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Lyme disease is a multisystem disorder caused by the spirochete
Borrelia burgdorferi. A common late-stage complication of this dis-
ease is oligoarticular arthritis, often involving the knee. In ∼10% of
cases, arthritis persists after appropriate antibiotic treatment, lead-
ing to a proliferative synovitis typical of chronic inflammatory ar-
thritides. Here, we provide evidence that peptidoglycan (PG), a
major component of the B. burgdorferi cell envelope, may contribute
to the development and persistence of Lyme arthritis (LA). We show
that B. burgdorferi has a chemically atypical PG (PGBb) that is not
recycled during cell-wall turnover. Instead, this pathogen sheds PGBb

fragments into its environment during growth. Patients with LA
mount a specific immunoglobulin G response against PGBb, which
is significantly higher in the synovial fluid than in the serum of the
same patient. We also detect PGBb in 94% of synovial fluid samples
(32 of 34) from patients with LA, many of whom had undergone oral
and intravenous antibiotic treatment. These same synovial fluid sam-
ples contain proinflammatory cytokines, similar to those produced by
human peripheral blood mononuclear cells stimulated with PGBb. In
addition, systemic administration of PGBb in BALB/c mice elicits acute
arthritis. Altogether, our study identifies PGBb as a likely contributor
to inflammatory responses in LA. Persistence of this antigen in the
joint may contribute to synovitis after antibiotics eradicate the path-
ogen. Furthermore, our finding that B. burgdorferi sheds immunoge-
nic PGBb fragments during growth suggests a potential role for PGBb

in the immunopathogenesis of other Lyme disease manifestations.
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Lyme disease, caused by the spirochete Borrelia burgdorferi, is
the most prevalent tick-borne human disease in temperate

regions of the Northern hemisphere (1). Clinical manifestations
of this disease are highly variable and can involve multiple organ
systems at different times (2). Infection in humans is often heralded
by a skin lesion (known as erythema migrans) at the site of the
tick bite. If left untreated, the infection can disseminate to other
tissues (e.g., skin, heart, central nervous system, joints) and give
rise to additional skin lesions, carditis, neurological disorders,
or arthritis (3–5). These clinical outcomes are thought to result
from host immune responses to B. burgdorferi or B. burgdorferi-
derived components (6).
Arthritis is the most common late-stage clinical manifestation

of Lyme disease in the United States and is often characterized
by inflammation of one or more large joints (typically the knee),
which are one of the sites the spirochetes frequently infiltrate
(6). In ∼10% of cases, an inflammatory proliferative synovitis
persists despite 2–3 mo of oral and intravenous (IV) antibiotic
therapy and apparent absence of viable organisms in the synovial
fluid and adjacent tissues (5, 7, 8). Development of autoimmunity

is thought to contribute to the persistence of Lyme arthritis (LA),
and recent studies have identified four autoantigens as targets of
autoreactive T and B cell responses in patients with postinfectious
LA (9–13). It has also been proposed that B. burgdorferi-derived
components may persist after initial infection and serve as im-
munogens, contributing to inappropriate inflammation long after
the spirochetes have been killed (14). However, such persistent
immunogens have yet to be identified.
B. burgdorferi does not produce lipopolysaccharides (endotoxin),

and its genome does not appear to encode effectors that might act
as toxins (15, 16). Therefore, most studies to date have focused on
surface-exposed lipoproteins anchored in the outer membrane of
B. burgdorferi. These lipoproteins play important roles in various
aspects of tick colonization, mammalian infection, and host im-
mune evasion and response (17–19). Comparatively, the peptido-
glycan (PG), an essential component of bacterial cell envelopes,
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has received very little attention. The PG, which is made of glycan
strands cross-linked by short peptides, forms a polymeric mesh-
work around the cytoplasmic membrane and provides resistance
against intracellular osmotic pressure (20, 21). PG is also a
microbe-associated molecular pattern that can stimulate innate
immune pathways in animals, resulting in inflammation (22). PG
from Gram-positive bacteria administered intraarticularly or sys-
temically can induce acute arthritis in mice and rats (23–29).
NOD2, an innate immunity protein recognizing a PG moiety, has
been implicated in proinflammatory cytokine production and im-
mune tolerance during B. burgdorferi infection in mice (30, 31).
Furthermore, a 1990 report has shown that B. burgdorferi PG
(PGBb) stimulates interleukin 1 (IL-1) production in macrophages
in vitro and that intradermal injection of PGBb in human volun-
teers results in skin reactions characteristic of inflammation (32).
Despite these observations, a potential role for PGBb in B. burg-
dorferi pathogenesis has not been directly examined.
In diderm bacteria, including B. burgdorferi, the outer mem-

