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Using proteomics to probe
neurons
Advances in mass spectrometry-based proteomics have allowed

researchers to quantify the abundances of the different forms of three

closely related proteins in the neurons of mice.

YUNEE KIM AND THOMAS KISLINGER

Related research article Schreiner D,
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Image The alpha (green) and beta (orange)

isoforms of the three neurexin (Nrx 1,2,3)

proteins are present at different levels in

the mouse brain

D
econstructing the immensely complex

molecular basis of neuronal networks in

the mammalian brain would help us to

better understand how neurons develop and

form connections (called synapses) with each

other. Significant strides in the analysis of gene

expression have been made in recent years,

revealing the regulatory programs that govern

the fate of individual neurons, their interactions

with diverse ligands, and their ability to adapt to

changes, such as environmental cues and injuries

(Schreiner et al., 2014). However, measures of

gene expression might not reflect the actual

levels of proteins produced in cells, so efforts are

being made to study the proteins directly.

Evidence suggests that changes in the abun-

dance or activity of proteins in synapses may lead

to defects in neurons that are implicated in

neuropsychiatric disorders (Craft et al., 2013).

Therefore, uncovering the repertoire of proteins

produced by neurons could help us understand

the underlying molecular basis of such conditions.

The large-scale study of the proteins found in

cells—known as proteomics—poses significant

challenges to researchers. For example, a single

gene in a mammalian cell can be used as a tem-

plate to make many different forms (or ‘isoforms’)

of a protein through a process called alternative

splicing. These isoforms can be very similar to each

other, but they can play very different roles in cells,

so it is important for proteomics techniques to be

able to distinguish them. The situation is further

complicated by the presence of large protein

families encoded by very similar genes.

Mass spectrometry is the leading approach for

proteomics investigations, and encompasses

both global analyses of all the proteins found in

cells, and ‘targeted’ approaches that accurately

measure the abundance of particular proteins.

Selected reaction monitoring (SRM) mass

spectrometry is the most widely used technique

for targeted proteomics (Elschenbroich and

Kislinger, 2011). Proteins are extracted from

cells and digested by enzymes to produce

millions of fragments (called peptides). However,

only a small fraction of these peptides will be

unique to the protein or isoform of interest. SRM

mass spectrometry is able to accurately determine

protein abundance because it can be used to

measure just those peptides we are interested in.

The absolute quantification of proteins by

SRM involves ‘spiking’ the samples with known

concentrations of labelled synthetic peptides

after the enzyme treatment (Barr et al., 1996).

However, variations in the efficiency of the enzymes

can lead to errors with this approach. Alternative

approaches use known concentrations of labelled

whole synthetic proteins (Brun et al., 2007;
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Stergachis et al., 2011), which are added to the

sample before the enzyme treatment.

However, the use of SRMmass spectrometry to

quantify the isoforms of protein families from

complex tissues had not been explored. Now, in

eLife, Peter Scheiffele and colleagues at the

University of Basel—including Dietmar Schreiner

and Jovan Simicevic as joint first authors—have

developed SRM assays to quantify the isoforms of

the neurexin family of proteins in the mouse brain

(Schreiner, Simicevic et al. 2015).

Neurexins are cell adhesion proteins that play

important roles in the formation and differentia-

tion of synapses (Zhang et al., 2010). All three of

the genes that encode neurexin proteins contain

various segments that can be removed from

messenger RNA in different combinations by

alternative splicing (Chih et al., 2006). The

modified messenger RNA molecules are then

translated to make the different neurexin

protein isoforms. The segments have been

shown to regulate the interactions between

ligands and their receptors on the surface of

neurons and to alter the activity of synapses in

a variety of ways (Aoto et al., 2013).

Schreiner, Simicevic et al. made protein stand-

ards that contained different neurexin isoforms

fused to the fluorescent protein GFP before

carrying out SRM assays (Figure 1). They found

that, in several different regions of the brain,

neurexin isoforms that contain the segments

known as AS3 and AS4 were regulated in the

same way, but isoforms that contain another

segment called AS6 were regulated independently.

The absolute quantification of the neurexins

revealed that two of the isoforms (called alpha

and beta) differed in abundance and that, overall,

neurexins are present at relatively high levels

across the whole mouse brain. The ability of

neurexin isoforms to interact with ligands at

synapses was associated with specific segments,

which demonstrates that alternative splicing can

modulate neurexin activity.

The SRM assays developed by Schreiner,

Simicevic et al. enabled them to discriminate

between neurexin isoforms that only differed in a

single amino acid residue. Their simple approach

can be applied to other protein families in any

accessible tissue, and hence may be applied to

a range of biological questions.

Figure 1. Absolute quantification of proteins by SRM mass spectrometry. A master mix containing the components required for protein synthesis, the

amino acids arginine and lysine labeled with carbon-13 and nitrogen-15, and all other unlabeled amino acids are mixed with cDNA molecules that encode

the proteins of interest fused with green fluorescent protein (GFP). These fusion proteins (indicated in green-red) are combined with a sample containing

the target proteins of interest (depicted in blue), and a known concentration of unlabeled GFP as an internal standard (shown in yellow). This protein

mixture is digested by enzymes and the resulting peptides are analyzed by SRM mass spectrometry that specifically measures peptides that are unique to

the target proteins. The resulting SRM traces contain information about the abundance of these peptides. The known spiked concentration of the

unlabeled GFP standard (yellow) is used to determine the absolute amounts of the labeled GFP fusion protein standard (the green part of the fusion

protein). In turn, the target protein component of the GFP fusion protein standard (the red section) is used to determine the absolute amounts of the

target proteins in the biological sample (shown in blue).
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