of 435 COVID-19 vaccination among people living with HIV during a COVID-19 outbreak. J 436 Microbiol Immunol Infect 2022 ;55(3):535-539. 437 20. COVID-19 vaccine. Taiwan Centers for Disease Control; 2022. Available at: 438 https://www.cdc.gov.tw/File/Get/jyHiV3BeT7JX2JxZbX9Dpw. [Accessed 31 May 439 2022]. 440 21. Liu WD, Tsai WC, Hsu WT, Shih MC, Chen MY, Sun HY, et al. Impact of initiation of 441 combination antiretroviral therapy according to the WHO recommendations on the 442 survival of HIV-positive patients in Taiwan. J Microbiol Immunol Infect 2020; 443 53(6):936-945. 444 22. Huang YC, Yang CJ, Lee YT, Sun HY, Tsai CS, Lee NY, et al. SIMILAR SHORT-TERM 445 OUTCOMES WITH SAME-DAY ART INITIATION VS RAPID ART INITIATION. In: CRORI 446 2022. USA; 2022. 23. Guidelines for diagnosis and treatment of HIV/AIDS, 6th edition. Taiwan AIDS 447 448 Society; 2020. Available at: http://www.aids-care.org.tw/journal/treatment.asp. [Accessed 31 May 2022]. 449 450 24. Statistics of HIV/AIDS. Taiwan Centers for Disease Control; 2022.

451 https://www.cdc.gov.tw/En/Category/MPage/kt6yIoEGURtMQubQ3nQ7pA.

452 [Accessed 31 May 2022].

- 453 25. Grau LE, Brothers S, Kim JY, Khwaja A, Heimer R, Stopka TJ. The HIV Care
- 454 Continuum in Small Cities of Southern New England: Perspectives of People Living
- with HIV/AIDS, Public Health Experts, and HIV Service Providers. *AIDS Behav* 2021;
 25(3):897-907.
- 457 26. Sun HY, Liu WD, Wang CW, Wei YJ, Lin KY, Huang YS, et al. Performance of
- 458 Hepatitis C Virus (HCV) Core Antigen Assay in the Diagnosis of Recently Acquired
- 459 **HCV Infection among High-Risk Populations**. *Microbiol Spectr* 2022:e0034522.
- 460 27. Lagat H, Sharma M, Kariithi E, Otieno G, Katz D, Masyuko S, et al. Impact of the
- 461 COVID-19 Pandemic on HIV Testing and Assisted Partner Notification Services,
- 462 Western Kenya. *AIDS Behav* 2020; 24(11):3010-3013.
- 463 28. Wilkinson L, Grimsrud A. The time is now: expedited HIV differentiated service
- delivery during the COVID-19 pandemic. J Int AIDS Soc 2020; 23(5):e25503.
- 465 29. Chen GJ, Sun HY, Chang SY, Su LH, Chen YT, Hsieh SM, et al. Sexually-transmitted
- 466 hepatitis C virus reinfections among people living with HIV in Taiwan: the emerging
- 467 **role of genotype 6**. *Emerg Microbes Infect* 2022; 11(1):1227-1235.
- 468 30. Chen GJ, Ho SY, Su LH, Chang SY, Hsieh SM, Sheng WH, et al. Hepatitis C
- 469 microelimination among people living with HIV in Taiwan. Emerging Microbes &
- 470 *Infections* 2022:1-29.

