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Abstract: Stator coils of automobiles in operation generate heat and are cooled by coolant poured
from above. The flow characteristic of the coolant depends on the coil structure, flow condition,
solid–fluid interaction, and fluid property, which has not been clarified due to its complexities. Since
straight coils are aligned and layered with an angle at the coolant-touchdown region, the coil structure
is simplified to a horizontal square rod array referring to an actual coil size. To obtain the flow and
wetting characteristics, two-phase fluid flow simulations are conducted by using the phase-field
lattice Boltzmann method. First, the flow onto the single-layered rod array is discussed. The wetting
area is affected both by the rod gap and the wettability, which is normalized by the gap and the
averaged boundary layer thickness. Then, the flow onto the multi-layered rod arrays is investigated
with different rod gaps. The top layer wetting becomes longitudinal due to the reduction of the
flow advection by the second layer. The wetting area jumps up at the second layer and increases
proportionally to the below layers. These become remarkable at the narrow rod gap case, and finally,
the dimensionless wetting area is discussed at each layer.

Keywords: two-phase flow; square rod array; phase-field model; lattice Boltzmann method; oil cooling

1. Introduction

Electrification of automobiles has been under the spotlight for reducing CO2 emissions.
Among electric components in a vehicle, an electric motor is considered one of the most
important ones for the powertrains, and its heat removal is crucial for overall improvement.
The heat emitted from the electric motor consists of Joule losses, iron losses, stream load
losses, and mechanical losses [1–3]. For heat removal from the vehicle motor, oil cooling
has been used in terms of efficiency; the oil (electrically-insulated coolant) can directly
touch the heat source and exchange the heat from the motor [4]. For example, the stator coil
shown in Figure 1a, one of the main heat sources of the motor, is cooled by the oil poured
from the nozzle holes above.

Ha et al. [5] investigated the cooling of a motor both experimentally and numerically.
They reported that most of the oil flows through the stator coil at its crown part (uncovered
part, Figure 1b) and the heat is exchanged therein. This suggests that the behavior of the oil
at the uncovered coil area is crucial for heat removal efficiency. The oil behavior is affected
by numerous parameters depending on the coil structure, pouring condition, the physical
properties of the oil, etc. Multiple nozzle holes and/or oil inlets are employed to improve
the flowing/wetting uniformity for the actual cooling system. Due to its complexity, flow
characterization onto/into the structure has not been clarified yet.

At the uncovered coil region (white rectangle in Figure 1b), rectangular coils are
aligned with a constant gap and layered with angles. This can be simplified to multi-
layered horizontal rectangular rod arrays, which can reduce the parameters for the flow
characterization. If the flowing condition is fixed, the representative parameters crucial for
the wetting are structural (gap widths) and wettability (contact angles).
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(a) (b)

Figure 1. Stator coil of automobile with a coolant touchdown location: (a) Front view; (b) Top view.

In terms of the research approach, visualization of the fluid on/inside the structure
with various gap widths is difficult in experiments. Instead, a two-phase numerical simula-
tion that can treat the complex structure can be an alternative method. Recently, the lattice
Boltzmann method (LBM) has been attracting attention for use as an alternative computa-
tional fluid dynamics solver. The LBM offers exclusive features that include parallelization
and computation on supercomputers and the ability to capture complex geometries [6]. This
method has been extended to enable its use in multiphase flow solvers with various models
such as the color-gradient model [7], the pseudopotential model (Shan–Chen model) [8],
and the phase-field model [9]. The phase-field lattice Boltzmann method has been used in
various applications such as the study of the effect of natural convection on lamellar eutectic
growth [10] and the design of the hybrid phase change material-based metal hydride H2
storage tank [11]. Our group has developed a phase-field lattice Boltzmann method with
high phase conservation and precise wettability representation on complex geometries.
This method was applied to the droplet infiltration into the porous media and the threshold
of the wettability on the infiltration was found [12].

