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Objective: Integrity of resting-state functional brain networks (RSNs) is important for proper cognitive function-
ing. In type 1 diabetesmellitus (T1DM) cognitive decrements are commonly observed, possibly due to alterations
in RSNs, which may vary according to microvascular complication status. Thus, we tested the hypothesis that
functional connectivity in RSNs differs according to clinical status and correlateswith cognition in T1DMpatients,
using an unbiased approach with high spatio-temporal resolution functional network.
Methods:Resting-statemagnetoencephalographic (MEG) data for T1DMpatients with (n= 42) andwithout
(n = 41) microvascular complications and 33 healthy participants were recorded. MEG time-series at
source level were reconstructed using a recently developed atlas-based beamformer. Functional connectiv-
ity within classical frequency bands, estimated by the phase lag index (PLI), was calculated within eight
commonly found RSNs. Neuropsychological tests were used to assess cognitive performance, and the rela-
tion with RSNs was evaluated.
Results: Significant differences in terms of RSN functional connectivity between the three groups were ob-

served in the lower alpha band, in the default-mode (DMN), executive control (ECN) and sensorimotor
(SMN) RSNs. T1DM patients with microvascular complications showed the weakest functional connectivity
in these networks relative to the other groups. For DMN, functional connectivity was higher in patients
without microangiopathy relative to controls (all p b 0.05). General cognitive performance for both patient
groups was worse compared with healthy controls. Lower DMN alpha band functional connectivity corre-
lated with poorer general cognitive ability in patients with microvascular complications.
Discussion: Altered RSN functional connectivity was found in T1DM patients depending on clinical status.
Lower DMN functional connectivity was related to poorer cognitive functioning. These results indicate
that functional connectivity may play a key role in T1DM-related cognitive dysfunction.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Type 1 diabetes mellitus (T1DM) is a chronic disease characterized
by failure of insulin secretion, caused by the destruction of pancreatic
beta cells, requiring exogenous insulin administration. T1DM patients
are exposed to high (hyperglycaemia) and low (hypoglycaemia) blood
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glucose levels and cumulative hyperglycaemic exposure can lead tomi-
crovascular end-organ damage, such as retinopathy and nephropathy
(Brownlee, 2005).

Interest is growing into the potential effects dysglycaemia has on the
central nervous system. Whereas cortical grey matter seems relatively
spared in adult T1DM patients (Lyoo et al., 2012), alterations in white
matter tract integrity, functional connectivity and functional networks
have been found relative to non-diabetes controls (van Duinkerken
et al., 2009, 2012a,b). Furthermore, mild to moderate speed-related
cognitive decrements are consistently found (Brands et al., 2005;
Jacobson et al., 2007;Wessels et al., 2008). Cumulative hyperglycaemia
is hypothesised to be related to T1DM-related cerebral compromise
(Jacobson et al., 2007; Wessels et al., 2008). As the retina shares
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developmental and physiological characteristics with the brain (Lyoo
et al., 2012; Patton et al., 2005), proliferative retinopathy, a conse-
quence of long-term hyperglycaemia, is hypothesised to be a marker
of cumulative hyperglycaemia on the brain (Jacobson et al., 2010; van
Duinkerken et al., 2009, 2012a,b).

In recent years, it has become clear that cognitive functioning
strongly depends on the organization of functional brain networks
(Bassett and Bullmore, 2009; Brands et al., 2005; Bullmore and
Sporns, 2012; Stam and van Straaten, 2012). Neuronal dynamics
within segregated functional systems, and their integration, underlie
cognitive processing (Friston, 2002; Jacobson et al., 2007; Wessels
et al., 2008). The oscillatory properties of these neuronal dynamics
are considered a potential means for the implementation of func-
tional communication (Engel et al., 2001). Phase relations between
these oscillatory systems are thought to play a key role in such com-
munications, providing the underling mechanism for both local and
long-range synchronization (Fell and Axmacher, 2011; Fries, 2005;
Sauseng and Klimesch, 2008; Varela et al., 2001). These functional
connections between distinct neuronal populations can bemeasured
using different modalities: electroencephalography (EEG), magneto-
encephalography (MEG) and functional magnetic resonance imag-
ing (fMRI) (Stam and van Straaten, 2012). This latter technique has
established distinct neuronal circuits, so called resting-state net-
works (RSNs), that exhibit robust temporal correlations in spontane-
ous brain activity under resting condition (Damoiseaux et al., 2006;
Rosazza and Minati, 2011; van den Heuvel and Hulshoff Pol, 2010).
Changes in RSN connectivity patterns have been related to cognitive
performance: either too much or too little RSN activity in various pa-
thologies (Alzheimer, schizophrenia and epilepsy) has been corre-
lated with cognitive deficits (Broyd et al., 2009), whereas increased
RNS activity after resective surgery for glioma correlated with im-
proved cognitive performance (van Dellen et al., 2013).

