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Deep learning from HE slides 
predicts the clinical benefit 
from adjuvant chemotherapy 
in hormone receptor‑positive 
breast cancer patients
Soo Youn Cho1,5, Jeong Hoon Lee2,5, Jai Min Ryu3, Jeong Eon Lee3, Eun Yoon Cho1*, 
Chang Ho Ahn2, Kyunghyun Paeng2, Inwan Yoo2, Chan‑Young Ock2 & Sang Yong Song1,4*

We hypothesized that a deep‑learning algorithm using HE images might be capable of predicting the 
benefits of adjuvant chemotherapy in cancer patients. HE slides were retrospectively collected from 
1343 de‑identified breast cancer patients at the Samsung Medical Center and used to develop the 
Lunit SCOPE algorithm. Lunit SCOPE was trained to predict the recurrence using the 21‑gene assay 
(Oncotype DX) and histological parameters. The risk prediction model predicted the Oncotype DX 
score > 25 and the recurrence survival of the prognosis validation cohort and TCGA cohorts. The most 
important predictive variable was the mitotic cells in the cancer epithelium. Of the 363 patients who 
did not receive adjuvant therapy, 104 predicted high risk had a significantly lower survival rate. The 
top‑300 genes highly correlated with the predicted risk were enriched for cell cycle, nuclear division, 
and cell division. From the Oncotype DX genes, the predicted risk was positively correlated with 
proliferation‑associated genes and negatively correlated with prognostic genes from the estrogen 
category. An integrative analysis using Lunit SCOPE predicted the risk of cancer recurrence and the 
early‑stage hormone receptor‑positive breast cancer patients who would benefit from adjuvant 
chemotherapy.

Breast cancer is the most common cancer in women worldwide, and hormone-receptor (HR)-positive, lymph 
node-negative diseases account for nearly half of all breast cancer  cases1,2. As excellent prognosis in many of 
these patients have been known, many efforts to identify those patients with high risk of recurrence, who would 
benefit from adjuvant chemotherapy (ACTx), were made using gene expression  profiling3–6. Currently, several 
multigene assays, such as the 21-gene assay (Oncotype DX), PAM50, and Mammaprint, are used to stratify 
patients and guide ACTx according to the recurrence risk in HR-positive, and lymph node- negative breast 
cancer after extensive clinical  validation7,8.

Despite the proven clinical utility of RS for the 21-gene assay, its effectiveness in patients with HR-positive, 
lymph node-negative, early stage breast cancer remains controversial, along with its financial burden in countries 
outside of the  US9,10. Moreover, the instability of RNA extracted from formalin-fixed paraffin-embedded (FFPE) 
tissue in real-world practice might compromise its accuracy and interfere with the appropriate translation of the 
RS  results11. Therefore, the development of a simpler and more efficient method for assessing recurrence risk 
using permanent tissue is necessary. As the RS from the 21-gene assay is mainly characterized by the proliferation 
genes group score (MKI67, STK15, BIRC5, CCNB1, and MYBL2) and the mitotic count is associated with the 
 RS7, a comprehensive pathological examination of mitosis and other cell–cell interactions features, consistently 
reflects the RS.
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Thus, we developed a deep learning (DL)-based HE image analyzer called Lunit SCOPE that identifies and 
quantifies various histological parameters from HE-stained whole slide images (WSIs). Previously, the Lunit 
SCOPE was shown to accurately detect tumor cells as well as other cells in a microenvironment, and it clearly 
predicted mitosis in each cell in breast  cancer12. Based on The Cancer Genome Atlas (TCGA) pan-cancer analysis, 
Lunit SCOPE was able to predict an abundance of cancer-associated stroma in pancreatic adenocarcinoma and 
a consensus of molecular subtype 4 of colon  cancer13, as well as tumor-infiltrating lymphocytes in immunogenic 
tumors such as renal cell carcinoma, melanoma, and urothelial  cancer14.

As Lunit SCOPE accurately identifies the comprehensive features of HE slides, especially regarding mitotic 
count and the infiltration of immune cells or stromal cells, we hypothesized that histological parameters analyzed 
using Lunit SCOPE would predict the RS from the 21-gene assay, revealing potential prognostic and predictive 
biomarkers of ACTx in early stage hormone receptor-positive breast cancer.