In this study, the characterization of the fluid flow and wetting is numerically inves-
tigated. A single-layer case is firstly investigated with the different wettabilities and rod
gaps. Then, the cases for layered horizontal rod arrays are discussed with the rod gaps.

In this study, therefore, pouring liquid onto the multi-layered horizontal rectangular
rod arrays is studied to clarify the characteristics. In particular, as a representative factor
of the structure, the effect of the coil gap is investigated. It is expected that the fluid goes
down faster at the wider rod gap. However, the relation between the fluid volume inside
the structure and the gap, which is crucial for the cooling efficiency, has not been clarified
nor characterized yet.

2. Numerical Schemes

In this study, the phase-field lattice Boltzmann method based on the conservative
Allen–Cahn equation [12,13] is used for the two-phase flow simulation. The detailed
numerical schemes are described as follows.

2.1. Governing Equations

In the present phase-field model, phases are distinguished using the order parameter
φ defined as a local liquid volume fraction. Therefore, φ = 0, 1 denote the gas and liquid
phases, respectively. The region where 0 < φ < 1 denotes a diffuse interface with finite
thickness W. The time evolution of the order parameter φ is described by the following
conservative Allen–Cahn equation,

∂φ

∂t
+∇ · (φu) = ∇ ·

[
Mφ(∇φ− λn)

]
, (1)

where Mφ is the mobility, λ = 4φ(1− φ)/W, and n = ∇φ/|∇φ| is the unit vector oriented
normal to the liquid–gas interface.
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The time evolution of the velocity u is described by the following Navier–Stokes
equation,

∂(ρu)
∂t

+∇ · (ρuu) = −∇p +∇ ·
[
µ
(
∇u +∇uT

)]
+ Fs + Fg, (2)

where Fs and Fg are the following surface tension force term and the gravitational force
term, respectively,

Fs = µφ∇φ, Fg = ρg, (3)

where µφ is the chemical potential, which is defined as [14]

µφ = 4βφ(φ− 1)
(

φ− 1
2

)
− κ∇2φ, (4)

where β and κ are the physical parameters below, which are dependent on both the
interfacial thickness W and the surface tension σ,

β =
12σ

W
, κ =

3
2

σW. (5)

2.2. Phase-Field Lattice Boltzmann Method

In this section, the governing equations are converted into lattice Boltzmann equa-
tions (LBEs). The conservative Allen–Cahn equation and the Navier–Stokes equation are
converted into the following lattice Boltzmann equations,

fi(x + eiδt, t + δt)− fi(x, t) = Ω f
i (x, t) + δtR

f
i (x, t), (6)

gi(x + eiδt, t + δt)− gi(x, t) = Ωg
i (x, t) + δtR

g
i (x, t), (7)

where fi and gi are the distribution functions of the order parameter φ and the velocity
u, respectively. Ω f

i and Ωg
i are the collision operators, R f

i is the source term, and Rg
i is

the force term. The subscript i is the discrete direction, ei is the discrete velocity, and δt

is the time step. In this study, the single-relaxation-time (SRT) model [15] is used for Ω f
i .

The weighted multiple-relaxation-time (WMRT) model [16] is used for Ωg
i to improve the

numerical stability. The collision operators are described as follows,

Ω f
i = − 1

τf

(
fi − f eq

i

)
, (8)

Ωg = −M−1Sg M(g − geq), (9)

where f eq
i and geq

i are the local equilibrium distribution functions and M is the transforma-
tion matrix of the WMRT model. Sg is the diagonal collision matrix given as follows,

Sg = diag(1, 1, 1, 1︸ ︷︷ ︸
d+1

, sg, sg, sg, sg, sg︸ ︷︷ ︸
(d+2)(d−1)/2

, 1, 1, ..., 1︸ ︷︷ ︸
q−d(d+3)/2

), (10)

where sg = 1/τg. d and q are the dimensions of the discrete velocity and the number of
the discrete directions, respectively. The relaxation times τf and τg have the following
relationships with the mobility Mφ and the kinematic viscosity ν, respectively,