brane shields the PG meshwork from the external environment.
Exposure of PGBb to the host immune system may, however, still
be significant for two reasons. First, spirochete death, which
occurs during early stages of transmission and dissemination
(33), may result in PGBb exposure to host immune cells. Second,
sequence homology analyses predict that B. burgdorferi lacks a
PG recycling pathway (34). Absence of PG recycling suggests
that large amounts of PG fragments (known as muropeptides)
may be released into the host environment during spirochetal
growth. Bacteria degrade ∼40–50% of their PG per generation,
as part of the normal PG remodeling process required for cell
wall expansion (34–36). In Gram-negative/diderm bacteria, the
vast majority of muropeptides produced during normal PG turn-
over are typically recycled. During this process, muropeptides
are transported into the cytoplasm by an inner membrane
permease (AmpG), processed by PG recycling proteins (e.g.,
AmpD and LdcA), and reincorporated into the PG biosynthetic
pathway for reuse (SI Appendix, Fig. S1A) (34). Bacterial mutants
that lack AmpG shed a large amount of muropeptides into their
environment during growth (SI Appendix, Fig. S1B) (36–39). The
apparent absence of a canonical muropeptide recycling pathway in
B. burgdorferi suggests the possibility that muropeptides produced
during normal PG turnover may be released into the extracellular
milieu where the host immune system would be able to detect
them. These considerations motivated us to test the hypothesis
that PGBb is an antigen contributing to proinflammatory responses
during the infectious and postinfectious phases of LA.

Results
B. burgdorferi PG Has an Unusual Chemical Composition. We first
characterized the chemical composition and architecture of pu-
rified PGBb. Liquid chromatography and mass spectrometry (LC-
MS) analysis of cellosyl-digested PG revealed several unusual
features (Fig. 1A and SI Appendix, Table S1). For instance,
whereas the sugar backbone of the PGBb is made up of alter-
nating N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid
(MurNAc), similar to other bacterial PGs, we also observed the
occasional presence of an N-acetylhexosamine (HexNAc) linked
to GlcNAc (Fig. 1A). To our knowledge, such a modification has
not been reported in any other PGs characterized to date.
Another feature of the PGBb was the presence of L-ornithine
(L-Orn) linked to a single glycine (Fig. 1A and SI Appendix, Table
S1), which is congruent with an earlier chemical amino acid anal-
ysis (32). The presence of L-Orn has been reported in other spi-
rochetes (40). It is, otherwise, a rare deviation from the typical PG
dichotomy in the bacterial domain (41), which generally features a
diaminopimelic acid (DAP) or lysine (Lys) at the third amino acid
position of the stem peptide. We confirmed the presence of L-Orn
in PGBb by using two methods: (i) gas chromatography coupled
to mass spectrometry (GC-MS; SI Appendix, Fig. S2A) and (ii)

3H-L-Orn radiolabeling followed by high-performance liquid
chromatography (HPLC) analysis and liquid scintillation count-
ing (SI Appendix, Fig. S2B).

B. burgdorferi Sheds Muropeptides into Its Environment during
Growth. Because the B. burgdorferi genome appears to lack the
requisite proteins (AmpG, AmpD, and LdcA) for muropeptide
recycling (SI Appendix, Fig. S1C), we hypothesized that
muropeptides produced during normal PGBb turnover are recycled
via an unknown pathway or are released into the extracellular
milieu. To determine whether PG recycling occurs, we pulse-
labeled B. burgdorferi cells with L-Orn containing 3H or 14C
isotopes, followed by cell outgrowth in radiolabel-free liquid
culture medium. At various time points during outgrowth, we
collected cells, purified PGBb, and analyzed these PG preparations
by liquid scintillation counting. On average, the PGBb lost 40 ± 2%
of radiolabeled L-Orn per generation (Fig. 1B), consistent with the
lack of a muropeptide recycling pathway (34, 36). Moreover, we
found that PGBb turnover during B. burgdorferi growth resulted in
time-dependent muropeptide accumulation in the culture super-
natant (Fig. 1C and SI Appendix, Fig. S3), similar to what is ob-
served with mutant strains of other bacteria that lack the PG
recycling permease AmpG required for cytoplasmic import of
muropeptides (36–39). We showed this muropeptide release by
exposing human NOD2 (hNOD2) reporter cells to B. burgdorferi
culture supernatant samples. In these cells, binding of PGmaterial
containing MurNAc-L-Ala-D-Glu to the hNOD2 receptor drives
downstream activation of NF-κB (42). Treatment with gefitinib, an
inhibitor of the adaptor protein RIP2 downstream of NOD2 (43),
prevented NF-κB activation (Fig. 1C). In addition, NF-κB sig-
naling was not activated when we exposed human NOD1 reporter
cells to B. burgdorferi culture supernatants (SI Appendix, Fig. S3).
NOD1 specifically recognizes PG containing DAP in the third
amino acid position of the stem peptide (44). Collectively, these
results demonstrate that B. burgdorferi sheds muropeptides into its
local environment, likely because it is unable to recycle them.