Earlier EEG/MEG functional connectivity (Cooray et al., 2011; van
Duinkerken et al., 2009) and fMRI RSN analyses (van Duinkerken
et al., 2012b) have revealed a reduction in functional connectivity mea-
sures in T1DM patients with proliferative retinopathy, whereas in-
creased functional connectivity has been found in patients without
proliferative retinopathy. This reduction correlated with cognitive per-
formance suggesting that functional connectivity is involved in cogni-
tive functioning (van Duinkerken et al., 2009, 2012b). However, the
results of these studies could have been affected bybiases in the analysis
approach (effects of volume conduction and the use of sensor-level
analysis in EEG/MEG; poor temporal resolution of fMRI). Here, we
therefore analysedMEGdata from a previously described patient cohort
(van Duinkerken et al., 2009, 2012b) using an unbiased approach with
better spatio-temporal resolution to estimate RSN functional connectiv-
ity. In particular: i) A larger cohort is used than in the original MEG
study (van Duinkerken et al., 2009) to enhance statistical power;
ii) Analyses are performed in source-space instead of sensor-space,
in order to enhance the interpretability of the results; iii) A functional
connectivity estimator, the phase lag index (PLI), that is insensitive
to spurious interactions (Stam et al., 2007) is used, instead of the
synchronization likelihood (Montez et al., 2006; Stam and Van Dijk,
2002); iv) Although fMRI allows for the spatially accurate reconstruc-
tion of RSNs (van Duinkerken et al., 2012b), it does not capture the
rich temporal dynamics of the neuronal activity that underlies the
BloodOxygenation Level Dependent (BOLD) signal. Here, using fMRI lit-
erature to define meaningful RSNs (Rosazza and Minati, 2011) in com-
bination with the beamforming technique (Hillebrand et al., 2012), we
are able to reconstruct frequency-specific functional connectivity with-
in these RSNs.

Our aim was to test whether functional connectivity in RSNs dif-
fers according to clinical status and correlates with cognition in
T1DM patients with and without proliferative retinopathy, using an
unbiased approach with high spatio-temporal resolution functional
network.
2. Methods

2.1. Participants

Forty-two type 1 diabetes mellitus patients with proliferative reti-
nopathy (T1DM+), 41 diabetes mellitus patients without microvascular
complications (T1DM−) and 33 healthy control subjects, matched for
sex, BMI, and education were recruited in this study. Age range criteria
were 18–56 years and participants were excluded if they had a BMI
above 35 kg/m2, use of drugs affecting cerebral functioning, current or
history of alcohol (men N21 and women N14 units a week) or current
drug use, psychiatric disorders, anaemia, thyroid dysfunction, use of
glucocorticoids, hepatitis, stroke, severe head trauma, epilepsy, preg-
nancy, or poor visual acuity. For T1DM patients a disease duration of
at least 10 years was required.

To control for confounding effects of depression on cognitive perfor-
mance and functional connectivity, depressive symptoms were assessed
using the Centre for Epidemiological Studies scale for Depression (CES-
D). To prevent confounding due to current blood glucose level differ-
ences, theseweremeasured in T1DMpatients before theMEG recording.
Blood glucose levels between 4 and 15 mmol/l (72–270 mg/dl) were
regarded as appropriate. A detailed description of the inclusion/exclu-
sion criteria for patients and control subjects is provided in our previous
work (van Duinkerken et al., 2009), where the MEG data from a sub-set
of these participants (n = 15, 29, and 26 for T1DM+, T1DM−, and
healthy controls, respectively) were analysed at sensor-level. The origi-
nal dataset consisted of 148 subjects, but 32 subjects were discarded
either because of bad MEG recordings (n = 24) or problems with MRI
co-registration (n = 8).

2.2. Structural assessment

Structural MRI scans were performed in order to assess differences
in white matter hyperintensities and inwhole brain and total greymat-
ter volume.

Magnetic resonance imaging was performed on a 1.5 T whole body
MR-scanner (Siemens Sonata, Erlangen, Germany) using an 8-channel
phased-array head coil.

SIENAX, which is part of FMRIB's Software Library (FSL, version
5.0.4; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) was used to calculate whole
brain volume as well as total grey matter volume. For this analysis
a high resolution T1-MPRAGE (repetition time 2.700 ms, echo time
5.17 ms, inversion time 95 ms, flip angle 8°, 248 × 330 mm2

field of
view, 1.0 × 1.0 × 1.5 mm voxel size) was used. To increase the reli-
ability of the analyses all scans were first corrected for scanner in-
duced geometric distortion and then excessive neck tissue was
removed by registering the Montreal Neurological Institute 152
(MNI152) standard brain to each participant's T1-MPRAGE.