Table 1. Clinical characteristics of people living with HIV who sought care at theNational Taiwan University Hospital and blood testing related to HIV care performedbetween 2018 and 2021

	2018	2019	2020	2021
Total patient number, n=	3116	3177	3178	3188
Age, mean (SD), years	41.1 (11.0)	41.8 (10.9)	42.6 (10.9)	<u>43.4</u> (10.9)
Male sex, n (%)	2988 (95.9)	3051 (96.0)	3055 (96.1)	3066 (96.2)
Risk group for HIV transmission,			6	
n (%)			0	
MSM	2831 (90.9)	2895 (91.1)	2904 (91.4)	2929 (91.9)
Heterosexuals	249 (7.9)	246 (7.7)	241 (7.6)	230 (7.2)
IDUs	29 (0.9)	29 (0.9)	26 (0.8)	22 (0.9)
Others	7 (0.2)	7 (0.2)	7 (0.2)	7 (0.2)
Plasma HIV RNA, mean (SD), log ₁₀ copies/ml	1.4 (0.5)	1.4 (0.5)	1.4 (0.4)	1.4 (0.4)
People newly diagnosed with HIV infection, n (%)	85 (2.7)	86 (2.7)	55 (1.7)	53 (1.7)
CD4 count at diagnosis, median (IQR), cells/μL	278 (156-413)	259 (89-413)	222 (72-367)	257 (71-360)
CD4 <200 cells/µL, n (%)	30 (35.3)	31 (36.0)	25 (45.5)	19 (35.8)
Plasma HIV RNA, median (IQR), log ₁₀ copies/ml	4.9 (4.6-5.4)	5.0 (4.4-5.4)	5.1 (4.6-5.8)	5.2 (4.3-5.9)
Plasma HIV RNA >5 log₁₀ copies/ml, n (%)	40 (47.1)	42 (48.8)	31 (56.4)	27 (52.9)
Interval between diagnosis and ART initiation, median	5 (2-7)	5 (3-7)	5 (2-7)	0 (0-1)

(IQR), days				
Total number of RPR tests performed	7816	7895	7545	7207
No. of annual RPR tests for each PLWH, median (IQR)	2 (2-3)	2 (2-3)	2 (2-3)	2 (2-3)
PLWH without any RPR test, n (%)	<u>63 (2.0)</u>	<u>60 (1.9)</u>	<u>75 (2.4)</u>	<u>112 (3.5)</u>
PLWH with annual RPR tests <2, n (%)	<u>316 (10.1)</u>	<u>278 (8.8)</u>	<u>252 (7.9)</u>	<u>384 (12.0)</u>
PLWH with annual RPR tests ≥2, n (%)	<u>2737 (86.4)</u>	<u>2839 (89.4)</u>	<u>2851 (89.7)</u>	<u>2692 (84.4)</u>
Total number of anti-HCV antibodies or HCV RNA tests performed	3216	4276	4783	4823
No. annual anti-HCV antibody or HCV RNA tests for each PLWH, median (IQR)	1 (0-1)	1 (1-2)	1 (1-2)	1 (1-2)
PLWH without any anti-HCV antibody or HCV RNA test, n (%)	1039 (33.3)	312 (9.8)	360 (11.3)	249 (7.8)
Total no. plasma HIV RNA tests performed	7927	7839	7509	7205
No. annual viral load test for each PLWH, median (IQR)	2 (2-3)	2 (2-3)	2 (2-3)	2 (2-3)
PLWH without any viral load	<u>36 (1.2)</u>	<u>38 (1.2)</u>	<u>57 (1.8)</u>	<u>94 (2.9)</u>

<u>test, n (%)</u>				
<u>PLWH with annual viral load</u> tests <2, n (%)	<u>262 (8.4)</u>	<u>247 (7.8)</u>	<u>223 (7.0)</u>	<u>342 (10.7)</u>
PLWH with annual viral load test ≥2	<u>2818 (90.0)</u>	<u>2892 (91.0)</u>	<u>2898 (91.2)</u>	<u>2752 (86.3)</u>
Plasma HIV RNA ≤200 copies/ml in on-treatment population*	97.0% (2988/3080)	97.3% (3037/3122)	98.1 % (3013/3070)	97.7% (3023/3093)
PVL<200 copies/ml in modified intention-to-treat population**	<u>95.9%</u> (2988/3116)	<u>95.6%</u> (3037/3177)	<u>94.8%</u> (3013/3178)	<u>94.8%</u> (3023/3188)
Plasma HIV RNA ≤50 copies/ml in on-treatment analysis*	94.9% (2925/3080)	94.9% (2962/3122)	95.3% (2927/3070)	93.9% (2905/3093)
PVL<50 copies/ml in modified intention-to-treat population**	<u>93.8%</u> (2925/3116)	<u>93.2%</u> (2962/3177)	<u>92.1%</u> (2927/3178)	<u>91.1%</u> (2905/3188)