Mφ = c2
s

(
τf −

1
2

)
δt, (11)

ν = c2
s

(
τg −

1
2

)
δt, (12)
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where cs is the speed of sound.
The local equilibrium distribution function f eq

i is obtained as follows using the first-
order term of the Maxwell distribution

f eq
i = wiφ

(
1 +

ei · u
c2

s

)
. (13)

The local equilibrium distribution function geq
i is written as [13,17]

geq
i =


p
c2

s
(wi − 1) + ρsi(u), (i = 0),

p
c2

s
wi + ρsi(u), (i 6= 0),

(14)

where wi is the weight coefficient and i = 0 is the discrete direction in which ei = 0. si is
the following function

si(u) = wi

[
ei · u

c2
s

+
(ei · u)2

2c4
s
− u · u

2c2
s

]
. (15)

The source term R f
i and the force term Rg

i are required to recover the governing
equations from the LBEs and are expressed as follows [16,18]

R f
i =

(
1− 1

2τf

)
R f

i , (16)

Rg = M−1
(

I − Sg

2

)
MRg, (17)

where

R f
i = wiei ·

[
∂t(φu)

c2
s

+ λn
]

, (18)

Rg
i = wi

ei ·
(

Fs + Fg
)
+ (ei · u)(ei ·∇ρ)

c2
s

. (19)

In this study, the time derivative term in Equation (18) is computed using the following
explicit Euler scheme

∂t(φu) =
φ(t)u(t)− φ(t− δt)u(t− δt)

δt
. (20)

The macroscopic variables, comprising the order parameter φ, the velocity u, and the
pressure p, are computed using the zeroth or first moments of the distribution functions
as follows

φ = ∑
i

fi, (21)

u =
1
ρ

[
∑

i
eigi +

δt

2
(

Fs + Fg
)]

, (22)

p =
c2

s
1− w0

[
∑
i 6=0

gi + ρs0(u) +
δt

2
u ·∇ρ

]
. (23)

Moreover, the density ρ and the kinematic viscosity ν are interpolated using the order
parameter as follows

ρ = φρl + (1− φ)ρg, (24)

ν = φνl + (1− φ)νg, (25)
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where the subscripts l and g denote the physical properties of the liquid and gas phases,
respectively.

In this study, the D3Q27 discrete velocity model [19] is used for both distribution
functions.

3. Wetting Boundary Condition

In this study, the level set function [20], which is a signed distance function from the
wall, is used to represent the wall smoothly, and the cubic boundary condition (CBC) [12,21,22],
which considers up to the third-order term of the wall free energy, is used to reproduce
wetting. Figure 2 shows an example of the positional relationship between the wall surface
and the grid points around it. For the sake of simplicity, a two-dimensional system is
shown here, but the same applies to a three-dimensional system.

Figure 2. Schematic drawing of an example of wall and computational grid.

The CBC reproduces wetting by setting the contact angle θ as a computational param-
eter and imposing the order parameter gradient in the direction normal to the wall ∂φ/∂nw
that satisfies the given contact angle as a Neumann boundary condition. Specifically, a vir-
tual order parameter φ|s considering the wetting is extrapolated using the order parameter
φ|f and the order parameter gradient ∂φ/∂nw|w. The wall normal gradient of the order
parameter is determined by the CBC as follows [22]:

∂φ

∂nw

∣∣∣∣
w
= −

√
2β

κ
φ|w(1− φ|w) cos θ. (26)

The virtual order parameter at the solid phase is extrapolated by the following equa-
tion [22]:

φ|s =
h1 + h2

2ah2

[
1 + a−

√
(1 + a)2 − 4a φ|f

]
− h1

h2
φ|f, (27)

where

a = −h2

√
2β

κ
cos θ 6= 0, (θ 6= 90◦). (28)

Note that φ|s = φ|f in the case of θ = 90◦. The wetting is taken into account via
the surface tension force term in Equation (3) by calculating ∇φ and ∇2φ using the finite
difference method with φ|s.