White matter hyperintensities were visually rated by a neuropsy-
chologist trained to assess structural abnormalities on MRI (EvD) ac-
cording to the Fazekas score (Fazekas et al., 2002). For this rating a
3D-FLAIR sequence (repetition time 6500 ms; echo time 385 ms; vari-
able flip angle (Mugler et al., 2000)) was used.

2.3. Neuropsychological assessment

As described in detail in van Duinkerken et al. (2009) all participants
were assessed using a battery of neuropsychological tests to evaluate
cognitive performance in six cognitive domains: memory, information
processing speed, executive functioning, attention,motor speed andpsy-
chomotor speed. For each neuropsychological test z-values were created
based on the mean and standard deviation of the controls. These were
then grouped to form the cognitive domains (see Appendix A). When
necessary, z-values were transformed so that higher z-scores represent
better performance. In this study we considered ‘general cognitive

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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ability’ which was obtained by averaging the z-scores over all cognitive
domains.

2.4. MEG

MEG data were recorded using a 151-channel whole-headMEG sys-
tem (CTF Systems; Port Coquitlam, BC, Canada) while participants were
in a supine position in amagnetically shielded room (Vacuumschmelze,
Hanau, Germany). A third-order software gradient (Vrba et al., 1999)
was used with a recording passband of 0.25–125 Hz and a sample fre-
quency of 625 Hz. Magnetic fields were recorded for 2 min in an eyes-
open condition, 5 min in an eyes-closed condition, 10 min in a task,
and then 3 min in an eyes-closed condition.

At the beginning and end of each of these recordings, the head posi-
tion relative to the coordinate system of the helmet was determined by
leading small alternating currents through three head position coils at-
tached to the left and right preauricular points and the nasion. Changes
in head position of b0.5 cm during a recordingwere accepted. Here, we
only analysed the first (5 min) eyes-closed resting-state condition,
which we divided into 45 trials of 6.55 s (4096 samples). Channels
and epochs containing artefacts were discarded after careful visual in-
spection (MD, AH), rejecting on average 3 channels (range: 0–11). A
minimum of 25 epochs were selected and considered sufficient for the
beamformer analysis (Brookes et al., 2008).

2.5. Beamforming

The structural T1-weighted MRI-scan was used for co-registration as
a first step for beamforming. Only data with an estimated co-registration
error b 1.0 cm were accepted for further analysis. MRI-data were then
spatially normalised to a template MRI using the SEG toolbox in SPM8
(Ashburner and Friston, 2005; Weiskopf et al., 2011), after which ana-
tomical labels were applied (Gong et al., 2009). An atlas-based
beamformer approach (Hillebrand et al., 2012) was used to project
MEG sensor signals to an anatomical framework consisting of 78 cortical
regions (ROIs) (Gong et al., 2009) identified by means of automated an-
atomical labelling (AAL) (Tzourio-Mazoyer et al., 2002). This resulted in
time-series of neuronal activation for all voxels within a ROI, after which
a representative voxel was selected (the onewithmaximumpower for a
given frequency band (Hillebrand et al., 2012)). The time-series for the
78 ROIs were filtered in the following frequency bands: delta
(0.5–4 Hz), theta (4–8 Hz), lower alpha (8–10 Hz), upper alpha
(10–13 Hz), beta (13–30 Hz), and lower gamma bands (30–48 Hz).
This resulted in a total of 6 sets (one for each frequency band) of 78
time-series (one for each AAL region). As was done in our previous stud-
ies, we selected five artefact-free epochs of 4096 samples (6.55 s) from
these time-series, based on careful visual inspection (MD) to obtain sta-
ble results (Bartolomei et al., 2006; Douw et al., 2013; Olde Dubbelink
et al., 2013, 2014; Stam et al., 2009; Tewarie et al., 2013, 2014; van
Dellen et al., 2013, 2014). These data were further analysed using
Brainwave v0.9.70 [authored by C.S.; available at http://home.kpn.nl/
stam7883/brainwave.html].