Results
Detection of various cell types in the breast cancer HE slides. The Lunit SCOPE divides the HE 
slide image into histological parameters through three panels, including the tissue, structure, and cell panel. The 
process used to develop the Lunit SCOPE and workflow of this study are illustrated in Fig. 1 (detailed descrip-
tion in the Supplementary Methods). Each panel is an independent multi-class prediction model trained using 
curated ground-truth annotations from expert pathologists. The panels decipher the histological parameters in 
the image divided into small patch images and ultimately return the aggregated count values corresponding to 
the tissue, structure, and cell from the WSIs. The performance of the three panels is described in Supplementary 
Table 1.

Development of a model to predict risk group based on histological parameters. The study 
included a total of 1875 patients with HE-stained WSIs and clinical information, including cancer recurrence 
and survival (Table 1). Of the 445 patients with a 21-gene assay score provided by Oncotype DX, 255 images 
with long-term follow-up clinical information were used as a training dataset to predict the RS using histologic 
parameters derived by Lunit SCOPE. The remaining 190 images were used to estimate the predictive perfor-
mance of the model. The validity of the trained risk prediction in model validation cohort was 0.751 for the area 
under the receiver operating characteristics curve (AUROC) (Fig. 2a). The optimal classification threshold is 
defined as the cut point with the maximum sensitivity + specificity.

The top 10 important histological parameters for predicting the RS > 25 based on the 21-gene assays are listed 
in the variable importance plot (Fig. 2b). The most important variable for predicting the RS of the 21-gene assay 
was the mitotic cell count located in the cancer epithelium, followed by cancer cell. Top 4 important variables 
were in the cancer epithelium (CE) and cancer stroma (CS) domains. The other histologic parameters that were 
not included in the list represented low counted values, which were filtered out in the histologic parameter 
preprocessing step. Examples of cancer epithelium regions and mitotic cells highlighted in high-risk patients 
are shown in Fig. 2c,d.

Clinical validation of prediction model in an independent cohort. The RS values of the 898 SMC 
prognosis validation cohort and 532 TCGA cohort were used to validate the Lunit SCOPE model. The mean 
value for the output of the SMC model development cohort and validation cohort were 0.040 and 0.090, respec-
tively (Supplementary Figure 1). The time to disease recurrence and survival analysis by risk group (thresh-
old = 0.138) was performed in both cohorts. Patients in the high-risk group had significantly poorer survival 
than those in the low-risk group (p < 0.01) (Fig. 3a). In the multivariate Cox proportional hazard model, which 
included clinical variables, the predicted risk was most significant (p < 0.01), with a 3.128 coefficient followed 
by the T-stage, N-stage, age, and adjuvant chemotherapy. The details of the multivariate and univariate Cox 
proportional hazard models for disease-free survival (DFS) in the prognosis validation cohort are shown in 
Supplementary Table 2.

To confirm the utility of our model, DFS of each risk group was compared according to whether ACTx was 
done or not. From the 363 patients who did not receive ACTx, the 104 high-risk patients had a lower survival 
rate than the low-risk patients (p < 0.01) (Fig. 3b). However, for the 535 patients who received ACTx, there 
was no difference between the prognosis of the two risk groups according to the predicted risk (p = 0.120) and 
multivariate analysis with age, T-stage, and N-stage (p = 0.117) (Supplementary Figure 2). Further, we divided 
all patients into four groups according to their ACTx status and a predicted risk. The log-rank p-value for the 
survival analysis of the four groups showed a significantly (p < 0.01) worse prognosis in high-risk patients without 
ACTx. ACTx status in 583 low-risk predicted patients was no significant difference in cancer recurrence and 
survival (p = 0.092). The clinical characteristics of the four groups divided by the predicted risk and adjuvant 
treatment are summarized in Supplementary Table 3.

532 TCGA breast cancer cohort was used as the external validation set. The survival rate of TCGA cohort 
was worse than that of the prognosis validation cohort (p < 0.001), while the median output of the former cohort 
was higher than that of the latter. Based on Lunit SCOPE predictions, among the 532 HR- positive breast cancer, 
high risk group showed significantly worse prognoses in cox proportional hazard model (p = 0.023) with the 
more advanced stages of cancer (Fisher’s exact test, p = 0.024).

