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ABSTRACT The nature and extent of mutational pleiotropy remain largely unknown, despite the central role that pleiotropy plays in
many areas of biology, including human disease, agricultural production, and evolution. Here, we investigate the variation in 11,604
gene expression traits among 41 mutation accumulation (MA) lines of Drosophila serrata. We first confirmed that these expression
phenotypes were heritable, detecting genetic variation in 96% of them in an outbred, natural population of D. serrata. Among the MA
lines, 3385 (29%) of expression traits were variable, with a mean mutational heritability of 0.0005. In most traits, variation was
generated by mutations of relatively small phenotypic effect; putative mutations with effects of greater than one phenotypic standard
deviation were observed for only 8% of traits. With most (71%) traits unaffected by any mutation, our data provide no support for
universal pleiotropy. We further characterized mutational pleiotropy in the 3385 variable traits, using sets of 5, randomly assigned,
traits. Covariance among traits chosen at random with respect to their biological function is expected only if pleiotropy is extensive.
Taking an analytical approach in which the variance unique to each trait in the random 5-trait sets was partitioned from variance
shared among traits, we detected significant (at 5% false discovery rate) mutational covariance in 21% of sets. This frequency of
statistically supported covariance implied that at least some mutations must pleiotropically affect a substantial number of traits (.70;
0.6% of all measured traits).

PLEIOTROPIC effects of mutations are a central compo-
nent of theories that attempt to explain standing genetic

variation in natural populations (Johnson and Barton 2005;
Zhang and Hill 2005) and have widespread implications for
human disease (Eyre-Walker 2010; Lawson et al. 2011;
Sivakumaran et al. 2011) and agriculture (Hill 2010).
Although the significance of pleiotropy has long been appre-
ciated by biologists (Stearns 2010), only recently have data
become available to characterize the general nature of plei-
otropy (Wagner and Zhang 2011; Paaby and Rockman
2013). Evidence, predominantly from screens of gene
knockouts, suggests most mutations affect few traits (Wang

et al. 2010; Wagner and Zhang 2011). These null mutations
are unlikely to be representative of naturally occurring mu-
tations of smaller effect (Stern 2000). There are currently
few data on pleiotropic covariance generated by naturally
occurring mutations of small effect, such as those that are
likely to underlie a substantial proportion of the genetic
variation in quantitative traits (Johnson and Barton 2005;
Yang et al. 2010).

If the molecular mechanism of pleiotropy is typically the
involvement of a gene in multiple biological processes (type
II pleiotropy), rather than multiple molecular functions of
a gene (type I pleiotropy) (He and Zhang 2006; Wagner and
Zhang 2011), then null mutations will represent an upper
limit on the pleiotropy of naturally occurring, small effect
mutations (Wagner and Zhang 2011). However, Hill and
Zhang (2012a,b) have questioned the general conclusion
that most alleles affect few traits, suggesting it might be
an artifact of the statistical limitations of multiple-testing
approaches. Furthermore, the distribution of pleiotropic
effects of gain-of-function mutations has not been explicitly
characterized. It therefore remains to be determined whether
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new, naturally occurring, allelic variants typically generate
phenotypic covariance [i.e., exhibit developmental pleiot-
ropy (Paaby and Rockman 2013)] among large or small sets
of traits.

Gene expression traits lie at the interface between
genotype and phenotype, and variation in gene expression
levels is thought to contribute to intra- and interspecific
diversity in other phenotypes (Britten and Davidson 1971;
King and Wilson 1975; Carroll 2008; Wittkopp and Kalay
2012). These traits are ideal candidates for characterizing
general patterns of pleiotropic effects because, as well as
their evolutionary significance, they are associated with meth-
ods allowing simultaneous measurement of a large number of
traits. The regulation of gene expression traits can be poly-
genic, with contributions from both cis- and trans-acting
factors (West et al. 2007; Skelly et al. 2009; Grundberg et al.
2012). Trans-regulatory variants have been detected less
often than cis variants, an observation suggested to reflect
the stronger selection against trans-acting mutations (Wray
2007; Skelly et al. 2009). However, there is a known statis-
tical bias against the detection of trans-regulatory expres-
sion QTL (eQTL) (Gilad et al. 2008; Nica and Dermitzakis
2013), which might be exacerbated by smaller phenotypic
effects of trans variants (Grundberg et al. 2012). Few studies
have addressed the natural mutational input to expression
phenotypes (Halligan and Keightley 2009), with these sug-
gesting either that few trans-acting mutations generate
much of the variation (Denver et al. 2005) or, alternatively,
that most mutations affect few expression traits, with very
few mutations affecting up to a couple of hundred traits
(Rifkin et al. 2005).

Here, we used a microarray platform in Drosophila ser-
rata to measure 11,604 gene expression phenotypes. We
assayed expression traits across 41 inbred lines, established
from an inbred common ancestor and diverged through the
accumulation of new mutations for 27 generations. We first
characterized the distribution of mutational heritability and
determined the underlying distribution of allelic effects gen-
erating that heritability. Then, using a mixed-modeling ap-
proach, we determined the mutational covariance among
multiple expression traits, in randomly allocated sets, to
estimate the frequency of mutational pleiotropy.

Materials and Methods

Populations and data collection

Mutation accumulation lines: As described in McGuigan
et al. (2011), we established 100 mutation accumulation
(MA) lines from a laboratory-adapted population of D. ser-
rata, which had previously been subjected to 13 generations
of full-sib inbreeding. The MA lines were subsequently main-
tained through a further 27 generations of brother–sister
mating. Based on mutation rate data from D. melanogaster,
scaled to the slightly larger D. serrata genome size [0.215 pg
(Gregory and Johnston 2008)], we predicted an average per

MA line accumulation of 34 mutations, composed of 19.6
[confidence interval: 16.8; 22.8] single-nucleotide muta-
tions (Keightley et al. 2009) and 14.8 [C.I.: 3.4; 52.2] indels
and complex mutations (Haag-Liautard et al. 2007).