2.6. Functional connectivity analysis

Functional connectivity between all 78 reconstructed time-series
was estimated using the phase lag index (PLI) (Stam et al., 2007) inde-
pendently for each frequency band. The PLI is ameasure of the asymme-
try of the distribution of phase differences between two signals. It
reflects the consistency of phase relations between two signals,
avoiding zero-lag phase coupling and therebyminimizing the influence
of volume conduction and field spread. For each subject and epoch, PLI
valueswere computed for each pair of ROIs (i.e. a 78× 78 adjacencyma-
trix was obtained) and subsequently themean PLI values were calculat-
ed by averaging over the five selected epochs (i.e. a 78 × 78 matrix
containing average PLI values per subject was obtained). Using the PLI
adjacency matrix it was possible to estimate phase coupling within so-
called resting-state networks (RSNs) (Rosazza and Minati, 2011;
Tewarie et al., 2013; van Dellen et al., 2013). Thiswas done by averaging
the PLI values between the ROIs belonging to a specific resting-state
network (see Table 3 in Appendix A for the definition of the RSNs).
We estimated the functional connectivity for the auditory, default-
mode (DMN), executive control (ECN), left and right frontoparietal, sen-
sorimotor (SMN), temporoparietal and visual resting-state networks.

2.7. Statistical analysis

Participant characteristics were assessed using one-way ANOVA or
Student's t-test for continuous variables and chi-square for dichoto-
mous variables.

Group differences for general cognitive ability were evaluated using
an ANCOVA, with group and gender as independent variables and age,
systolic blood pressure and depressive symptoms as covariates.

For each frequency band independently, a MANCOVA model was
used to evaluate differences in functional connectivity between groups.
PLI values of resting-state networks were used as dependent variables,
with group and gender as independent variables. Functional connectiv-
ity values were log-transformed (log10(x ∕ 1 − x)) to obtain normal
distributions to allow the use of parametric statistics. This resulted in
6 MANCOVAs. When the overall F-test was significant, post-hoc
MANCOVA was used to determine which networks contributed most
to the model. In order to correct for possible confounding factors, age,
depression symptoms and systolic blood pressure were used as covari-
ates in all statistical tests.

Finally, for those networks that differed between groups, we deter-
mined the association with general cognitive ability using stepwise re-
gression analyses for each patient group separately. For this analysis,
significant RSN values were used as predictors for ‘general cognitive
ability’ z-scores. In order to correct for possible confounding factors,
age, depression symptoms, systolic blood pressure, and diabetes dura-
tionwere entered in the regression. Statistical analyses were performed
with SPSS v.19 (IBM-SPSS, Chicago, IL, USA).

2.8. Discriminant function analysis

In order to test if significant group differences enabled group
(T1DM+, T1DM− and healthy controls) classification, we performed a
supplementary discriminant function analysis with the connectivity
values for the significant RSNs. The covariates age, sex, systolic blood
pressure, disease duration and depressive symptoms were included in
the analysis. The discriminant function analysis was performed using a
stepwise procedure in order determine which of the variables could
be omitted because of low predictive ability. Wilks' lambda and a sum-
mary table of the classification results are reported in Supplementary
Material Tables 1–4. All the computations were performed with SPSS
v.19 (IBM-SPSS, Chicago, IL, USA).

3. Results

3.1. Subject characteristics

Subject characteristics and structural assessment are summarised in
Table 1. There were no differences in gender distribution between
groups (p N 0.05). Groups were significantly different for age
(F(2,113) = 6.55, p = 0.002), systolic blood pressure (F(2,113) =
4.03, p = 0.02), depressive symptoms (F(2,113) = 5.82, p = 0.004),
diabetes duration (t(81) = 6.14, p b 0.001) and diabetes onset age
(t(81) = −3.00, p = 0.004). T1DM+ patients were the oldest, had
the highest systolic blood pressure values and had the highest scores
on the depressive symptoms assessment. The T1DM− and control
groups did not differ on any of these three characteristics. Ten (23.8%)
patients with proliferative retinopathy, 8 (19.5%) patients without
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Table 1
Subject characteristics.

T1DM+ patients T1DM− patients Control subjects p-Values

N 42 41 33 –

Age (years) 44.7 ± 7.15⁎# 38.39 ± 9.18 38.21 ± 11.09 0.002
Gender (m/f) 19/23 17/24 15/18 0.922
Depressive symptoms (CES-D)a 12.07 ± 10.56 7.00 ± 6.61 6.09 ± 7.12 0.004
Estimated IQ (NART)b 110.05 ± 13.69 106.29 ± 11.16 108.66 ± 12.14 0.306
Systolic blood pressure (mm Hg) 135.42 ± 17.41⁎ 128.82 ± 13.89 126.34 ± 10.78 0.020
Diastolic blood pressure (mm Hg) 77.26 ± 8.62 77.68 ± 9.72 78.92 ± 6.65 0.694
BMI (kg/m2) 26.04 ± 4.23 25.12 ± 3.62 24.88 ± 3.40 0.365
Hypertension (%)c 30 (71.4) 11 (26.8) – b0.001
Diabetes early onset (%)d 13 (31) 6 (14.6) – 0.077
Diabetes duration (years) 33.78 ± 7.80 21.85 ± 9.78 – b0.001
Diabetes onset age (years) 10.09 ± 7.47 16.53 ± 9.50 – 0.004
Lifetime severe hypoglycaemic eventse 6.09 ± 9.83 6.85 ± 11.15 – 0.576
Peripheral neuropathy (%)f 21 (50) – – –