*On-treatment analysis by including only those who were receiving ART and had undergone PVL testing in each study year

**Modified intention-to-treat analysis by including all PLWH receiving ART in each study year. In this analysis, those PLWH who had not undergone PVL testing were considered to have virologic non-suppression in the respective estimation of viral suppression defined as PVL <50 copies/ml or <200 copies/ml.

Abbreviations: ART, antiretroviral therapy; HCV, hepatitis C virus; IDU, injection drug users; IQR, interquartile range; MSM, men who have sex with men; PLWH, people living with HIV; RPR, rapid plasma reagin; SD, standard deviation

	2019	2020	2021	All
Ν	3177	3178	3188	3420
Transfer of care to other hospitals, n (%)	55 (1.7)	47 (1.5)	49 (1.5)	151 (4.4)
Staying abroad, n (%)	10 (0.31)	10 (0.31)	12 (0.31)	32 (0.94)
Loss to follow up, n (%)	32 (1.0)	39 (1.2)	43 (1.3)	114 (3.3)
Death, n (%)	15 (0.5)	12 (0.4)	15 (0.5)	42 (1.2)
Incarceration, n (%)	7 (0.2)	9 (0.3)	5 (0.2)	21 (0.6)
Discontinuation of care, n (%)	<u>119 (3.7)</u>	<u>117 (3.7)</u>	<u>124 (3.8)</u>	<u>360 (10.5)</u>

Table 2. Disposition of people living with HIV seeking care at the National TaiwanUniversity Hospital in 2019-2021

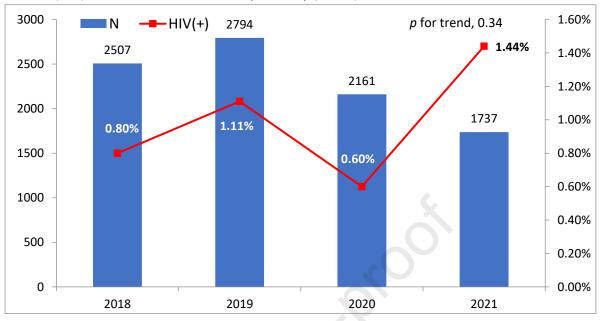
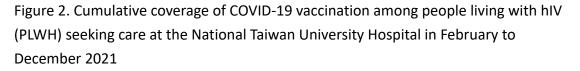
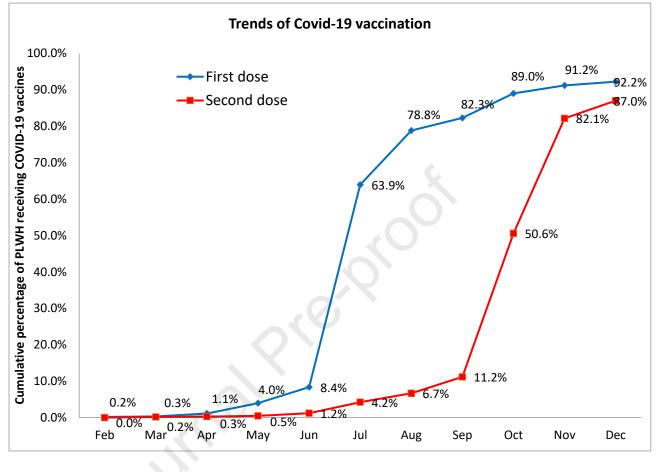




Figure 1. The numbers of for HIV tests performed at voluntary counseling and testing service (bar) and the rates of HIV seropositivity (curve) in 2018-2021

ournalpre