Patients with LA Develop an Adaptive Immune Response against B.
burgdorferi PG. Animals, including humans, produce a humoral
response that can discriminate different types of PG chemistry (45,
46). As the chemical composition of PGBb is unusual (Fig. 1A and
SI Appendix, Table S1) (32), we postulated that it may contain
epitopes that induce a specific immunoglobulin G (IgG) response
capable of discriminating between PGBb and other bacterial PGs.
To test this idea, we used purified PG from B. burgdorferi (Orn-
type PG), Escherichia coli (DAP-type PG), Bacillus subtilis (ami-
dated DAP-type PG), and Staphylococcus aureus (Lys-type PG) in
an ELISA to probe for an anti-PG IgG response in 82 blinded
synovial fluid samples from patients with different forms of ar-
thritis. Some samples originated from patients with LA and in-
cluded single and longitudinal samples. These samples were
collected before treatment with oral antibiotics, after oral anti-
biotic treatment, or after oral antibiotic treatment and additional
IV antibiotic therapy (Methods). Control synovial fluid samples
from patients with rheumatoid arthritis, osteoarthritis, ankylos-
ing spondylitis, or gouty arthropathy were randomly scattered
among the coded samples. Another control synovial fluid sample
was from a patient with a torn anterior cruciate ligament (ACL),
which was the only nonblinded patient sample in our study.
We found that most LA synovial fluid samples contained

significant levels of IgG antibodies against B. burgdorferi PG
(anti-PGBb), whereas control samples from patients with other
forms of arthritis or a torn ACL did not (Fig. 2 A, Inset). This
IgG response was largely specific to PGBb, as LA samples dis-
played little to no IgG reactivity to PGs from other bacteria (Fig.
2B). In contrast, control samples did not exhibit a PG-specific
IgG response (Fig. 2C). The levels of anti-PGBb IgG in preoral,
postoral, and postoral/IV antibiotic LA patients did not significantly
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differ based on a Kruskal–Wallis test followed by a Dunn’s post hoc
pairwise test (SI Appendix, Fig. S4A). Several control samples
contained anti-PG IgG levels above background (Fig. 2A), espe-
cially those from patients with rheumatoid arthritis (38%).
However, such anti-PG responses, which have been previously
reported in patients with rheumatoid arthritis (47, 48), were not
specific for a particular type of PG tested (Fig. 2A).
From the original panel of synovial fluid samples, we had

matching serum samples for 34 patients with LA (Methods), which
we used as a subset for further analysis. We found that sera from
LA patients contained significantly more anti-PGBb IgG than
control sera from healthy people (Fig. 2D). Whereas the synovium
represents a local environment, the synovial cavity communicates
freely with systemic circulation, which likely explains why anti-
PGBb IgG levels in paired serum and synovial fluid samples cor-
relate (Fig. 2E). In all LA cases, the synovial fluid had a higher
anti-PGBb IgG level than the corresponding serum sample from
the same patient (Fig. 2E). Our data indicate that patients with LA

produce specific antibodies against PGBb and that these responses
are primarily localized to the joint, the site of inflammation.

B. burgdorferi PG Material Is Detected in Synovial Fluid Samples from
Patients with LA after Antibiotic Treatment. As patients with LA
produce a specific anti-PGBb IgG response, we next sought to
determine whether we could detect antigenic PGBb material in
the synovial fluid of patients with LA. To this end, we generated
a polyclonal anti-PGBb antiserum through immunization of New
Zealand White rabbits with PGBb. The polyclonal antiserum was
specific for PGBb, as it did not react with other common PG
types in a competitive ELISA (SI Appendix, Fig. S5). By using
this same competitive ELISA, we did not detect PGBb in control
synovial fluid samples (Fig. 3A). We also failed to detect PGBb in
the sera of patients with LA (Fig. 3A). However, 92% of the
tested LA synovial fluid samples contained tens to hundreds of
picograms of PG material per milliliter (Fig. 3A). The amount of
PG detected strongly correlated with the anti-PGBb IgG level
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found in the same synovial fluid sample (Fig. 3B), indicating that
the antigenic material detected by our rabbit polyclonal antise-
rum is likely PGBb. Our results show that PGBb is present in
LA synovial fluid samples before and after oral and IV antibiotic
treatment (SI Appendix, Fig. S4B).
PCR analysis showed that serum and synovial fluid samples were

often positive for B. burgdorferi DNA before antibiotic treatment
(SI Appendix, Fig. S4C). In contrast, all but one serum and synovial

fluid sample were negative after oral antibiotic treatment and
all samples were negative after IV antibiotic therapy (SI Ap-
pendix, Fig. S4C). Thus, our results suggest that PGBb material
persists in LA patients long after B. burgdorferi eradication.