Predicted risk increased significantly with increasing stage, in both the prognosis validation cohort and the 
TCGA cohort (p < 0.001). Age was not significantly correlated in both cohorts using Kendal’s method, but age 
was a variable that was not significant in survival in both cohorts. The distribution of predicted risk by cancer 
stage and age was shown in Supplementary Figure 3.
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Distinct genomic and transcriptomic characteristics of the predicted risk in TCGA . We analyzed 
TCGA cohort gene expression data associated with the predicted risk using 532 diagnostic slide images. The top 
300 genes that had the highest correlation coefficient with the predicted risk were used for the functional enrich-
ment analysis of the BP, CC, and MF for the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways. Based on the Bonferroni-corrected significance threshold (p < 0.05), 228 significant Gene 
Ontology and KEGG pathway terms were identified. The top-5 gene ontology functional terms and pathways are 
shown in Fig. 4, with negative log2 based p-values. Mitotic cell cycle, cell cycle process, cell cycle, nuclear divi-

Figure 1.  Schematic representation of Lunit SCOPE development and the workflow scheme of this study.
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sion, and cell division were the enriched biological processes observed following Gene Ontology analysis of the 
top 300 genes. Among the various cellular parameters, spindle and chromosome, which play an important role 
in the cell cycle, were significantly enriched. Furthermore, protein binding was significantly enriched. The cell 
cycle was identified as another significant term in the KEGG analysis. The details of the functional terms, genes, 
and significance of the top 100 functions are available in Supplementary Table 4.

Of the 21 genes assessed during the Oncotype DX test, the correlations of 16 genes with the predicted risk, 
excluding the reference gene, were measured and ordered by correlation coefficient (Table 2). The genes from 
the proliferation category, including AURKA, MYBL2, MKI67, BIRC5, and CCNB1, were positively correlated 
with the predicted risk, while the estrogen receptor genes, including ESR1, PGR, SCUBE2, and BCL2, were 
negatively correlated or not significantly. The other genes, including invasion-associated genes and HER2, had 
significantly lower correlations than those in the proliferation and estrogen receptor categories (Wilcoxon rank 
sum test, p = 0.003, p = 0.006).

Discussion
We developed a DL-based HE image analyzer called Lunit SCOPE to identify and quantify various histological 
parameters from HE-stained WSIs. Using the pathological features derived from Lunit SCOPE, we developed a 
prediction model for the 21-gene assay RS obtained using Oncotype DX; thus, revealing potential for prognos-
tic and predictive biomarkers of ACTx for early stage HR-positive breast cancers patients. high-risk predicted 
patients had significantly worse prognoses than the low risk patients (Fig. 3b). In addition to these prognostic 
capabilities, our findings might have a significant clinical impact on the financial burden of early stage breast 
cancer. Moreover, gene set enrichment analysis showed that the predicted risk was associated with pathways 
involved in the cell cycle and nuclear division, which are associated with a high risk of recurrence.

Recent advances in DL analysis have shed light on novel approaches for understanding cancer biology. Grow-
ing evidence shows that DL analyses of medical images are clinically reliable tools for  diagnosis15–17. However, 
the clinical significance of this technology as a predictive biomarker has not yet been reported. Lunit SCOPE 
was developed using > 1000 annotated breast cancer slides containing various cell types and tissue architectures. 
The preliminary results showed that Lunit SCOPE accurately predicted tumor proliferation in breast cancer, 
and provided a core biological explanation as to how the 21-gene expression assay works in predicting high-risk 

Table 1.  Clinical characteristics of the hormone receptor-positive breast cancer patients for the model 
development cohort, the prognosis validation cohort, and TCGA BRCA cohort. AdjCTx adjuvant 
chemotherapy, AdjHTx hormone therapy.

Variables Model development Prognosis validation TCGA BRCA 

No 255 898 532

Age 45.89 (7.83) 53.34 (1.92) 59.92 (13.28)

Sex

Female 255 898 525

Male 0 0 7

Stage

I 248 636 100

II 3 246 305

III 0 16 127

IV 0 0 0

Subtype

ER+ 255 889 522

PR+ 245 843 455

HER2+ 0 0 0

AdjCTx

Yes 33 535 –

No 222 363 –

AdjHTx

Yes – 868 –

No – 30 –

Menopausal

Pre 204 602 362

Post 51 287 138

Follow-up years 2.28 (1.96–4.10) 9.13 (8.17–9.92) 1.92 (0.46–3.01)

Oncotype DX

> 25 21

≤ 25 234
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Figure 2.  ROC curve for validation set and relative feature importance with example patch. (a) The receiver 
operating characteristic (ROC) curve on 190 model validation set and decision threshold for RS > 25 positivity 
or negativity. (b) Top 10 important pathological parameters to predict the Oncotype DX score. (c) WSI patch 
of high-risk patients and highlighted epithelium. (d) Segmented regions for cancer epithelium and mitotic cells 
detected by Lunit SCOPE (cyan).