4. Model Structure and Computational Conditions

The fluid flow and wetting are affected by the structure-dependent parameter (nozzle
diameter and height to the layer, cross-section of the rod, rod width, and gap width),
fluid dependent parameter (viscosity, surface tension), solid–fluid interaction parameter
(wettability), and flow condition (flow rate), etc. In this study, the actual stator coil is
modeled with the layered horizontal rod arrays. Each layer consists of an array of equally
spaced and parallel aligned rods. The rod array layers are crossed with an angle of
45 degrees as shown in Figure 3. The cross-sectional shape of the rod is referred to the
actual stator coil (Lv/Lh = 0.603 and LR/Lh = 8.45× 10−2, where Lv is the vertical length,
Lh is the horizontal length, and LR is the round chamfer radius).
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+ ⇒

Figure 3. Stacking process of the multi-layered model.

The computational domain of the stator coil modeled by a horizontal square rod array
is shown in Figure 4. The pouring nozzle has a round shape with a diameter D = 0.789Lh,
and it is located just above the rod. The height from the rod surface to the nozzle is 2.8D.
In this study, the periodic condition is used at the x and y direction boundaries. A wall
is placed at the −z direction boundary, and the outflow condition with the volume equal
to the inflow volume is imposed on the +z direction boundary except for the nozzle in
order to maintain the volume conservation of the entire system. On the solid surface,
the no-slip condition is imposed by the interpolated bounce-back scheme [23], and the
arbitrary wettability is imposed by the CBC [12,21,22].

The falling liquid is referred to the automatic transmission fluid of the automobile,
which is used for electric vehicles, and the ambient gas is the air. The density ratio
and the viscosity ratio of the liquid and gas are ρl/ρg = 705 and µl/µg = 2.36 × 103,
respectively. The Bond number is Bo =

(
ρl − ρg

)
|g|D2/σ = 1.81, the Weber number is

We = ρlDU2/σ = 121, and the Reynolds number is Re = UD/νl = 74.9, where U denotes
the inlet velocity. In all simulations, the cross section of the square rods are resolved with
35.5(y)× 21.4(z) grid points. The number of grid points for the entire system are different
for each simulation because the liquid spreadings are different. The Cahn number, which
represents the ratio of the interfacial thickness W to the characteristic length, is set to
Ch = W/D = 0.143 (W is resolved with 4 grid points). The other parameters are detailed
in each section.

Inlet

Figure 4. Computational domain of the stator coil modeled by horizontal square rod array.

5. Validation

Initially, to validate the number of grid points described in the previous section,
the fluid flow simulation is carried out for the single-layer model. In this section, the dimen-
sionless gap width is Lgap/Lh = 0.211, and the contact angle is 30 degrees. The simulations
are performed for the conditions shown in the previous section and for the conditions
in which the grid width is halved. Note that the interfacial thickness W is resolved with
4 grid points in both simulations. Figure 5 shows the top view at the dimensionless time
tU/D = 150. It is confirmed that the shape of the liquid is the same in these simulations.
The wetting area obtained by the simulation with the number of grid points shown in the
previous section is found to have a relative error of 4.24% compared to the higher-resolution
simulation. Therefore, the number of grid points shown in the previous section is confirmed
to be acceptable.
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(b)(a)

Figure 5. Top view of the wetting of single-layer at Lgap/Lh = 0.282, θ = 30◦, and tU/D = 150:
(a) Lower-resolution; (b) Higher-resolution.

6. Results and Discussion
6.1. Wetting on Single-Layer—Effect of the Rod Gap and Wettability

Prior to the layered model, the fluid flow simulation is carried out for the single-
layer model. This model consists of only the top layer of the layered one. In this section,
the steady-state wetting area is discussed with different wettability (contact angle) and rod
gap width. The contact angles simulated are 30 and 90 degrees. The dimensionless gap
width Lgap/Lh are 0.282 and 0.423. For reference, a single rod case is also computed as the
case of Lgap/Lh = ∞.