B. burgdorferi PG Elicits Proinflammatory Cytokine Responses in
Human Peripheral Blood Mononuclear Cells. LA is characterized
by marked synovial hypertrophy and inflammation. As in other
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forms of inflammatory arthritis, proinflammatory cytokines such
as IL-1, TNFα, IL-6, and IL-8 are found in the synovial fluid of
patients with LA (12, 49, 50). Consistent with these previous
observations, we found that virtually all major proinflammatory
markers were significantly up-regulated in the synovial fluid of
patients with LA relative to their serum (SI Appendix, Fig. S6),

ranging from 4- to 2,000-fold increases in TNFα, IL-1α, IL-1β,
IL-6, IL-8, IL-17F, and INFγ production (Fig. 4A). Inflammation
of this magnitude often coincided with a secondary response
involving production of antiinflammatory cytokines, including
IL-10, the level of which was also significantly increased in the
synovial fluid of LA patients (SI Appendix, Fig. S6).
To determine if PGBb alone can elicit an inflammatory re-

sponse, we stimulated human peripheral blood mononuclear
cells (PBMCs) from healthy control subjects with polymeric
(whole) or mutanolysin-digested PGBb for 18 or 72 h. The syn-
thesis of virtually all analytes highly represented in synovial fluid
samples (Fig. 4A) and previously implicated in LA (12, 50)
was induced by polymeric and/or digested PGBb (Fig. 4B and
SI Appendix, Fig. S7A). Note that, under these stimulatory
conditions, PGBb behaves similarly to other PG types (SI Ap-
pendix, Fig. S7). However, stimulation with PGBb resulted in
only a two- to threefold increase in the level of antiinflam-
matory cytokine IL-10 after 72 h relative to the 10-fold in-
crease seen with other PG types (Fig. 4B vs. SI Appendix, Fig.
S7). These findings suggest that PGBb may have the ability to
cause inflammation without eliciting a compensatory antiin-
flammatory response of the magnitude normally seen with
infectious agents and associated immunogens (51).

Systemic Administration of B. burgdorferi PG Triggers Acute Arthritis
in Mice. Systemic injection of PG isolated from Gram-positive
bacteria is known to induce arthritis in mice and rats (23–26). To
test the arthritogenic potential of the chemically unusual PGBb,
we injected a sonicated preparation of PGBb into the tail veins of
12 BALB/c mice. In parallel, a control group of 12 mice received
the diluent (PBS). All 24 mice were evaluated clinically and
scored daily for evidence of swelling and erythema in their paws
and tibiotarsal joints. Half of the mice from each group were
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Competitive ELISA using rabbit antiserum raised against PGBb to quantify the
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randomly selected and euthanized on day 2 or 4 postinjection.
Both hind limbs from each euthanized animal were immersion-
fixed, decalcified, and stained with hematoxylin-eosin for blinded
histopathological evaluation (52).
We found that PGBb alone was sufficient to induce acute ar-

thritis, as evidenced by ankle swelling by 24–96 h postinjection
(Fig. 5 A–C). In contrast, the control mice injected with PBS
alone, as well as additional unmanipulated mice housed under
similar conditions, showed no visual evidence of swelling (Fig. 5
A–C). Histopathologic analysis of the hind limbs of mice injected
with PGBb confirmed the presence of inflammatory infiltrates in
the peritendinous adventitia (Fig. 5 E, single pound symbols) and
edema in the synovial space (Fig. 5 E, double pound symbols) at
48-h and 96-h time points (Fig. 5 D and E). Such infiltrates were
absent in control mice injected with PBS (Fig. 5 D and E). Our
data indicate that systemic exposure to PGBb is sufficient to
trigger an acute tenosynovitis, consistent with what is observed in
the established mouse model of LA (53).

Discussion
Our study provides supporting evidence of an important role for
PGBb in the pathogenesis of LA. Clinical manifestations of Lyme
disease are largely driven by the host immune response rather
than toxin-mediated damage (6). PG is recognized by several
types of pattern recognition receptors including Toll-like re-
ceptors (TLRs), PG recognition proteins (PGRPs), and cyto-
plasmic NOD proteins (22, 54). Although their downstream
effectors may vary (55), the result is often a strong proinflammatory
response (56). Similar inflammatory responses are apparent in the
synovial fluid of patients with LA based on cytokine profiling (Fig.
4 and SI Appendix, Fig. S6). For instance, TNFα was, on average,

up-regulated 16-fold in synovial fluid samples from patients with
LA and induced in human PBMCs exposed to PGBb in vitro (Fig. 4
and SI Appendix, Fig. S7A). This is noteworthy, as TNFα is a key
effector protein in chronic inflammatory arthritides, and biologic
agents targeting TNFα have been used successfully in cases of
postinfectious LA (5).
Although autoimmunity has been implicated in the pathogen-

esis of LA (9–13, 57), genetic and transcriptomic evidence suggests
that variability in innate immune responses during and after B.
burgdorferi infection is also an important disease determinant.
Notably, transcripts encoding PG-cleaving protein lysozyme and
PG-sensing protein NOD2 are elevated in synovial tissues of
postinfectious LA patients months to several years after antibiotic
therapy (58, 59). Therefore, immune responses to PGBb and
autoantigens may contribute to pathology, even after the infection
itself has been cleared. The role of PGBb and autoantigens may
be independent or PGBb may act as an adjuvant, exacerbating
immunoreactivity to autoantigens in the synovium. Differences in
PGBb-specific immune responses among patients with LA may
contribute to variability in disease severity.
How can PGBb material remain in the synovial environment

for an extended period (weeks to months) after appropriate
antibiotic treatment (Fig. 3)? There are several possibilities.
First, PG material may be left behind after bacterial killing.