Figure 3.  Time to disease recurrence survival analysis using the prognosis validation cohort. (a) The overall 
patient DFS was divided into two groups based on the predicted Oncotype DX threshold score in the prognosis 
validation cohort. (b) DFS of patients without adjuvant chemotherapy treatment.
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patients through the evaluation of proliferation  genes12. Moreover, Lunit SCOPE detected cancer-associated 
fibroblasts that disrupt the stromal barrier and induce the infiltration of tumor-associated  macrophages18,19, 
which is indicative of cancer aggressiveness. Therefore, we hypothesized that Lunit SCOPE could predict high-
risk patients who would benefit from ACTx.

The 21-gene expression assay test included proliferation, estrogen, HER2, invasion, and other cancer-related 
gene categories. Based on the Lunit SCOPE predictions using pathology images, the five genes associated with 
cancer proliferation had a positive correlation with the predicted risk. This suggests that the expression of pro-
liferation, cell cycle, and progression genes ultimately affected the components of the pathology image, which 
were associated with cancer recurrence. Excluding ESR1, which was not significant, three genes in the estrogen 
category were negatively correlated with the predicted risk. The PGR (progesterone receptor), BCL2 Apoptosis 
Regulator and SCUBE2 (Signal Peptide, CUB Domain And EGF Like Domain Containing 2) are known to be a 

Figure 4.  Functional enrichment analysis of the top 300 correlated genes with the predicted risk in TCGA 
BRCA cohort.

Table 2.  Correlation between the predicted risk and the genes from the Oncotype DX gene assay.

Genes Cor p-value Category

AURKA 0.380 1.2.E−19 Proliferation

MYBL2 0.341 1.3.E−15 Proliferation

MKI67 0.335 4.2.E−15 Proliferation

BIRC5 0.332 7.6.E−15 Proliferation

CCNB1 0.312 3.9.E−13 Proliferation

CD68 0.123 4.7.E−03 Other genes

CTSL2 0.123 4.8.E−03 Invasion

MMP11 0.048 2.7.E−01 Invasion

ESR1 0.041 3.4.E−01 Estrogen

GRB7 0.000 9.9.E−01 HER2

GSTM1 − 0.024 5.9.E−01 Other genes

ERBB2 − 0.032 4.7.E−01 HER2

PGR − 0.094 3.1.E−02 Estrogen

BCL2 − 0.098 2.5.E−02 Estrogen

BAG1 − 0.109 1.3.E−02 Other genes

SCUBE2 − 0.129 3.1.E−03 Estrogen
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favorable prognostic marker on breast cancer  recurrence20–22. The directionality of the correlations between the 
expression of recurrence-related genes and the predicted risk indicates that the pathology-based predictions of 
this model were consistent with those obtained using the 21-gene expression assay.

There are several limitations to the current study. First, the RS of the model development cohort did not have 
a range that was sufficient to predict RS. Recent clinical trials have shown that endocrine treatment alone is not 
inferior to endocrine treatment plus chemotherapy in patients with an RS of 11–25, and a more well-validated RS 
cutoff for the decision to add chemotherapy to the standard treatment would be  258. The cutoff of 21 gene-assay 
changes based on age 50, but this model predicted based on pathology image does not reflect age. Therefore, 
this model can underestimate the risk of young patients. Another limitation was represented by the selection 
bias present in the retrospective analysis, as patients who did not receive chemotherapy were associated with 
other clinical factors, such as poor performance status or poor compliance. Moreover, physicians would choose 
patients who are clinically high-risk to receive ACTx. This factor could contribute to worse clinical outcomes in 
patients with ACTx compared to those without ACTx. To overcome this limitation, a well-designed prospective 
clinical trial is required.

