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Abstract 

Background:  Multiple studies have reported the prognostic impact of DNA methylation changes in acute myeloid 
leukemia (AML). However, these epigenetic markers have not been thoroughly validated and therefore are still not 
considered in clinical practice. Hence, we aimed to independently verify results of selected studies describing the 
relationship between DNA methylation of specific genes and their prognostic potential in predicting overall survival 
(OS) and event-free survival (EFS).

Results:  Fourteen studies (published 2011–2019) comprising of 27 genes were subjected to validation by a custom 
NGS-based sequencing panel in 178 newly diagnosed non-M3 AML patients treated by 3 + 7 induction regimen. The 
results were considered as successfully validated, if both the log-rank test and multivariate Cox regression analysis 
had a p-value ≤ 0.05. The predictive role of DNA methylation was confirmed for three studies comprising of four 
genes: CEBPA (OS: p = 0.02; EFS: p = 0.03), PBX3 (EFS: p = 0.01), LZTS2 (OS: p = 0.05; EFS: p = 0.0003), and NR6A1 (OS: 
p = 0.004; EFS: p = 0.0003). For all of these genes, higher methylation was an indicator of longer survival. Concurrent 
higher methylation of both LZTS2 and NR6A1 was highly significant for survival in cytogenetically normal (CN) AML 
group (OS: p < 0.0001; EFS: p < 0.0001) as well as for the whole AML cohort (OS: p = 0.01; EFS < 0.0001). In contrast, for 
two studies reporting the poor prognostic effect of higher GPX3 and DLX4 methylation, we found the exact opposite, 
again linking higher GPX3 (OS: p = 0.006; EFS: p < 0.0001) and DLX4 (OS: p = 0.03; EFS = 0.03) methylation to a favorable 
treatment outcome. Individual gene significance levels refer to the outcomes of multivariate Cox regression analysis.

Conclusions:  Out of twenty-seven genes subjected to DNA methylation validation, a prognostic role was observed 
for six genes. Therefore, independent validation studies are necessary to reveal truly prognostic DNA methylation 
changes and to enable the introduction of these promising epigenetic markers into clinical practice.
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Introduction
Acute myeloid leukemia (AML) is a hematopoietic malig-
nancy characterized by a complex interplay of aberrations 
at different levels of the genome (i.e., genetic, epigenetic, 
transcriptomic, and proteomic) [1–3]. This complex-
ity is faithfully reflected by AML heterogeneity in terms 

Open Access

*Correspondence:  hana.remesova@uhkt.cz
1 Department of Genomics, Institute of Hematology and Blood 
Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2967-8355
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-022-01242-6&domain=pdf


Page 2 of 14Šestáková et al. Clinical Epigenetics           (2022) 14:22 

of pathogenesis and prognosis. In clinical practice, only 
properly introduced and validated genetic lesions alto-
gether with cytogenetics are considered into treatment 
decision making [4]. This still applies despite growing 
evidence that some other markers, such as epigenetic fac-
tors, may add valuable information about the predicted 
course of the disease in individual AML patients [3]. 
DNA methylation is one of the longest-studied epigenetic 
mechanisms and is stable and relatively easy to measure 
[5, 6]. Therefore, its status can be readily harnessed as a 
clinically relevant stratifier. Indeed, there are an increas-
ing number of articles assessing the influence of DNA 
methylation on AML prognosis—reviewed in [7]. These 
studies interrogate one, a few or multiple loci depend-
ing on the methodology used. Typically, as a result of 
such research, authors define gene(s) that may serve as 
new biomarkers to improve risk stratification in AML 
patients. The main weakness is that such works are usu-
ally not validated by other researchers and hence there is 
not sufficient validation of these potential biomarkers for 
them to be introduced into clinical practice. Therefore, 
we designed a comprehensive NGS-based DNA meth-
ylation panel comprising of genes previously published as 
having an impact on AML prognosis. For validation pur-
poses, we selected fourteen studies published between 
years 2011 and 2019 [8–21] covering 27 genes (Addi-
tional file  1: Table  S1). We chose works targeting only 
one or a few loci at once (averaged 2 loci per publica-
tion, range 1 to 7), because lower numbers of biomarkers 
would be more feasible for introduction into a laboratory 
routine practice. The list of the selected studies and their 
basic characterization is summarized in Table 1. The aim 
of this work was to make an independent verification of 
results published by other researchers to narrow down 
the list of actually prognostically relevant genes that may 
allow more precise AML stratification in the future.