B. burgdorferi cells that disseminate to the joint may shed
muropeptides as they undergo replication. These muropeptides
may then diffuse into the synovial cavity over time. Alternatively
(or in addition), PG exposure may occur in the absence of spi-
rochete replication; PG material may simply be released fol-
lowing bacterial lysis (through natural death or killing by the
immune system or antibiotic treatment). Both possibilities would
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be consistent with the hypothesis that retained bacterial antigens
are a source of inflammatory stimuli in LA (14). In rats, bacterial
cell-wall fragments are detected weeks to months after their
systemic administration (60, 61), supporting the notion that PG
material can persist for an extended period in animals.
Second, tissue-resident synovial macrophages may act as an

antigen sink (62). Although our synovial samples were free of
cells (Methods), they contained extracellular vesicles, likely de-
rived from immune and stromal cells (63). Vesicles from antigen-
presenting cells containing PGBb material may be released into the
surrounding environment. Interestingly, antigen-presenting cells
containing PG from gut bacteria have been proposed to contribute
to inflammation in patients with rheumatoid arthritis (64, 65).
Third, PG-containing immune complexes may accumulate in

the synovial fluid. We show that patients with LA develop a
specific anti-PGBb antibody response that is higher in the syno-
vial fluid than in the serum (Fig. 2). This, together with the
presence of PGBb in the synovial fluid (Fig. 3), may result in
accumulation of PGBb immune complexes in the inflamed joints.
Previous work on Bacillus anthracis PG has established that PG
can form immune complexes with anti-PG antibodies, which can
activate human platelets and promote vascular damage (66).
Inflammation and damage in and around the microvasculature is
a hallmark of the synovial lesions seen in postinfectious LA (67,
68), and immune complexes are known to localize to joints in
patients with LA (69). Future studies will be required to dis-
criminate between these three nonexclusive possibilities.
The finding that B. burgdorferi releases PGBb fragments during

growth (Fig. 1C) suggests that PGBb may play a broad role in the
multifaceted pathogenesis of Lyme disease beyond LA. Released
muropeptides have previously been implicated in diseases caused
by other bacteria. For example, Neisseria gonorrhoeae recycles
most of its PG breakdown products (39, 70), as Gram-negative
bacteria generally do. However, the small amount of PG mono-
mers that N. gonorrhoeae releases (39, 71) is thought to induce
inflammatory cytokine production and cause ciliated cell death in
human fallopian tubes (72). In contrast to N. gonorrhoeae, B.
burgdorferi lacks a PG recycling pathway (Fig. 1B and SI Appendix,
Fig. S1C), suggesting that significant quantities of muropeptides
may be released into the environment during B. burgdorferi pro-
liferation, presumably through the outer-membrane porins. We
confirmed that hNOD2-binding muropeptides are shed into the
culture supernatant during B. burgdorferi growth (Fig. 1C). Given
PGBb immunogenicity (Figs. 2, 4, and 5 and SI Appendix, Fig. S7)
(32), muropeptide shedding during active B. burgdorferi infection
may, together with surface-exposed lipoproteins (73–75) and gly-
colipids (76, 77), contribute to early inflammatory manifestations,
such as skin lesions, carditis, and meningitis.
After antibiotic treatment of the infection, therapy for post-

infectious LA is currently directed at dampening immune responses
with disease-modifying antirheumatic drugs, primarily hydroxy-
chloroquine or methotrexate (5). The persistence of immunogenic
PGBb material in inflamed joints provides a stronger rationale for
targeting innate immune responses with medications, such as TNF
or NF-κB inhibitors, for the treatment of such patients. A potential
role for bacterial PG in triggering inflammation in rheumatoid ar-
thritis patients has been considered for several decades (61, 62, 64,
65). Our work supports further consideration of this idea.

Methods
Bacterial Strains, Cell Lines, and Growth Conditions. A clone of the B. burg-
dorferi type strain B31 (MI) (16) was used in all experiments involving this
bacterium. Other bacteria used in this study include S. aureus SA113, B. subtilis
168, and E. coli K-12 MG1655. Unless otherwise noted, B. burgdorferi was
cultured at 34 °C in complete BSK II medium containing 6% rabbit serum (78).
All other bacteria were grown at 37 °C in LB medium. HEK 293-derived human
NOD1 and NOD2 reporter cell lines (InvivoGen) were cultured at 37 °C under
5% CO2 in RPMI medium containing 10% (vol/vol) FBS and blasticidin S (30 μg/mL),

Zeocin (100 μg/mL), and Normocin (100 μg/mL). Fresh PBMCs from healthy
human subjects were obtained from mixed donor samples (Zen-Bio) and used
in assays in the recommended PBMC culture medium (Zen-Bio).