For each of 45 extant MA lines, on a single day, four
replicate brother–sister pairs were initiated in separate vials,
and 40 virgin male offspring were collected from these rep-
licate vials (�10 males per vial). Use of replicate rearing
vials, assigned at random across MA lines, ensured that gene
expression variation due to microenvironmental variation
among vials was not confounded with the variation of in-
terest in this study, the mutational (genetic) variance among
inbred lines. Males were held in groups of 5 until 4 days
posteclosion, when two replicate RNA extractions per MA
line were conducted, each on a random subsample of 20
males. All MA lines were reared simultaneously, and all
RNA extractions were performed on the same day. Following
snap-freezing on liquid nitrogen, total RNA was extracted
using Trizol (Invitrogen, Carlsbad, CA) and purified using
RNeasy kits (QIAGEN, Valencia, CA), all according to man-
ufacturer’s instructions.

Outbred population: To place the mutational variation in
context, we compared the inherited (among-line) variance
in the MA experiment to that observed among a set of inbred
lines established to capture the standing genetic variation in
a natural population. Forty-two iso-female lines were
founded by wild-caught D. serrata from Brisbane, Australia.
Lines were inbred via full-sib mating for 15 generations. As
with the MA lines, we used replicate rearing vials that en-
sured among-line variance was not confounded with within-
line common environment variance. In the generation before
RNA sampling, each line was propagated in three replicate
vials by five virgin female and three virgin male parents.
Virgin male offspring were collected from all of these vials
on the same day and held in the same fashion as in the MA
lines. Two replicate RNA extractions per line were con-
ducted on random subsamples of thirty 3-day-old males
per replicate, following the same protocol as in the MA lines.
The outbred population lines and RNA collection are de-
scribed in further detail in Allen et al. (2013).

Microarray hybridization

Microarrays were designed from a D. serrata EST library
(Frentiu et al. 2009); sequences (length $200 bp, n =
11,383) are available in the Transcriptome Shotgun Archive
(GAHN00000000.1) and (length ,200 bp, n= 283) directly
from the authors upon request. The microarray was manu-
factured by NimbleGen (Roche) and images were analyzed
with NimbleScan (Roche). Microarrays contained 20K ran-
dom probes plus 11,631 features from ESTs, targeted by five
60-mer oligonucleotide probes; each probe appeared twice
on each microarray. A single sample was hybridized to each
array, with a single color (Cy-3). Twelve arrays appeared on
each slide, and samples were randomly assigned to a slide,
with the stipulation that replicate extractions from a single
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line did not appear on the same slide. cDNA synthesis,
labeling, hybridization, and microarray scanning were
performed by the Centre for Genomics and Bioinformatics,
Bloomington, Indiana.

Quality control of the array data was performed using the
BioConductor “oligo package” probe level models (Gentle-
man et al. 2004; Carvalho and Irizarry 2010; Draghici 2012)
and using the experimental metrics report provided by
NimbleGen (Roche Nimblegen 2011). Due to poor quality
data (e.g., high mean empty signal or strong local stains) in
at least one replicate of a line, we discarded several lines,
resulting in data from 41 MA lines and 30 outbred popula-
tion lines retained for analysis. Due to lack of probe replica-
tion, 27 features on the microarrays were not included in
analyses, resulting in 11,604 traits for further analysis. The
expression data are available through the NCBI Gene Ex-
pression Omnibus (Edgar et al. 2002; Barrett et al. 2011)
(outbred lines, GSE45801; MA lines, GSE49815).

Statistical analyses

Our analytical strategy for this large data set centered on
using a series of mixed models of increasing complexity to
elucidate the extent of pleiotropy among gene expression
traits. Analyses of microarray data often begin with prepro-
cessing to remove technical variation, such as signal in-
tensity variation among different arrays or binding efficiency
variation among different probes targeting the same gene.
Here, we determined the average log10 signal intensity of
the two replicates of each probe on each array, but rather
than any further preprocessing, we used the mixed models
to partition the variation of interest (among MA or outbred
population lines) from other experimental sources of varia-
tion (Ayroles and Gibson 2006). As a consequence of our
experimental design, overall differences in signal intensity
among arrays will contribute to within-line (among-
replicate) variation, but not to among-line variance. We
chose to analyze the five probe means for each gene, rather
than take an overall mean (or median), because our mixed-
model approach enabled us to consider all this information
in the model rather than discard the variation that may be
present among different probes targeting the same gene.
Prior to analysis, we standardized (mean = 0; SD = 1)
the log10 mean expression data for each trait. The standard-
ization to unit variance facilitated both comparison between
data sets (putting the data on the common scale of herita-
bility) and the multivariate analyses, where large differences
in the scale of each trait within a single model can inhibit
convergence.

We observed a segregating factor in the MA lines that
must have been present in the ancestor and was therefore
not a product of mutation during the experiment (Supporting
Information, File S1). To prevent this factor from contributing
to estimates of mutational (among-line) variance, a fixed ef-
fect was fitted in all analyses to remove the mean difference
in trait expression between the two groups of lines with the
two alternative forms of this segregating factor.