Results
Our validation study confirmed association of DNA 
methylation status and prognosis for four genes: 
CEBPA [13], PBX3 [10], UZTS2 [16], and NR6A1 [16]. 
A summary of the results is presented in Table  2. Sur-
prisingly, for two studies [19, 20], we found the exact 
opposite effect of DNA methylation on prognosis than 
originally reported—higher GPX3 and DLX4 methyla-
tion—was linked to a better outcome according to our 
data. Kaplan–Meier curves for OS and EFS for all six sig-
nificant genes are shown in Figs.   1 and 2, respectively.  
In four additional studies [8, 9, 15, 21], only the results 
from log-rank test displayed statistical significance that 
was lost in the subsequent multivariate testing (Table 2). 
These results were not considered as sufficiently conclu-
sive for classifying them as validated.  The mean DNA 

methylation values in hypo- versus hypermethylated sub-
groups for each of the significant genes are depicted in 
Fig. 3.

Discussion
Despite a large number of studies addressing the impor-
tance of DNA methylation changes for AML progno-
sis, these aberrations are still not considered for risk 
stratification, although many promising results have 
been already reported. The lack of independent valida-
tion studies is probably the main obstacle that does not 
allow the implementation of epigenetic markers along-
side the well-established genetic ones. Most of the pub-
lications present just more new potential epigenetic 
biomarkers, making the actual role of DNA methyla-
tion harder to grasp and interpret for clinical purposes. 
With the aim to verify the prognostic role of specific and 
already described DNA methylation changes in AML, 
we designed our custom NGS-based DNA methylation 
panel that covers 27 genes (Additional file  1: Table  S1) 
taken from 14 studies published between years 2011 and 
2019. The reported prognostic significance was verified 
for three studies [10, 13, 16]. These three studies do not 
share any apparent features such as size of test cohort, 
presence of a validation cohort, methodology, or bio-
logical material utilized for the DNA methylation assess-
ment (see Table  1). We briefly summarize and discuss 
the genes with a confirmed role of DNA methylation in 
AML prognosis. CEBPA is a  well-known gene involved 
in AML pathogenesis. Double CEBPA mutations have 
been connected to better OS and EFS [4]. Con cord-
antly, hypermethylation of distal CEBPA promoter was 
reported as a favorable prognostic biomarker, which we 
proved in AML subgroup excluding favorable cytoge-
netics and without CEBPA and NPM1 mutations, but 
not in CN-AML without CEBPA and NPM1 mutations 
as also originally described by Lin et  al. [13]. PBX3 has 
been identified as an oncogene in AML that transcrip-
tionally regulates HOXA genes and promotes cell pro-
liferation and resistance to chemotherapeutical agents 
[22]. Hajkova et  al. [10] reported PBX3 overexpression 
associated with a higher incidence of relapses. They also 
showed a clear correlation between PBX3 overexpression 
and hypomethylation. In line with this, we detected PBX3 
hypomethylation as an independent negative prognos-
tic factor for EFS. Qu et al. [16] identified higher meth-
ylation in CpG island (CGI) shores of LZTS2 and NR6A1 
genes as a predictor of better prognosis in CN-AML. 
Interestingly, we confirmed the predictive role of LZTS2 
and NR6A1 hypermethylation not only in CN-AML, but 
in the whole non-M3 diagnostic AML cohort as well. The 
strongest link between DNA methylation and progno-
sis was observed if the concurrent hypermethylation of 
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both genes was present. Validation of the works of Zhou 
et al. [19, 20] produced contradictory results to the origi-
nal studies. Unlike them, we observed a clear associa-
tion between higher GPX3/DLX4 promoter methylation 
and better survival. This discrepancy is hard to explain 
because even usage of different methodology (qMSP ver-
sus NGS) or biological material (BM versus PB) would 
not completely reverse the impact of particular gene’s 
hypermethylation. The recent GPX3 review described its 
dichotomous role in different cancer types; it can act as 
either an oncogene or a tumor suppressor [23]. Tumors 
with high GPX3 expression have an increased resistance 
to chemotherapy due to the GPX3 involvement in the 
antioxidant enzyme system [24]. This would support our 
findings about GPX3 hypermethylation (and thus prob-
able downregulation) and favorable outcome in AML 
cohort treated by standard 3 + 7 induction regimen. As 
for DLX4, its overexpression was described in numerous 
tumor types (including AML) in association with tumor 
progression and/or invasion [25–28]. This again supports 
the link between DLX4 hypermethylation and better 
AML prognosis.  