PG Purification. PGBb was purified as described previously (79), which is an
adaptation of the Glauner protocol (80). For immunological and mouse
studies, a few modifications were made to increase yield and ensure purity.
PGBb was purified from 2–3 L of B. burgdorferi culture. Before protease
treatment with 300 μg/mL α-chymotrypsin (Sigma-Aldrich), insoluble PGBb was
treated with 50 U of DNase (Zymogen) and 10 U of RNase A (Promega) for 2 h,
followed by a 2-h treatment with 10 μg/mL amylase (Sigma-Aldrich). After
protease digestion, PGBb sacculi were harvested and washed three times with
10 mL endotoxin-free water, once with 10 mL 0.5 M EDTA, and three more
times with water. A similar procedure was performed to purify PG from E. coli.
For PG preparations from Gram-positive bacteria, the cell walls were broken
using a kit (Precellys Microorganism Lysing Kit) that includes 7-mL tubes con-
taining glass beads before sodium dodecyl sulfate (SDS) solubilization and
enzymatic treatment. The Precellys Evolution homogenizer was set to 10 cycles
of 30 s at 8,500 rpm with a 60-s rest period between each cycle. Afterward,
samples were treated with 48% hydrofluoric acid for 48 h at 4 °C to hydrolyze
PG-bound teichoic acids as previously described (81). Post hydrolysis, PG sacculi
were harvested and washed as described here earlier.

The concentration of all purified PG preparations was determined by dry
weight and confirmed by SLP assay as previously described (82).

PG Structural and Chemical Analysis. Purified PGBb (∼100 μg) was digested
with cellosyl (25 μg/mL) for 14–16 h at 37 °C, and the resulting muropeptides
were analyzed by LC-MS as reported previously (83).

For the chemical analysis, purified PGBb (0.7 mg) was hydrolyzed (200 μL 4 N
HCl, 100 °C, 16 h) in a sealed ampoule. The hydrolysate was evaporated
to dryness in a gentle stream of air at 60 °C. The residue was dissolved in 200 μL
water and dried down again to remove residual HCl. The amino acids of the
hydrolysate were transformed into N-pentafluoropropionyl amino acid iso-
propylesters according to protocol 11 described in a previous review (84). These
amino acid derivatives were analyzed by GC (GC-14A; Shimadzu) with a
CP-ChiraSil-L-Val column (Agilent Technologies, CP495) following protocol 11
and by GC-MS using a 320 Single Quad instrument (Varian) equipped with a VF-
5ms column (CP8944; Agilent Technologies) using protocol 10 (84).

To verify the incorporation of L-Orn into the PGBb (SI Appendix, Fig. S2B), B.
burgdorferi was cultured in 500 mL complete BSK II medium to a density of
106 cells per milliliter. Cells were harvested by centrifugation (3,500 ×g for 20 min)
and resuspended in 50mL of prewarmed, modifiedmedium (25% BSK II in PBS
plus 1.2% rabbit serum) (85) containing 7.5 μCi/mL of 3H L-Orn (Perkin-Elmer).
After 48 h of incubation, unincorporated radiolabeled L-Orn was removed by
centrifugation (3,500 × g for 20 min) and three washes with 40 mL of PBS.
After each wash, cells were harvested by centrifugation at 3,500 × g for
10 min. After the washes, the cells were gently resuspended in 5 mL of PBS and
PG was purified as described earlier.

PG Turnover Studies. To track the turnover of PGBb over time (Fig. 1B), we
used two different protocols. In the first one, 500 mL culture of B. burg-
dorferi at a cell density of 106 cells per milliliter was pulse-labeled with
7.5 μCi/mL of 14C L-Orn as described earlier. After three washes and centrifu-
gation, cells were gently resuspended to a final concentration of 5 × 104 cells
per milliliter in 250 mL prewarmed BSK II complete medium [which includes
rabbit serum that contains Orn (86)]. Retention of radiolabel into the PGBb