Univariate statistical analyses: Mixed models were imple-
mented within a restricted maximum-likelihood framework
in SAS (v. 9.3), using the basic univariate model

Yijk ¼ mþ Linei þ RepjðiÞþ eijk; (1)

where, for each gene, the standardized log10 mean expres-
sion, Y, of the kth replicate probe in the jth replicate extrac-
tion and hybridization of the ith line is partitioned into
variance due to the random factors of (MA or outbred pop-
ulation) Line, representing the among-line variance (VB);
Rep(licate), within-line (VW), variance between replicate
extractions and hybridizations of the same line; and the re-
sidual (error), e, variance among the five replicate probes
per gene. Statistical support for among-line variance of
greater than zero was determined through a log-likelihood
ratio test (LRT) (1 d.f.) for each gene, comparing two nested
models in which the random effect of Line was included or
not included. The P-values from this LRT were then used to
establish significance at a false discovery rate (FDR) (Benjamini
and Hochberg 2000; Storey and Tibshirani 2003) of 0.05, using
the MULTTEST procedure in SAS.

We emphasize three points concerning the interpretation
of these variance components. First, the among-line variance
for each expression trait from model (1) differs from that
commonly estimated for standard quantitative traits because
it is based on samples of pooled RNA from 20–30 individu-
als, an approach commonly used for individually small
organisms, such as vinegar flies (Rifkin et al. 2005; Ayroles
et al. 2009; Yang et al. 2011). Individuals within an inbred
line are assumed to be genetically nearly identical after .15
generations of full-sib inbreeding (Lynch and Walsh 1998),
and there is therefore little biological difference in how VB
would be interpreted here vs. the more common situation
where phenotypes are taken from single individuals. Sec-
ond, the VW variance component contains both a biological
and a technical source of error, which are completely con-
founded. Three or four different vials (common environ-
ments) were sampled from each line, then two independent
RNA samples were taken, and each sample was hybridized to
a different array. The confounding of different sources of
biological and technical error into the VW variance compo-
nent does not adversely affect the estimation of VB. VW is not
considered further in our analyses, with the exception that is
it used to enable heritability to be calculated (see below).

Finally, the residual error was estimated among the
means of each of the five replicate probes, an approach that
treats the expression of different probes of the same gene as
estimates of the same biological trait. We detected consis-
tent differences in mean signal intensity among the five
replicate probes of each gene in the outbred population
data, but not in the MA line data. We therefore included
a fixed effect for probe in model (1) when comparing the
two data sets (Figure 1), but not in subsequent analyses of
the MA data. Inclusion of this fixed effect resulted in slightly
fewer expression traits associated with a zero among-line
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variance component (67.5% with the fixed effect vs. 70.8%
without: compare Figure 1 and Figure 2).

The mutational variance was estimated as VM = VB/2t,
where t was the number of generations (here, 27 genera-
tions of mutation accumulation) (Lynch and Walsh 1998).
Because VB was estimated on the scale of phenotypic stan-
dard deviations (data were variance standardized before
analysis), here VM = H2

M, which is the mutational heritabil-
ity. This estimate of H2

M is likely to be downwardly biased
(underestimated) by the inclusion of technical (among-
hybridization and among-probe) as well as environmental
(within-line) variance in the denominator.

The shape of the distribution of mutational effects on
phenotypes has been characterized relatively few times
(Keightley and Halligan 2009), and our experiment pro-
vided the opportunity to investigate general patterns
across many traits. For the 3385 traits with mixed-model
estimates of nonzero among-line variance (see Results) we
obtained the best linear unbiased predictors (BLUPs) of
each MA line from model (1); BLUPs from the mixed mod-
els are estimates of the mutational effects in each line, once
other sources of variance have been partitioned appropri-
ately. BLUPs are centered on the population mean expres-
sion for each gene, with positive and negative deviations of
individual lines representing increased and decreased ex-
pression, respectively. To investigate the magnitude of mu-
tational effects, we took the absolute value of each BLUP.
Using maximum likelihood, implemented in the UNIVARIATE
procedure of SAS, we fitted gamma distributions, with
a threshold of 0 (Eyre-Walker and Keightley 2007; Keightley
and Halligan 2009), to these absolute BLUP values. This anal-
ysis assumes that there are not multiple mutations in the same
gene within each line. If mutations are occurring at random
throughout the genome, then over the relatively short dura-
tion of this MA experiment (27 generations), it is reasonable
to assume that mutations accumulating within a given MA
line occurred in different genes. It is important to note, how-
ever, that our analysis cannot distinguish a single mutation
from multiple mutations affecting a polygenic trait. Again,
given the relatively few mutations expected in each line
(�34; see above), unless an expression trait is highly poly-
genic it is likely that single mutations will contribute to line
BLUP deviations in most cases.

Measuring mutational pleiotropy: To ensure that we did
not downwardly bias the detection of pleiotropy (Hill and
Zhang 2012a,b), we included all traits with nonzero
estimates of variance (3385) in our analyses of mutational
covariance, irrespective of statistical confidence in the esti-
mate of mutational variance for these individual traits. We
build up a picture of the general patterns of covariance
among traits (and thus prevalence and extent of pleiotropy),
beginning by considering the simplest form of pleiotropy,
that affecting just 2 traits, and building to consider sets of 5
traits. Multivariate mixed models enabled us to estimate the

genetic covariance between expression traits in a variance-
component form that has a standard interpretation for any
pair in a multivariate set of quantitative traits and has well-
known statistical properties (Lynch and Walsh 1998). In
both the bivariate and the multivariate analyses (outlined
below), traits are assigned to their bi- or multivariate trait
set completely randomly, without reference to their biolog-
ical function. There is no a priori expectation that these traits,
chosen at random from across the transcriptome, should covary,
unless pleiotropy is extensive.