Whole brain volume (mL) 1424 ± 12.0 1427 ± 12.2 1465 ± 136 0.053
Grey matter volume (mL) 744 ± 7.7 752 ± 7.8 765 ± 8.7 0.178
White matter hyperintensities (%)g 10 (23.8) 8 (19.5) 4 (12.1) 0.437

Subject characteristics for T1DM with proliferative retinopathy (T1DM+), T1DM without complications (T1DM−) and control participants. Data are given as means with SD or absolute
numbers with percentage.

a Depressive symptoms were measured using the Centre for Epidemiological Studies scale for Depression.
b Estimated IQ was measured using the Dutch version of the National Adult Reading Test.
c Hypertension was defined as a systolic blood pressure of ≥140 mm Hg, a diastolic blood pressure of ≥90 mm Hg, or use of antihypertensive drugs.
d Diabetes early onset was defined as an onset age below the age of 7 years.
e Severe hypoglycaemic events were self-reported and defined as events for which the patient needs assistance from a third person to recuperate as a result of loss of consciousness or

seriously deranged functioning, coma, or seizure owing to low glucose levels.
f Peripheral neuropathy was based on medical records or, in case they were not available, based on self-report.
g Whitematter hyperintensitieswere classified according to the Fazekas score. In this sample only Fazekas scores 0 (no lesions) or 1 (small punctiform lesions)were present. Number of

patients (and as a percentage of the group) with Fazekas score 1 is given for each group.
⁎ Significantly different from controls (p b 0.05).
# Significantly different from T1DM− (p b 0.05).

Bold values indicate significance at p b 0.05.
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microvascular complications and 4 (12.1%) of the control participants
had a Fazekas score of 1 (small punctiform lesions). This percentage
was not statistically different between groups (χ2(2,116) = 1.655 p =
0.437). Fazekas scores 2 and 3 were not present in this sample.
There were no between-group differences regarding total grey mat-
ter volume (F(2,113)= 1.75; p= 0.178). Total brain volume tended
to be altered between groups, with the lowest volume in T1DM+ pa-
tients (F(2,113) = 3.02; p = 0.053).

3.2. Neuropsychological assessment

A significant effect of group (F(2,107)= 6.86, p= 0.002) for general
cognitive abilitywas found, but no gender effect or interaction effect, was
observed. Post-hoc analysis revealed significantly poorer performance in
T1DM+ patients compared with T1DM− patients (MD = −0.301; 95%
CI = [−0.512, −0.090]; p = 0.006) and controls (MD = −0.409; 95%
CI = [−0.636, −0.182]; p = 0.001).

3.3. MEG results

The MANCOVA model with log-transformed PLI values for the RSNs
revealed a significant effect of group for the lower alpha band
(F(16,200) = 1.90, p = 0.022; Wilks' Λ = 0.753, partial η2 = 0.132),
while the other frequency bands did not show a significant group effect.
Neither a main effect of gender nor an interaction effect was found.

Post-hoc MANCOVA revealed significant differences in DMN
(F(2,107) = 3.45, p = 0.035, partial η2 = 0.061), ECN (F(2,107) =
5.55, p = 0.005, partial η2 = 0.094) and SMN (F(2,107) = 4.67, p =
0.011, partial η2 = 0.080). Specifically, for every significant sub-
network, T1DM+ patients showed the lowest functional connectivity
values (Fig. 1), while T1DM− had similar values to, or showed higher
functional connectivity values than controls.

T1DM+ patients compared to T1DM− patients had significantly
lower functional connectivity within the DMN (log-transformed
MD= −0.072; 95% CI = [−1.136, −0.009]; p = 0.026), ECN (MD =
−0.144; 95% CI = [−0.230, −0.058]; p = 0.001) and SMN (MD =
−0.100; 95% CI = [−0.177, −0.023]; p = 0.011). For the SMN a sig-
nificant difference (MD = −0.117; 95% CI = [−0.199, −0.034]; p =
0.006) between T1DM+ and control subjects was found, while in DMN
a significant difference (MD = 0.067; 95% CI = [0.005, 0.128]; p =
0.034)was found between the T1DM− group and controls,with function-
al connectivity being higher for the T1DM− group.