was tracked by removing a 25-mL culture volume at various time points,
harvesting the cells by centrifugation (3,500 × g for 20 min), washing cells
once with 25 mL of PBS, and harvesting cells at 3,500 × g for 10 min. Pelleted
cells were resuspended, and cells were solubilized in a boiling solution of 4%
SDS for 30 min. SDS-insoluble PGBb was pelleted at 145,000 × g for ∼30 min
and analyzed by liquid scintillation. In the second protocol, a 250-mL culture
of B. burgdorferi at 106 cells per milliliter was centrifuged (4,000 × g for
20 min) and cells were resuspended in 50 mL of prewarmed, modified me-
dium (as described earlier) containing 7.5 μCi/mL of 3H L-Orn. After 48 h of
incubation, unincorporated radiolabeled L-Orn was removed by centrifuga-
tion (4,000 × g for 20 min) and three washes with 40 mL of PBS. After each
wash, cells were harvested by centrifugation at 3,000 × g for 10 min. After
washes, cells were resuspended in 125 mL of BSK II complete medium at a
density of 5 × 104 cells per milliliter. The remaining steps were the same as
the first protocol except that 10 mL of culture was removed at each time
point and cells were harvested at 4,000 × g for 20 min. Both protocols gave
highly similar results (Fig. 1B).
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NOD Activation Assay. Time-course experiments to monitor the release of
muropeptides were performed to ensure that potential stress during the
radiolabeling procedure (as detailed earlier) or washes did not significantly
alter our findings. In these experiments, 10 mL of culture was removed from a
250-mL batch culture, cells were enumerated, and 8mLof culturewas filtered by
using a 0.1-μm filter under a vacuum. From the filtered flow-through, 5 mL was
processed through a YM-3 Amicon filter to selectively exclude biomolecules
greater than 3,000 Da. Column flow-through (4 mL) was lyophilized and
resuspended in 1 mL of endotoxin-free Dulbecco’s PBS (DPBS), resulting in a 4×
solution of the culture supernatant. Sterile BSK II complete medium (without
phenol red) was processed similarly to serve as control medium to which each
signal was background-subtracted.

HEK-Blue hNOD1 and hNOD2 cells were cultured to 60–70% confluence,
washed with PBS, enumerated, and resuspended in QUANTI-Blue detection
medium (InvivoGen) at a final concentration of 2.5 × 105 cells per milliliter.
HEK-Blue hNOD1 or hNOD2 cells (180 μL per well) were incubated in 96-well
plate in triplicate with 20 μL of a three-time dilution (in DPBS) of the 4×
culture-supernatant solution. Cells were incubated at 37 °C in 5% CO2 for
18 h. Colorimetric quantification of NF-κB activity through NOD1 or
NOD2 activation was measured at 650 nm. Gefitinib (Sigma), an inhibitor
that interferes with adaptor protein RIP2 signaling (43), was used at a final
concentration of 20 μM.

Human Subject Samples. All work with human samples was approved by the
human investigations committee at Massachusetts General Hospital granted to
A. Steere. Patients with Lyme disease satisfied the criteria put forth by the
Centers for Disease Control and Prevention (87). Patients with LA were treated
with 1–2 mo of oral antibiotic therapy (usually doxycycline), followed by an
additional 1 mo of IV antibiotic therapy (ceftriaxone) if needed, as described
by the Infectious Diseases Society of America (88). Control synovial fluid sam-
ples were acquired from patients with rheumatoid arthritis, psoriatic arthritis,
and osteoarthritis who met the criteria associated with each disease (89–91).

Serum and synovial fluid samples were collected and then centrifuged at
300 × g for 10 min, followed by another centrifugation at 3,000 × g for
another 10 min to remove cells and cell debris as previously described (92).
All samples were stored at −80 °C and did not undergo more than two
freeze–thaw cycles.

PCR Analysis. Serum and synovial fluid samples were screened by PCR for
amplification of the B. burgdorferi flaB gene by using the fla-3 (5′-
GGGTCTCAAGCGTCTTGG-3′) and fla-4 (5′-GAACCGGTGCAGCCTGAG-3′) oli-
gonucleotides and Phusion Polymerase (New England Biolabs). The cycling
conditions were as follows: 1 cycle at 98 °C for 30 s and 45 cycles of 98 °C for
12 s, 58 °C for 20 s, and 70 °C for 15 s, followed by a final extension at 70 °C
for 5 min. All reactions were subjected to DNA agarose electrophoresis and
visualized by ethidium bromide staining. Visible products were apparent for
serum samples 9, 13, 17, 20, and 33 and for synovial fluid samples 9, 13, 17,
and 20 (SI Appendix, Fig. S4C).

ELISA. To quantify the level of anti-PG IgG in patient samples, purified PG
sacculi (100 μg/mL) in PBS with 0.01% SDS were immobilized on poly-lysine–
coated microtiter plates overnight at 4 °C. Unbound material was removed
through three washes with PBS-T (PBS plus 0.05% Tween 20). The wells were
then “blocked” for 2 h at 37 °C using SEA-BLOCK (Thermo Fisher Scientific).
Serum and synovial fluid samples were diluted 1:25 in PBS and incubated
with substrates (or diluent control) for 2 h at room temperature with gentle
rocking. Unbound material was washed with PBS-T. After washing, plates
were incubated with anti-human IgG-HRP (1:25,000; Sigma-Aldrich), and
bound IgG was detected by using 1-step Turbo TMB substrate (Thermo Fisher
Scientific). Reported IgG response was determined by measuring absorbance
at 450 nm, following background subtraction for each patient sample signal
attained in the absence of PG ligand.