We did not exhaustively sample the 5,725,727 bivariate
combinations of variable expression traits; rather, we looked
for general patterns through a subsample of 6768 random
pairs of traits, a large, arbitrary number of random pairs
representing 0.1% of all possible pairs. Each bivariate pair
was subjected to the multivariate form of model (1),

Y ¼ mþ Zldl þ Zrdr þ e; (2)

where Zl and Zr are design matrices for the line and repli-
cate within-line random effects. We modeled the covari-
ance structure among traits at the line (dl) and replicate
(dr) levels, using unstructured 2 3 2 covariance matrices,
and e was a diagonal matrix containing the residual
(among-probe) variances for each trait. Standing variation
was partitioned out via a fixed effect as in model (1). We
again used LRTs to determine statistical support for muta-
tional covariance between two traits, comparing the log-
likelihood of the unconstrained model (in which covariance
was estimated) with that of a model where the covariances
were constrained to zero, and only the two individual trait
variances were estimated (a diagonal matrix model). The P-
values from these LRT were used to determine the 5% FDR
level.

The next step in our characterization of pleiotropy was
a set of multivariate analyses. Each of the 3385 variable
traits was assigned to one of 677 five-trait sets. Traits were
assigned at random and each trait was assigned to only one
of the 677 matrices. A trait set size of five was chosen as
a compromise between model convergence (models with
more traits sometimes did not converge, and convergence
times were prohibitively long) and the desirability of
searching for covariance among as many traits as are often
used in evolutionary studies of standard metric traits.

The five-trait sets were subjected to a multivariate linear
mixed model of the same form as model (2), but where the
covariance (dl and dr) among traits was modeled using a re-
duced rank factor-analytic structure:

d ¼ LLTþ c: (3)

Here, c was a diagonal matrix containing specific variances
for each trait (i.e., the mutational variance unique to a trait
and not shared with other traits in the model), and L was
a lower triangular matrix of factor loadings for a single fac-
tor capturing the common variance among the five traits
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(Meyer 2009; McGuigan and Blows 2010). For the among-
line model term, multiplying L by its transpose (as in Equa-
tion 3) gives the mutational covariance matrix, M, which
can be diagonalized. In these models, this matrix has a single
dimension, represented by the eigenvector mmax, with the
amount of mutational variance in the trait set that is due to
the pleiotropic covariance described by the eigenvalue of
mmax. The presence of a common factor (nonzero eigen-
value of mmax) reveals pleiotropic effects on at least two
of the five traits.

We used two approaches to test for significant muta-
tional covariance among traits. First, we used a LRT to
contrast a model that estimated the common mutational
variance with a model in which only trait-specific muta-
tional variances were estimated. This LRT has 5 d.f. and
can be considered a conservative test for the presence of
mutational covariance because the precise mixture of chi-
square distributions is unknown (Self and Liang 1987;
Littell et al. 2006). Second, we used a randomization test in
which the data for each trait were shuffled among MA lines,
while keeping replicate measures within each line together.
This shuffling approach ensured that estimates of variance
of each trait remained the same at the among-line, within-
line, and residual levels, but covariances among traits were
disrupted. This shuffled data set, subdivided into the same
five-trait sets, was then subjected to analysis through the
multivariate (factor analytic) mixed model in exactly the
same way as described above for the observed data. We used
paired t-tests to determine whether the observed and shuf-
fled data differed in their estimates of mutational variance,
represented by the eigenvalue of mmax.

We also used a paired t-test to determine whether the
observed and shuffled data differed in the extent of pleiot-
ropy. We normalized the vector mmax to unit length (mmax

T

mmax = 1) and took the square of the largest contribution of
an expression trait to this normalized vector as a metric of
the extent of pleiotropy of each five-trait matrix. Trait con-
tributions were squared to allow us to consider both positive
and negative covariance among traits. This metric scales
from 1.0, where only one trait contributed to mmax and
there was no mutational covariance with the other traits,
down to 0.2, where all five traits have equal variances and
contribute equally to the eigenvector.

To estimate the mutational heritability of mmax, we first
determined the phenotypic variance inmmax: VP = VB + VW +
VE, where VB was the eigenvalue of mmax, and the variance
at the within line (VW) and residual (VE) levels was de-
termined by projecting the normalized vector through the
within-line and residual covariance matrices obtained from
model (2). We then applied the equation

H2
mmax

¼ VB=VP
2t

; (4)

where t is the number of generations of mutation accumu-
lation (here, 27 generations).

Results

Characteristics of mutational variation in individual
expression traits

The distributions of standing genetic and mutational vari-
ance were markedly different from one another (Figure 1).
As observed in other taxa (Ayroles et al. 2009; Skelly et al.
2009; Nica and Dermitzakis 2013), most of the 11,604 ex-
pression traits were heritable (8782 had significant among-
line variance at 5% FDR) in the outbred population of D.
serrata (Figure 1A). A small proportion (489, 4.2%) of traits
were invariant (i.e., had an among-line variance component
of zero in the mixed-model analysis). In contrast, the muta-
tional variance had a distinct, L-shaped distribution, where the
majority of traits were invariant among MA lines (Figure 1B).

The lack of genetic variation among MA lines did not
reflect nonexpression of these genes. Almost all genes
(90.2%) were expressed in all 41 MA lines (Figure S1),
consistent with other data on whole-body expression of
adult male Drosophila (Ayroles et al. 2009; Wyman et al.
2010). Rather, the invariance of transcript abundance
among MA lines was consistent with low segregating varia-
tion in the inbred ancestral line and with the estimated 34
mutations per MA line being insufficient to generate de-
tectable mutational variance in most genes. It is important
to note that our results do not imply that traits invariant
among MA lines were not subject to mutation: the herita-
bility of these traits in the lines derived from the outbred
population (Figure 1A) indicates that they are, but, by
chance, mutations were not observed for them in the current
study.

Overall, the average heritability of all expression traits
was 0.0005; considering only the 3385 traits with nonzero
estimates of among-line variance in model (1) (i.e., the traits
for which there is some evidence that a mutation might have
occurred), the average mutational heritability was 0.0018
(Figure 2A). Log-likelihood ratio tests supported significant
heritability for 8.9% (1035) of all traits, 533 (4.6%) of
which remained significant at a 5% FDR.