In conclusion, the Lunit SCOPE predicted the early stage HR-positive breast cancer patients with a high risk 
of recurrence, as well as those who would benefit from adjuvant chemotherapy.

Methods
Patients and tumor tissues for pathology slides. The protocol for this retrospective study was 
approved by the Ethics Committee of the Institutional Review Board (IRB 2018-03-038-002) of Samsung Medi-
cal Center (SMC). Informed consent was also waived by Ethics Committee of the Institutional Review Board. All 
experiments were performed in accordance with relevant guidelines and regulations and all experimental pro-
tocols were approved by SMC. A total of 1343 pathology slide images, derived from anonymized HE-stained tis-
sue samples from breast cancer patients with histologically confirmed hormone receptor-positive tumors, were 
acquired using a WSI scanner (Pannoramic 1000, 3DHISTECH Ltd., Budapest, Hungary) at a magnification of 
40 ×. Of the total of 445 images from patients with a 21-gene assay RS obtained from Oncotype DX (Genomic 
Health, Redwood City, CA, USA), 255 images with clinical information were used to develop the model predict-
ing the high risk of recurrence (RS > 25), and the 190 images with RS were used as a validation cohort to estimate 
the predictive performance using AUROC. We have used the HE images from the same block that were used 
for Oncotype DX test to minimize possible problems due to intratumoral  heterogeneity23. The remaining 898 
images without RS were used as a prognosis validation cohort to confirm the prognostic and predictive values 
of the predicted risk.

A total of 532 samples with both digital pathology images and image-matched RNA sequencing data from 
primary tumor tissues from the TCGA BRCA cohort were also included in the data analysis. Data from the 
HR-positive and human epidermal growth factor receptor-2 (HER2) negative cases (excluding advanced stage 
patients) were used for the external validation of the prognostic significance  assessment24.

Development of the DL model. For training, anonymized HE-stained tissue slides were reviewed by 
expert pathologists (SYC, EYC, and SYS). The informative regions from these slides were manually selected and 
annotated by expert pathologists. Next, we trained convolutional neural networks (CNNs) to decipher various 
types of histologic  parameters25. The WSIs were tiled into 50% overlapping 4096 × 4096 patches to analyze and 
quantify the histologic parameters. The performance of these models was evaluated by measuring the distance 
between the outputs of two images using the validation set with accuracy, intersection over union (IoU), and 
mean average precision (mAP).

Raw count of histological parameter preprocessing. The histological parameters that were quan-
tified using Lunit SCOPE had a count distribution based on tissue, structure, and cell type. We applied the 
Trimmed Mean of M-values (TMM) count normalization for the histological parameters count to make accurate 
data proportions comparisons between samples without missing the data  composition26.

TCGA RNA sequencing data analyses. RNA-seq data for breast cancers were obtained from TCGA 
Broad Institute GDAC Firehose. The RNA sequencing raw count samples, quantified using RNA-seq expecta-
tion  maximization27. To filter out the genes with low expression levels, the genes with counts per million (cpm) 
values < 1 in at least half of the samples were  excluded28. The raw read counts were normalized using TMM 
and logCPM transformation with limma voom. Finally, the expression levels of 17,649 genes were used for this 
 analysis29.

To determine the biological functions associated with the predicted risk based on the 21-gene assay, we per-
formed a Pearson correlation analysis. The top 300 highly correlated genes were selected as related genes, and 
an enrichment analysis was performed for the BP, CC, and MF terms in the Gene Ontology and KEGG pathway 
database using the RDAVIDWebService tool in  Bioconductor30–32.

Prediction of RS using random forest (RF) regression. Fast unified RFs for survival, regression, and 
classification (RF-SRC), a non-parametric statistical estimation was used to predict the RS from the 21-gene 
assay based on Lunit  SCOPE33. The RF model was trained with the out-of-bag (OOB) training data from 255 
images with binarized 21-gene assay (RS > 25). The method provides the importance index of the input vari-
able for classification with the reprioritization component of RS assessments. The model was developed using 
bootstrap samples with RS, and the OOB samples were used as test samples. A variable’s importance was defined 
as the mean decrease in the tree’s performance for the randomly permuted OOB samples. The loss of function 
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for minimizing the gini was used for the model assessment metrics in the classification problem to assess the 
goodness-of-fit and predictive performance of the RS from the 21-gene assay.
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