Stepwise regression using gender, age, systolic blood pressure, de-
pressive symptoms and diabetes duration as covariates; and the signif-
icant RSN values as predictor, showed that DMN functional connectivity
was a significant predictor (Adj. R2= 0.427, standardized Beta= 0.343,
p = 0.013) for general cognitive ability in T1DM+ patients.
3.4. Discriminant function analysis

The three significant RSNs (Default Mode Network (DMN), Execu-
tive Control Network (ECN) and Sensorimotor Network (SMN)) of the
lower alpha band were added as variables in a discriminant function
analysis. Moreover, the covariates age, sex, systolic blood pressure, dis-
ease duration and depressive symptoms were included in the analysis.

The results for the classification of the three groups are shown in
Supplementary Material Tables 1 and 2, while the classification for the
patient groups only is shown in SupplementaryMaterial Tables 3 and 4.

For classification of the three groups, age, depressive symptoms, sys-
tolic blood pressure and connectivity for twoRSNs (ECNand SMN)were
added during the stepwise analysis (Supplementary Material Table 1).
However, the overall classification accuracy was low (62.1%) (Supple-
mentaryMaterial Table 2), indicating that despite significant differences
in RSN connectivity between the groups, this does not allow for good
discrimination. It is worth noting though that functional connectivity
in the ECN and SMN adds information that is additional to that provided
by the covariates, as these variables survived the stepwise procedure.

Functional connectivity in the SMN, disease duration, depressive
symptoms and systolic blood pressure enables classification of the two



Fig. 1. Left panels: Average (and 2 standard errors) connectivity (lower alpha band, log-transformed)within resting-state networks that showed a significant group effect. Note that for all
these networks the functional connectivity was significantly lower for the patient group with microvascular complications (T1DM+) than for the patient group without microvascular
complications (T1DM−), as well as in the sensorimotor network (SMN) for the T1DM+ group compared to controls. In the default mode network (DMN), the PLI was significantly higher
for the T1DM− group than for the controls. Right panels show the areas for the relevant RSN (highlighted in blue) on a template brain (see also AppendixA). Here, cold colours indicate low
PLI, hot colours indicate high PLI.
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patient groups with an overall accuracy of 85.5% (SupplementaryMate-
rial Tables 3 and 4).
4. Discussion

In this studywe showed that T1DM+patients had a reduction of func-
tional connectivity in MEG resting-state networks (RSNs) when com-
pared to T1DM− patients, as well as compared to healthy participants.
In contrast, T1DM− patients showed increased DMN functional connec-
tivity relative to controls. The finding of altered functional connectivity
was observed specifically in the lower alpha band for the three resting-
state networks (DMN, ECN, and SMN). Furthermore, in T1DM+ patients
a significant correlation between cognitive decrements and lower DMN
functional connectivity in the lower alpha band was observed.

Despite differences in methodologies and/or modality, the connec-
tivity results of this study agree with previous EEG (Cooray et al.,
2011), MEG (van Duinkerken et al., 2009) and fMRI (van Duinkerken
et al., 2012b) studies in terms of the overall result: T1DM influences
functional connectivity. Importantly, our results also expand on our pre-
viousMEG and fMRI studies involving the same patient cohort; by using
the phase lag index and source-level analysis we avoided spurious esti-
mates of functional connectivity, and obtained results that were easier
to interpret in terms of the exact anatomical regions that were involved
(van Duinkerken et al., 2009). Moreover, using MEG analysis of RSNs
allowed us to utilise the rich temporal dynamics of neuronal activity
(van Duinkerken et al., 2012b).
Methodological differences, including a different acquisition meth-
od, different epoch time lengths, different resting-state protocol, and
different source reconstruction approaches (no source reconstruction
versus beamforming; grouping of connections in RSNs) might also ex-
plain why the EEG study by Cooray et al. did not find diabetes-related
decreases in functional connectivity when using the PLI.

Our current results agree partly with our previous fMRI RSN analysis
in this group (van Duinkerken et al., 2012a,b). In that study, connectiv-
ity in the sensorimotor and visual networks was increased in patients
without complications versus controls, whereas patients with prolifera-
tive retinopathy showed lower connectivity relative to their counter-
parts with uncomplicated T1DM. A similar pattern was found in the
current study for the DMN and ECN. Although the pattern of connectiv-
ity changes across the groups is similar for both studies, the affected
RSNs differed. The exact relationship between functional connectivity
estimates obtained through hemodynamic correlations and functional
connectivity estimates based on electrophysiological oscillatory activity
is still unknown (Logothetis, 2008; Singh, 2012; Tewarie et al., n.d.). This
might also explain why our previous fMRI study (van Duinkerken et al.,
2012b) revealed a dose–response effect for some RSNs (auditory,
frontoparietal, and ventral attention), where functional connectivity
varied according to clinical status, whereas in our current and previous
MEG studies (van Duinkerken et al., 2009) the level of functional con-
nectivity for the healthy participants was, generally, in between that
for the T1DM+ and T1DM− patients.