The distribution of phenotypic effects of individual MA
lines is illustrated for six expression traits in Figure 3. For
some, relatively few, traits (e.g., CG9280 and EST23134),
the among-line variance (H2

M = 0.014 and 0.011, respec-
tively) was generated by a large phenotypic deviation (. 2
phenotypic standard deviations) of one MA line (lines 10
and 18, respectively, in Figure 3), reflected in gamma shape
parameters of ,1 (k = 0.81 and 0.66, respectively). Other
traits (e.g., Figure 3; CG17285, k = 1.01, H2

M = 0.012;
CG14987, k = 1.26, H2

M = 0.011) were characterized by
multiple distinct clusters of lines, suggesting putative muta-
tions of moderate effect (1–2 phenotypic SD) on trait vari-
ance. Finally, for many traits (e.g., Figure 3; CG3440,
k =2.54, H2

M = 0.009; CG17116, k = 1.55, H2
M = 0.009),

the among-line variance was underlain by a relatively even
dispersion of BLUPs, consistent with different putative muta-
tions, each with relatively small effects, in different lines.
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Figure 4 illustrates the general patterns of mutational
effects, showing the distribution of the gamma shape param-
eter (k) (Figure 4A) and the largest individual line BLUP
(Figure 4B) for all 3385 variable traits. The observed values
of k ranged from 0.66 to 13.29 (Figure 4A). An exponential
curve has k = 1 (inset in Figure 4A); fitness is both expected
and observed to have a distribution of effects that is more
leptokurtic (k , 1) than exponential, where few mutations
have large effects while most mutations have small effects
(Halligan and Keightley 2009). For the expression traits in
this study, the average k was significantly .1 (average =
1.53; t-test, t3,384 = 57.186, P , 0.001), indicating that the
distribution of effects was less leptokurtic than observed for
fitness. Indeed, only 197 traits (5.8% of variable traits) had
k , 1. The inference that the observed mutational variance
was typically due to small effect mutations was further sup-
ported by the observation that the largest mutational effect
sizes were ,1 phenotypic standard deviation for most ex-
pression traits (3112, corresponding to 91.9% of variable
traits) (Figure 4B).

Mutational pleiotropy

We began our characterization of the extent of pleiotropy
with its simplest form: pleiotropy affecting just two traits.
Sampling 6768 (0.1%) of the possible .5.7 3 106 bivariate

pairs of variable traits, we found 35 significant (FDR ,
0.05) covariances. This suggests that pleiotropy might be
uncommon. However, a problem with inferring the presence
of pleiotropy is the generally low statistical power to detect
contributions from alleles of small phenotypic effect (Wagner
and Zhang 2011; Hill and Zhang 2012b; Paaby and Rockman
2013), such as those observed in this experiment (Figure 4).

Multivariate mixed modeling of the genetic covariance
among multiple traits substantially improved the detectability
of pleiotropy over bivariate analyses. We generated 677 five-
trait sets and implemented factor analytic modeling, estimat-
ing specific variances for each trait, and a single common
factor. The LRT analysis supported the presence of a common
factor, indicative of mutational covariance and pleiotropy, for
245 (36.2%) of the 677 random five-trait matrices, 145
(21.4%) of which remained significant at 5% FDR (Figure
2B). In contrast, when we shuffled the data, breaking
covariances, only 3.2% of the same five-trait matrices
had significant covariance, and none remained significant
at FDR , 0.05. Furthermore, the mutational variance in
the common factor, mmax, was significantly lower in the

Figure 2 The distribution of per-generation broad-sense mutational her-
itability in the 3385 variable traits. Open bars represent nonsignificant
estimates, while shaded and solid bars, respectively, represent estimates
significant in log-likelihood ratio tests (LRT) at P , 0.05 but not at 5%
FDR and estimates that are significant at FDR , 0.05. (A) Mutational
heritability of individual expression traits. The average heritabilities of all
11,604 traits (averagetotal) and of the 3385 variable traits (averagevariable)
are indicated. (B) The heritability of the common eigenvector, mmax, of
each of the 677 five-trait sets created from the 3385 variable traits pre-
sented in A.

Figure 1 The distribution of genetic variance for 11,604 expression traits
in two experimental populations of Drosophila serrata. (A) Standing ge-
netic variance among 30 inbred lines derived from an outbred population.
(B) Genetic variance among 41 MA lines, founded from a single inbred
ancestral line, after 27 generations of mutation accumulation. Both
graphs are on the scale of broad-sense heritability, in the case of the
MA lines, cumulative across the 27 generations.
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shuffled than in the observed data (paired t-test: t = 9.801,
d.f. = 676, P , 0.0001).

We characterized the extent of pleiotropy within each
five-trait matrix as the squared maximum contribution of
any trait to the normalized mmax, a metric that ranges from
1.0 (no pleiotropy) to 0.2 (all five traits shared mutational
covariance to the same extent). The distribution of this plei-
otropy metric suggested that pleiotropy, although manifest
in many matrices, typically did not simultaneously affect all
five traits (Figure 5). The average pleiotropy metric score,
0.57 (0.52 for matrices significant at FDR), was significantly
lower (more pleiotropic) than for the shuffled data (paired t-
test: t = 5.083, d.f. = 676, P , 0.0001). Both positive and
negative mutational covariances occurred among traits (Fig-
ure 6), although positive covariance between the two traits
with the greatest contribution to mmax was observed signif-
icantly more frequently than negative covariances (95 vs. 50
cases; binomial test: P = 0.0002).