Figure 6 shows the top view. In the narrower gap case (Lgap/Lh = 0.282), wetting
depends on the rod’s wettability. The lower contact angle (30 degrees) induces the spanwise
wetting with long menisci. Since the meniscus length depends on the contact angle,
the lower contact angle induces the longer meniscus as long as the liquid bridges at the
gap. By the long meniscus at the gap, the liquid can spread quasi-concentrically on the
rod array. In contrast, at the higher contact angle case (90 degrees), the wetting becomes
longitudinally with short menisci. This is because the short menisci suppress the liquid
flow to the next rod, thus the longitudinal liquid transfer becomes dominant.

When the gap becomes wider (Lgap/Lh = 0.423), the wetting number of rods decreases
to the center rod. The meniscus length becomes short regardless of the rod wettability and
the longitudinal wetting of the center rod is almost the same. This is because the meniscus
can not form between the wide gap due to the falling liquid by gravity, and the longitudinal
wetting is restricted by the liquid at the gap.

(a) (b)

(c) (d)

Figure 6. Top view of the steady-state wetting of single-layer: (a) θ = 30◦ and Lgap/Lh = 0.282;
(b) θ = 90◦ and Lgap/Lh = 0.282; (c) θ = 30◦ and Lgap/Lh = 0.423; (d) θ = 90◦ and Lgap/Lh = 0.423.

Next, the wetting area is discussed. Figure 7 shows the dimensionless wetting area.
The main dominant factor on the wetting area is the rod gap Lgap. The abscissa is deter-
mined by the dimensionless rod gap Lgap/Lh. The case of Lgap/Lh = ∞ is also added in
the figure.
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0.2 0.3 0.4
0

200

400

600

800

0

Figure 7. Dimensionless wetting area versus rod gap for single-layer with different contact angles.

It is found that the wetting area decreases proportionally to the threshold value
Lgap/Lh ≈ 0.4 regardless of the contact angle and the wetting pattern. At the threshold
rod gap, the number of wetting rods converges to 1 with the liquid between the rods. The
wetting area is almost the same as the single rod case. The wetting area is largely affected
by the rod gap, rather than that by the rod wettability.

6.2. Fluid Infiltration into the Layered Structure

The liquid wetting into the layered structure is discussed. In this section, the effect of
the rod gap width is investigated at the contact angle of 30 degrees since the actual stator
coil is lyophilic. Figure 8 shows the steady-state wetting at each layer. The liquid spreads
symmetrically on the top array layer, and then that at the gaps falls to the second layer.
On the second layer, the liquid spreads longitudinally. The menisci are formed not only
between the horizontal rods but also between the lower side of the top layer and the upper
side of the second layer. Since the rod array layers are crossed with an angle of 45 degrees,
the overall wetting pattern has point symmetry. At each layer, the longitudinal wetting is
enhanced more than the single-layer case because the menisci can be additionally formed
between layers. These processes are repeated between the second and third layers and the
third and fourth ones.

Comparing the top views of different gap widths, the wetting area is generally large
for the narrower rod gap, which is the same tendency of the single-layer case. On the other
hand, at the top layer, the longitudinal wetting becomes remarkable compared with the
single-layer case (Figure 6a). As seen in the figure, the second layer supports the fluid at
the bottom side of the top layer, including the meniscus area. The longitudinal wetting area
at the reverse side decides the crossing wetting area at the lower layer, thus the wetting
area at the lower layer, is enhanced, which is repeated as the fluid goes down.

(a)

(b)

Figure 8. Top view of the steady-state wetting area at each layer: (a) Lgap/Lh = 0.282;
(b) Lgap/Lh = 0.423.
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6.3. Transient Wetting Area of the Layered Structure

To investigate the wetting in detail, the transient wetting area at each layer is shown
in Figure 9. The elapsed time is non-dimensionalized by the nozzle diameter and the inlet
velocity. The wetting area is normalized by the nozzle diameter. For reference, the case of
the single-layer is added therein.