In the current study, for the lower alpha band, T1DM− patients
showed significantly higher functional connectivity in the DMN
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compared to the control group. This result suggests that differences in
functional connectivity are evident even before microvascular compli-
cations are manifest. In T1DM+ patients a decreased functional connec-
tivity was observed. This particular pattern of increased connectivity,
followed by a breakdown in connectivity, has also been observed in pa-
tients with Alzheimer's disease, multiple sclerosis, Parkinson's disease
and minimal hepatic encephalopathy (de Haan et al., 2012; Qi et al.,
2012; Schoonheim et al., 2013; Stoffers et al., 2008). This indicates
that regardless of the type of disease, neurodegeneration in Alzheimer's
and Parkinson's disease, neuroinflammation in multiple sclerosis and
metabolic in T1DM and hepatic encephalopathy, functional connectivi-
ty behaves in similar patterns. The mechanisms leading to first
increased andwith disease progression decreased functional connectiv-
ity are not yet fully understood. One hypothesis suggests that the initial
increase in functional connectivity is explained by a loss of inhibition,
and that increased functional connectivity in time leads to a decrease
due to activity dependent degeneration (de Haan et al., 2012). Alterna-
tively, the increase could be related to loss of functional connectivity in
other networks (Seeley, 2011). Lastly, it could represent functional re-
organization (Schoonheim et al., 2010) due to subtle cortical structural
reorganization, which has been shown in adolescents and young adults
with T1DM (Marzelli et al., 2014; Northam et al., 2009).

The only frequency band that showed significant results was the
lower alpha band, which is in line with previous studies that have
highlighted the relevance of this rhythm in mediating the functional
processing, within and between areas, both in healthy subjects and its
deviation in pathology (Fingelkurts and Fingelkurts, 2010; Mayhew
et al., 2013).

The observed reduced alpha band functional connectivity in the DMN
was behaviourally relevant, as it was related to cognitive dysfunction in
T1DM+. This is in line with previous work that has shown a relationship
between alpha band functional connectivity of RSNs, in particular the
DMN (Jann et al., 2009), and the effect of damage to the DMN on cogni-
tive performance (Broyd et al., 2009). The observation that only the func-
tional integrity of the DMN, and not of the other RSNs, was related to
cognitive performance may be explained by the finding that the DMN
is important for cognition (Broyd et al., 2009) and also contains the stron-
gest functional hubs (Damoiseaux and Greicius, 2009). As was shown by
de Haan et al. (2012), these hubs are also most vulnerable to damage,
yielding the most profound effects on cognition.

Here, we only looked at general cognition. In our previous fMRI
study (van Duinkerken et al., 2012b) we correlated specific cognitive
domains (see Table 2, Appendix A)with RSN activity, and found that in-
formation processing-speed aswell as general cognitive ability correlat-
ed with the secondary visual network. As a post-hoc analysis, we
therefore explored whether there were correlations between MEG
RSNs functional connectivity (lower alpha band only) and specific cog-
nitive domains. However, we did not find any significant correlations. A
possible explanation for the lack of correlation between MEG RSNs and
specific cognitive domains is that, in contrast to the fMRI study, here we
split the patient cohort into two groups.

Structural assessment did not reveal differences in the incidence
of white matter lesions between the three groups, nor were there
statistically significant differences in total brain or grey matter vol-
ume. Despite the absence of overall volumetric differences between
groups, more subtle structural brain changes, i.e. loss of white matter
integrity, have been found in this study sample (van Duinkerken
et al., 2012a). The latter result could suggest that a structural
rewiring is taking place from which functional differences may orig-
inate. However, our results for the DMN and SMN, where the T1DM−

patients showed an increase and decrease in functional connectivity,
respectively, indicate that this hypothesis about a direct link be-
tween brain volume/white matter integrity and functional changes
may be overly simplistic. More extensive analyses, incorporating re-
gional variability in brain volume changes, are required to shed light
on this issue.
Our approach is relatively new, yet recent studies support the inves-
tigation of MEG functional connectivity within RSNs (Brookes et al.,
2011; de Pasquale et al., 2010; Hipp et al., 2012); (Tewarie et al.,
2013; van Dellen et al., 2013), where the latter studies revealed that
the investigation of MEG RSNs is sensitive in detecting alterations in
functional connectivity that are associatedwith cognition. Furthermore,
the employment of an atlas-based beamforming solution and analysis of
RSNs allowed for a direct comparison between the current MEG results
and the results from our previous fMRI study (van Duinkerken et al.,
2012b); this was not possible with the analysis approach used in our
previous MEG work (van Duinkerken et al., 2009).