Positive associations between the magnitude of effects on
an individual trait and the number of traits affected by
a gene have been observed in gene knockout data (Wang
et al. 2010) and for QTL underlying divergence among pop-
ulations (Wagner et al. 2008). We did not observe a relation-
ship between the magnitude of a mutation’s effect on a trait
(characterized by the trait’s mutational effect kurtosis: Fig-
ure 4A) and the pleiotropic variance in that trait (charac-
terized by the loading of the trait on the normalized

pleiotropy eigenvector mmax) (r = 20.028, d.f. = 3385,
P = 0.105).

Number of traits affected by a pleiotropic mutation

Based on the observations of FDR significant covariances
between traits in 0.52% of our bivariate analyses and in 21%
of multivariate analyses, we implemented probability calcu-
lations to predict a range of values for the number of traits
affected by a single putative pleiotropic mutation. Such sets
of coaffected expression traits correspond to variational
modules (Wagner et al. 2007). Our goal here was not to
identify and characterize specific variational modules in
our data, but to provide some general indication of how
many traits might typically be affected by a pleiotropic mu-
tation, under some simplifying assumptions.

Assuming any trait was affected by only a single mutation
and that each pleiotropic mutation affected equal numbers
of traits (i.e., all modules are the same size), let m be the
number of variational modules and n be the number of traits
in a module, so that m 3 n = 3384 (one less than the
number of variable traits to allow for bivariate sampling).
In a bivariate sample, the probability of sampling two traits
from the same module is then n(n – 1)/33842, which scales
across all variational modules to m[n(n – 1)/33842].
Substituting for m and solving for n, given the observed

Figure 4 The distribution of the mutational effects for individual traits.
(A) The distribution of gamma shape parameters for each trait, including
an illustration of curve shapes for different shape parameter values (inset).
(B) The distribution of the largest absolute best linear unbiased predictors
(i.e., deviations from the population mean breeding value), for each trait,
plotted as phenotypic standard deviations.

Figure 3 Illustration of mutational variation among MA lines. The best
linear unbiased predictors (BLUPs) of each line (i.e., points on the graph)
are plotted for six traits with similar mutational heritabilities. Traits are
identified by their D. melanogaster gene ortholog annotation, with the
exception of EST23134, for which no D. melanogaster ortholog was
found. BLUPs are deviations from the population mean, here, on the scale
of phenotypic standard deviations, with positive (increased expression)
and negative (decreased expression) deviations. Some individual MA lines
(10, square; 18, bar; 28, circle; and 39, triangle) are uniquely identified for
illustration, and the same symbol is used to indicate the BLUPs of these
lines for each gene.
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frequency of 1 in 193 significant bivariate covariances,
results in an estimate of 18.5 traits in each module.

The multivariate modeling indicated that 21% (1 in every
4.8) of five-trait matrices displayed significant mutational
pleiotropy. With five traits, there are 10 potential pleiotropic
bivariate covariances that could have generated the ob-
served statistically significant mutational pleiotropy. A minimum
of one bivariate covariance must be present for a signif-
icant mmax vector to be found, and therefore there must
be covariance between at least 1 in 48 bivariate pairs of
traits. Again solving m[n(n – 1)/33842], we obtain an
estimate of 70.5 traits per variational module. As we dis-
cuss further below, both the bivariate and the multivari-
ate estimates of average variational module size will be
downwardly biased.

Discussion

Although the vast majority of expression traits were herita-
ble in an outbred population of our study species, mutations
did not affect the expression of more than two-thirds of our
traits, lending no support to universal pleiotropy across the
transcriptome, consistent with recent analyses of gene
knockout data and QTL mapping of crosses between di-
vergent populations (Wagner and Zhang 2011). Nonethe-
less, our data suggest that pleiotropic mutations might often
generate genetic covariance among traits. An overall assess-
ment of the extent of pleiotropy generated by new muta-
tions can be gained by contrasting the results of the
univariate, bivariate, and multivariate analyses. First, the
average mutational heritability of the five-trait mmax was

2.6 times higher than for individual traits analyzed in iso-
lation (Figure 2), and 58.8% of the total mutational vari-
ance, summed across all 3385 variable traits, was accounted
for by the sum of the pleiotropic mutational variances (i.e.,
the eigenvalues of mmax). These summary measures, which
are not affected by detection limits imposed by statistical
significance thresholds (Hill and Zhang 2012b), suggest that
pleiotropy is widespread. Second, at 5% FDR, we inferred
pleiotropy in 21% of five-trait matrices, but only in 0.52% of
bivariate covariances. This suggests bivariate covariances
that do not pass stringent FDR often cumulatively contribute
to significant variance in mmax, as reflected in the distribu-
tion of trait loadings on mmax vectors (inset in Figure 5).

Taking the observed frequency of mutational covariance,
and assuming that equal numbers of traits are affected by
different pleiotropic mutations, we use a simple probabilistic
argument to infer the number of pleiotropically related traits.
Based only on the frequency with which FDR significant
bivariate covariances were observed, we estimate that the
average module size is 19; based on the frequency of FDR
significant mmax (in the multivariate analyses), we predict
an average module size of 70. Because these predictions are
based only on the FDR significant results, they are likely to
be underestimates, a problem that the bivariate analysis was
particularly sensitive to. Further, for the multivariate analy-
sis, we assumed that only 1 of the 10 bivariate covariances
in the five-trait matrices contributed to the FDR significance
of mmax; if multiple traits in a five-trait set covary, module
size will have been underestimated.