Detection of PGBb in patient samples was performed by using a com-
petitive ELISA and rabbit anti-PGBb polyclonal antibodies produced as a fee-
for-service by Cocalico Biologicals (Thermo Fisher Scientific). Briefly, purified
PGBb (0.5 mg/mL) was used to immunize two New Zealand White rabbits
according to protocols approved by the animal care and use committee of
Cocalico Biologicals. After one dose, two boosters of 0.5 mg/mL were ad-
ministered 1 wk apart. Serum from blood samples collected on days 53 and

54 was assayed for PGBb specificity by competitive ELISA. Competitive ELISA
involved coating plates with 100 μg/mL of PGBb as described earlier. Rabbit
serum containing anti-PGBb IgG was diluted 1:350 in PBS and preincubated for
2 h with titrating amounts (10 ng/mL to 10 pg/mL) of different bacterial PG
preparations with gentle mixing at room temperature before 1 h incubation
with PGBb-coated plates. All patient samples were diluted 1:5 in PBS and
otherwise treated exactly as the PGBb standards of known concentration.
Rabbit anti-IgG-HRP (Bio-Rad) diluted 1:3,000 was used to detect anti-PGBb.
Standard curves were created by using 1/absorbance values (at 450 nm) pro-
duced with known concentrations of each PG preparation. Data were fitted by
a third-order polynomial equation. Standard curve experiments were per-
formed on the same day as the serum and synovial fluid analyses and used to
back-calculate the amount of PGBb in each patient sample.

PBMC Stimulation and Cytokine Analysis. Muropeptides were generated by
digesting 1 mL of purified PG (120 μg/mL) with Streptomyces globisporus
mutanolysin (1,000 U/mL; Sigma-Aldrich) for 4 h at 37 °C in buffer (50 mM
MES, 1 mM MgCl2, pH 6), followed by another incubation of mutanolysin
(∼500 U) overnight at 37 °C. Undigested material was harvested by centri-
fugation at 150,000 × g for 30 min at 12 °C. The soluble muropeptides were
lyophilized, and their amount was determined by weight.

Upon arrival, fresh PBMCs (Zen-Bio) were seeded in 12-well plates at 106

cells per milliliter and allowed to rest at 37 °C under 5% CO2 atmosphere for
24 h before further manipulation. After stimulation with 100 μg/mL of
digested or polymeric PG, cells were harvested by centrifugation at 600 × g
for 8 min and supernatants were collected and stored at −80 °C for further
analysis. All cytokines were assayed using Luminex bead arrays (Agilent)
following the manufacturer’s recommendations. All supernatants were di-
luted 1:5 in PBS and analyzed in duplicate.

Serum and synovial fluid samples from patients with LA, diluted 1:3 in PBS,
were similarly analyzed in duplicate and run on the same day as the PBMC
supernatants. The concentration of cytokines (in picograms per milliliter)
from patient samples were log2-transformed to create the heat map (SI
Appendix, Fig. S6).

PG Injection in Mice and Histopathology. Purified PGBb was lyophilized,
weighed, and resuspended to a final concentration of 2 μg/μL in DPBS. To
achieve even dispersal PGBb in DPBS, the suspension was subjected to four
rounds of sonication (15 s each) on ice using a Branson Digital Sonifier set to 45%
amplitude. Fragmented PGBb (100 μL, i.e., 200 μg PGBb) was administered IV to
each of 12 female BALB/c mice (5–6 wk old) by tail vein injection. In parallel, 12
BALB/c mice (age- and sex-matched) were injected IV with 100 μL DPBS. All mice
were then examined daily for foot and ankle swelling and assigned a clinical
arthritis score as previously described (29). Briefly, arthritis scores were computed
by summing the individual scores for both hind paws, each graded as follows: 0,
normal paw, no redness or swelling; 1, some swelling of ankle; 2, moderate
swelling and redness of ankle; 3, moderate swelling and redness of ankle and
some swelling of foot pad and/or digits; and 4, pronounced swelling and redness
of the whole paw. Each group of mice was also evaluated for the prevalence of
arthritis (defined as the percentage of mice with an arthritis score of at least 1).
Half of the mice in each group (n = 6) were euthanized by CO2 asphyxiation on
days 2 and 4 postinjection, and both hind limbs from each animal were imme-
diately fixed in 10% formalin and subsequently decalcified, embedded in par-
affin, sectioned, and stained with hematoxylin-eosin by routine methods. For
each mouse, one stained section per hind limb midlevel (to include the stifle
and tibiotarsal joints) was analyzed. Sections were analyzed, and stifle and
tibiotarsal inflammation was scored blindly by a veterinarian (C.J.B.) formally
trained in pathology with years of experience in scoring mice for inflammation
using previously published criteria (93). All procedures involving mice were
approved by the Yale University Institutional Animal Care and Use Committee.
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