(a) (b)

0 500 1000 1500 2000
0

300

600

900

1200  layer 1(top)
 layer 2
 layer 3
 layer 4(bottom)
 single-layer

0 200 400 600 800 1000
0

100

200

300

400

Figure 9. Transient wetting area at each layer: (a) Lgap/Lh = 0.282; (b) Lgap/Lh = 0.423.

In both gap cases, the wetting on the top layer proceeds at the same pace as the single-
layer case at the initial stage. A bit later, the onset of wetting on the second layer occurs
before the wetting of the top layer finishes. Since the liquid on the second layer blocks the
liquid from falling, the liquid on the top layer continues to spread longitudinally and then
attains the constant value. For the second and lower layers, the wetting area becomes much
larger than the top layer. This is because the liquid is supplied from the gap of the above
layer, which is different from the top layer case from the single nozzle hole.

6.4. Steady-State Wetting Area in Layered Case

The wetting phenomena attain the steady-state except the falling down liquid below
the lowest layer. As shown in the prior section, the single-layer case suggests the wetting
area is affected mainly by the rod gap. To confirm the tendency for the layered structure,
the steady-state wetting area is arranged by the same scheme. Figure 10 shows the plot.
The abscissa is composed of Lgap/Lh. In the figure, the single-layer cases at various rod
gaps are added for reference.

0.2 0.3 0.4
0

400

800

1200  layer 1 (top)
 layer 2
 layer 3
 layer 4 (bottom)
 single-layer

Figure 10. Steady-state wetting area at each layer.

The wetting area of the top layer for the narrower gap case becomes a bit larger than
the single-layer case, which corresponds to the top views in Figures 6a and 8a. This is
because the longitudinal wetting is enhanced by the second layer, whereas the wider rod
gap case has almost the same wetting area as the single-layer case despite the different
wetting patterns (Figures 6c and 8b). In this case, the meniscus does not grow enough;
thus, the longitudinal wetting is suppressed. Although the wetting area at the top sur-
face is different from the single-layer case, it is interesting that the wetting area can be
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regarded to have the same tendency as the single-layer case with the dimensionless value
employed herein.

For the lower layers, as also shown in Figure 8, the wetting area becomes larger at the
narrower rod gap case, whereas in the wider gap case, the wetting area converges to the
small range. This suggests that the permeability of the structure is crucial for wetting in the
lower layer.

7. Conclusions

In this study, the wetting phenomena on the horizontal rod array are numerically
investigated. The computed results for the single-layer show that the wetting area is largely
affected by the rod gap and the wetting pattern by the rod wettability. When the rod
array is layered, the top layer wetting becomes longitudinal in the narrower rod gap case,
and the wetting area increases. The wetting area at the second layer jumps up compared
with the top layer, which is due to the different inflow above the layer. Since each layer
has longitudinal wetting, the wetting area in the transverse direction is dominant for the
wetting area of the lower layer. For the wider rod gap case, these phenomena become less
remarkable since the permeability of the structure becomes high. The wetting area can be
normalized by the dimensionless parameter by the Reynolds number and dimensionless
rod gap, in which the wetting at the top layer becomes similar to the single-layer case.
These findings can contribute to the coil design of the electric motor to enhance the wetting
and coolant exchange. In future work, we aim to apply the tendency obtained in this
study to a wider range of conditions. We will also investigate the effect of the capillary
number and other factors to develop a model that can predict the wetting with higher
accuracy. We also plan to focus on the transient liquid infiltration phenomena. For this
purpose, the approach using the Lucas–Washburn law [24,25] is considered to be effective.
Additionally, we aim to implement a heat transfer solver using the LBM into the present
method to further contribute to the cooling of stator coils.
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