In reality, there is likely to be considerable variation
among pleiotropic mutations in the number of traits affected

Figure 6 The distribution of the direction of mutational covariances.
Plotted are the largest (y-axis) and the second largest (x-axis) contributions
of traits to the normalized mmax eigenvectors of the 145 matrices that
were significant at 5% FDR. Negative and positive covariances are
revealed by opposing directions of contribution (open circles) and coinci-
dent directions of contribution (solid circles), respectively. Directions of
trait loading on mmax do not correspond to up- vs. downregulation of
gene expression. Eigenvector direction can be arbitrary, such that the
largest loading is typically positive. Thus, negative loadings from the
two traits with the largest two contributions were not observed in this
subset of the data, but would reveal the same positive mutational co-
variance as positive loadings of two traits with the largest contributions to
mmax (i.e., solid circles).

Figure 5 Multivariate mutational covariance among expression traits.
The pleiotropy metric (squared maximum contribution to normalized
mmax vector) is plotted for each of the 677 five-trait matrices. Open,
shaded, and solid bars indicate significance, as in Figure 2. The inset
illustrates the three largest absolute loadings on mmax for the 145 ma-
trices with significant pleiotropy at the FDR (solid bars in main plot); the
shaded circles illustrate (left to right) the trait loadings of matrices with
the smallest (0.26), average (0.52), and largest (0.89) pleiotropy metric
scores (as indicated by shaded bars in the main plot).
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(Wang et al. 2010; Runcie and Mukherjee 2013). To explain
the observed frequency of pleiotropy among D. serrata ex-
pression traits, at least some mutations must affect a sub-
stantial number of traits (.70); we cannot distinguish
between a distribution with few very large modules and
many relatively small ones vs. a more normal distribution
with module sizes distributed about a fairly large mean
(�70). Mapping studies have identified individual trans
eQTL with pleiotropic effects on many expression traits
[e.g., up to 2528 (West et al. 2007)]. Analyses of null muta-
tions have inferred that the average proportion of traits af-
fected by a null allele is 2–11% (Wang et al. 2010). For the
expression trait set analyzed here, an average variational
module size of 70 corresponds to effects on 0.6% of all
expression traits, or 2.1% of variable traits, at the lower
range reported for null mutations.

Cis-acting regulatory factors might be expected to have
lower pleiotropy than trans-acting factors, with effects re-
stricted to neighboring genes. However, a mutation in the
cis-regulatory region of a gene that acted as a trans-regulatory
factor for other genes could potentially affect many traits.
Analysis of mutational contribution to gene expression in
Caenorhabditis elegans suggested the observed variation in
expression of 660 genes might be due to few trans-acting
factors (Denver et al. 2005). Our data do not allow us to
determine the regulatory nature of the mutations generating
the observed covariances.

Mutations affecting gene expression were predominantly
of small phenotypic effect, with only �8% of mutationally
variable traits affected by a mutation with an effect size of
.1 phenotypic standard deviation. Alleles with individually
small effects have been implicated as contributing much of
the standing genetic variance in other quantitative traits
(Yang et al. 2010). It is important to remember, however,
that our experimental design cannot exclude the possibility
that mutations with larger effects on expression, and which
also had detrimental pleiotropic effects on fitness, were re-
moved by natural selection before we could observe them.
Although MA experiments aim to minimize selection, muta-
tions causing a .10% decline in fitness are unlikely to ac-
cumulate (Lynch et al. 1999). Viability selection operating
on our set of MA lines caused divergence in wing size and
shape between lines that went extinct vs. those that
remained extant at the end of the experiment (and were
the subset analyzed for expression trait variation here)
(McGuigan and Blows 2013). Mutations associated with
very low fitness might differ from surveyed mutations in
their distribution of allelic effects, including the extent of
pleiotropy. We did not observe any association between
the effect size of a mutation and the extent of pleiotropy
within each five-trait set; however, our ability to determine
whether a relationship exists was limited by our analytical
approach.

The range of mutational heritabilities observed in the
current study corresponds well to the range reported for life-
history and morphological traits [0.0005–0.005 (Lynch et al.

1999)], but was two orders of magnitude larger than pre-
viously reported for gene expression traits (Rifkin et al.
2005; Landry et al. 2007). Using a similar approach to that
of our study, Rifkin et al. (2005) investigated mutational
heritability for two early life-history stages in 12 D. mela-
nogaster MA lines that had accumulated mutations for �200
generations. Although the number of traits with significant
mutational variance (32% of ESTs) was greater than what
we observed for adult male D. serrata (4.6%), as might be
expected given the longer time frame over which mutations
accumulated, the median mutational heritabilities were
much lower: 0.000023 and 0.000025 for the two life-history
stages. Rifkin et al. (2005) scaled their estimate of within-
line (residual) variance by the number of individual flies
from which RNAwas extracted for each hybridization; when
we applied this scaling approach, our estimate of median
mutational heritability (0.000309) was still an order of mag-
nitude greater than that reported by Rifkin et al. (2005).
Given the similarity in experimental design, it is not clear to
us why the mutational heritability of expression traits in
D. melanogaster is lower than that reported here for D. serrata.

Estimates of mutational variance from mutation accumu-
lation studies are rarely matched with simultaneous esti-
mates of the standing genetic variance in the same traits,
measured under the same conditions (Houle et al. 1996). It
is well established that expression traits are heritable (Skelly
et al. 2009). However, heritability inferences typically come
from experimental designs such as QTL mapping of crosses
between phenotypically divergent strains (Schadt et al.
2003; Skelly et al. 2009), rather than from classical quanti-
tative genetic designs (but see Ayroles et al. 2009), such as
the inbred lines design typically used to characterize muta-
tional variance (Lynch and Walsh 1998; Halligan and
Keightley 2009). In this study, we have quantified gene ex-
pression using a microarray platform that was specifically
designed for the study species, employing well-matched
quantitative genetic breeding designs in two populations,
one capturing outbred, standing genetic variation in a pop-
ulation and the other capturing the new mutations that con-
tribute to that variation. The measurement of the same large
set of expression traits in the MA and outbred lines provides
the opportunity for a formal comparison between patterns of
mutational (VM) and standing genetic (VG) variance. The
strength of selection acting on mutations affecting quantita-
tive traits can be estimated as s = VM/VG, where s is the
selection coefficient of the mutation in heterozygous form
(Barton 1990; Houle et al. 1996). Selection coefficients can
be estimated both for individual traits and for the multivar-
iate trait combinations that have been established here to be
affected by pleiotropic mutations. A detailed analysis of the
strength of selection acting on these mutations, and how
this selection is influenced by the extent of pleiotropy, will
be presented in a future article.