We also explored whether functional connectivity within RSNs
enables accurate classification of the three groups, as well as of the
two patient groups alone, by means of discriminant function analy-
ses. The patient classification was more accurate compared to the
three group classification, probably as direct consequence of the
fact that RSN connectivity for the healthy controls was usually in be-
tween that for the patient groups. For the three groups the functional
connectivity within specific RSNs alone was not informative enough
to discriminate accurately. An analysis considering both within and
between RSN relationships could perhaps provide more predictive
capability. However, the patient classification itself showed a rea-
sonable accuracy, suggesting that different phenomena are evident
between patients.

Overall, this analysis showed that functional connectivity within
RSNs provides extra discriminatory information, in addition to patient
characteristics such as age, depressive symptoms, systolic blood pres-
sure and disease duration.

This study has some limitations: i) We assessed functional connec-
tivity only within RSNs, and interactions between sub-networks were
therefore not taken into account. This could be an interesting topic for
future investigations, as there is recent evidence that higher-order cog-
nitive functions emerge from dynamic interactions between RSNs (de
Pasquale et al., 2012); ii) Our study could be complemented and ex-
panded by a topological assessment of brain functional networks
(Rubinov and Sporns, 2010), thereby providing insight in both local
and global properties of the functional brain networks, and its relation
with cognition; iii) Our results support the hypothesis that electrophys-
iological changes precede signs of microvascular alterations. Neuro-
physiological studies have suggested that these changes at the level of
the cortex are a result of bottom-up driven rearrangements due to
widespread sub-clinical sensory alterations (Várkonyi, 2006; Várkonyi
et al., 2002). Unfortunately, neurophysiological measures of alterations
at early stages of sensory processing were not included in this study,
and we could therefore not relate functional connectivity in primary
sensory networks to (possible) changes in early stages of sensory
processing.

4.1. Conclusion

In conclusion, our results confirmed that functional sub-networks
(resting-state networks such as DMN, ECN and SMN) are affected by
T1DM, and these changes are related to cognitive performance. These
results indicate that functional connectivity may play a key role in
T1DM-related cognitive dysfunction.
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Appendix A

(See Table 3.)
Table 2
Cognitive domains.

Cognitive domain Neuropsychological test

Memory Rey auditory verbal learning test
WAIS-III-R digit span forward and backward
WAIS-III-R symbol substitution incidental learning test

Information processing speed WAIS-III-R symbol substitution test
Stroop color–word test parts 1 and 2
Concept shifting task parts A and B
Simple auditory and visual reaction time tests
Computerized visual searching task

Executive functions Stroop color–word test part 3, correct for time on parts 1 and 2
Concept shifting task part C, correct for time on parts A and B
D2-test total errors
Wisconsin cart sorting test
Category word fluency task

Attention D2-test range with total correct answers and total span
Motor speed Tapping test

Concept shifting task part
Psychomotor Letter Digit Modalities Test

Table 3
Resting-state networks.

Resting-state network Corresponding AAL atlas ROIs
(Rosazza and Minati, 2011)

Corresponding AAL atlas ROIs
(1 ROI overlap)

Default mode network Precuneus, posterior cingulate gyrus, inferior parietal
gyrus, medial prefrontal gyrus

Precuneus, posterior cingulate gyrus, anterior cingulate gyrus*,
inferior parietal gyrus, medial prefrontal gyrus

Executive control Medial frontal cortex, superior frontal gyrus,
anterior cingulate gyrus

Medial frontal cortex, superior frontal gyrus, anterior cingulate gyrus

Frontoparietal (left/right) Inferior frontal gyrus pars triangularis, inferior frontal gyrus
pars opercularis*, medial frontal gyrus, precuneus*, inferior
parietal gyrus, angular gyrus

Inferior frontal gyrus pars triangularis, medial frontal gyrus,
inferior parietal gyrus, superior parietal gyrus*, angular gyrus

Definitions of the analysed RSNs. Data that were presented asmain results in the paperwere based on a slightmodification of the ROI definition of Rosazza andMinati. This definitionwas
proposed by Tewarie (Tewarie et al., 2013) and others, it prevents overlap of connections between RSNs (right column). Our data were analysed using Tewarie's definition. Differences
between both definitions were marked with *.
Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2014.06.001.
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