In conclusion, phenome-wide assessment of mutational
variance did not provide support for universal pleiotropy,
but did establish that pleiotropy generated by new, naturally
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occurring mutations of relatively small effect is widespread.
Pleiotropy can be expected to increase among traits such as
morphological and life-history traits, which will aggregate
the effects of numerous underlying gene expression traits
and therefore have larger mutational targets (Houle 1998).
The frequency of mutational pleiotropy among small sets of
randomly associated expression traits is consistent with re-
cent findings that the vast majority of the multivariate ge-
netic variance of quantitative traits is often restricted to
a limited number of phenotypic dimensions (Kirkpatrick
2009; Walsh and Blows 2009).
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Figure	  S1.	  Mean	  log2	  transcript	  abundance	  in	  each	  MA	  line.	  Expression	  ranged	  from	  not	  
expressed	  (red;	  log2	  ratio	  to	  background	  <	  1)	  up	  to	  highly	  expressed	  features	  (deep	  blue;	  log2	  
ratio	  to	  background	  >6;	  maximum	  expression	  364	  times	  background)	  (log2	  ratio	  of:	  orange	  =	  
1-‐3;	  grey	  =	  3-‐4;	  lilac	  =	  4-‐5;	  blue	  =	  5-‐6).	  Note,	  this	  heat	  map	  illustrates	  only	  which	  genes	  are	  
expressed	  versus	  not	  expressed	  (interpreted	  as	  greater	  or	  less	  than	  1	  fold	  log2	  signal	  intensity	  
above	  the	  mean	  signal	  intensity	  of	  the	  20,000	  random	  probes	  on	  each	  array),	  not	  whether	  
genes	  were	  up	  versus	  down	  regulated	  among	  MA	  lines.	  Genes	  were	  ordered	  by	  their	  
expression	  in	  MA	  line	  79,	  which	  had	  the	  least	  genes	  expressed	  (10,602	  genes	  had	  signal	  
intensity	  >1	  fold	  above	  the	  mean	  of	  the	  random	  probes).	  This	  was	  done	  to	  aid	  visualization	  of	  
the	  relative	  numbers	  of	  unexpressed	  genes.	  Between	  231	  and	  1,002	  genes	  in	  a	  MA	  line	  (on	  
average,	  5.6%	  per	  line)	  had	  expression	  levels	  that	  were	  not	  distinguishable	  from	  the	  
background	  signal.	  We	  nevertheless	  included	  these	  genes	  in	  the	  analyses	  because	  low	  (no)	  
expression	  in	  most	  lines,	  but	  increased	  expression	  in	  one	  line	  could	  reflect	  a	  mutation	  in	  that	  
line.	  
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The	  MA	  lines	  were	  established	  from	  an	  ancestral	  line	  that	  had	  been	  subjected	  to	  13	  

generations	  of	  inbreeding,	  reducing	  the	  segregating	  genetic	  variation	  (McGuigan	  et	  al.	  2011).	  

The	  lack	  of	  among-‐line	  variance	  observed	  for	  most	  (71%)	  of	  the	  traits	  in	  this	  study	  (see	  

Results)	  was	  consistent	  with	  successful	  elimination	  of	  standing	  variation	  in	  the	  common	  

ancestor	  of	  the	  MA	  lines	  (see	  also	  McGuigan	  et	  al.	  2011).	  Of	  particular	  note,	  6,050	  ESTs	  with	  

significant	  among-‐line	  variance	  in	  an	  outbred	  population	  of	  Drosophila	  serrata	  had	  zero	  

among-‐line	  variance	  in	  the	  MA	  experiment.	  	  

Nonetheless,	  segregating	  variation	  was	  detected	  in	  two	  cuticular	  hydrocarbon	  (CHC)	  

traits	  assayed	  in	  the	  3rd	  generation	  of	  the	  experiment,	  revealing	  the	  presence	  of	  some	  

standing	  genetic	  variation	  in	  the	  ancestor.	  MA	  lines	  could	  be	  classified	  into	  two	  groups	  based	  

on	  their	  CHC	  profiles	  in	  the	  3rd	  generation.	  Preliminary	  analyses	  revealed	  difference	  between	  

these	  two	  CHC	  groups	  in	  mean	  expression	  of	  some	  genes.	  To	  remove	  this	  effect,	  we	  fit	  “CHC	  

group”	  as	  a	  fixed	  effect	  in	  all	  mixed	  models.	  Comparison	  of	  results	  from	  analyses	  with	  group	  

fit	  versus	  not	  fit	  showed	  that	  the	  inclusion	  of	  the	  known	  standing	  variation	  inflated	  the	  

estimate	  of	  mutational	  heritability	  for	  some	  traits.	  It	  is	  not	  known	  if	  there	  were	  other	  

segregating	  variants	  at	  the	  start	  of	  the	  mutation	  accumulation	  experiment,	  and	  although	  we	  

interpret	  the	  among-‐line	  variance	  components	  estimated	  in	  the	  mixed-‐model	  analyses	  as	  

mutational	  in	  origin,	  this	  is	  unlikely	  to	  be	  strictly	  true.	  
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