Noticeably, all verified prognostic DNA methylation 
changes have one thing in common: higher methylation 
equals better prognosis. Six out of fourteen studies sub-
jected to the validation reported higher methylation/
lower expression and superior outcome. From these six 
studies, three were verified by both log-rank and mul-
tivariate Cox regression analysis [10, 13, 16] and three 
showed significance by log-rank test [8, 15, 21]. On the 
other hand, from eight studies describing the relationship 
between higher methylation and poor prognosis, only 
one displayed significance by log-rank test [9], none was 
verified by multivariate Cox regression analysis, and for 
two studies the opposite relation between higher meth-
ylation and prognosis was revealed [19, 20]. Altogether, 
it seems that higher methylation has predominant influ-
ence on prognosis in AML. However, the exact location 
of differential methylation and what specific genes are 
affected are probably the key elements determining the 
direction of how DNA methylation influences patients’ 
outcome.

In three studies, the indirect relation of DNA methyla-
tion (through its association with gene expression) and 

prognosis was reported [10, 12, 15]. From these, only 
one study was validated [10]. Technically speaking, we 
cannot exclude the role of gene expression deregulation 
in patients’ outcome in the remaining two studies [12, 
15], because in our study design we did not examine the 
impact of gene expression on AML prognosis.

Another important aspect to discuss is the usage of PB 
versus BM for DNA methylation assessment. Our AML 
cohort consists of PB samples only, whereas PB alone was 
a starting material in 3/14 studies that underwent valida-
tion. Some articles have already dealt with the compari-
son of DNA methylation results obtained from PB versus 
BM, and they reported their interchangeability for these 
purposes [8, 10, 16]. In line with this, the result of DNA 
methylation validation was not determined by the bio-
logical material used. In fact, genes with validated role 
of their methylation status in AML prognosis were all 
revealed in studies using either BM alone [13, 19, 20] or 
studies using a combination of PB and BM [10, 16]. PB is 
a starting material that is easily accessible to the majority 
of laboratories and it is not  as burdensome for patients 
as BM aspirates.

In practical terms, implementation of a new biomarker 
represented by a single gene/region is always more feasi-
ble than that of a complex methylation pattern. The low 
number of genes for which we confirmed the prognos-
tic impact with our NGS-based approach highlights the 
importanc e of such validation and a need for a consistent 
and easily reproducible approach to assess the impact of 
various changes in DNA methylation on AML prognosis.

Conclusions
We showed that validation of previously published prog-
nostically significant DNA methylation changes is essen-
tial to confirm their relevance for patients’ stratification. 
Out of 27 genes, a statistically significant correlation 
between DNA methylation status and prognosis was 
proved for six of them: CEBPA, PBX3, LZTS2, NR6A1, 
GPX3, and DLX4. We propose that further independent 
validation studies may build upon our results, because 
only markers properly verified by several independent 
studies can be considered for AML prognosis refinement 
in clinical practice.

(See figure on next page.)
Fig. 1  Kaplan–Meier (KM) curves for overall survival (OS): A CEBPA methylation KM curves in AML subgroup excluding favorable cytogenetics 
and without CEBPA and NPM1 mutations (n = 83). B GPX3 methylation KM curves in the whole non-M3 AML cohort (n = 178). C DLX4 methylation 
KM curves in the whole non-M3 AML cohort (n = 178). D LZTS2 methylation KM curves in the whole non-M3 AML cohort (n = 178). E NR6A1 
methylation KM curves in the whole non-M3 AML cohort (n = 178). F LZTS2&NR6A1 methylation KM curves in the whole non-M3 AML cohort 
(n = 178). G LZTS2 methylation KM curves in the CN-AML subgroup (n = 85). H NR6A1 methylation KM curves in the CN-AML subgroup (n = 85).      
I   LZTS2&NR6A1 methylation KM curves in the CN-AML subgroup (n = 85). CN-AML = cytogenetically normal AML, hypo = hypomethylated, 
hyper = hypermethylated, Strata—stratified by a variable 
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Fig. 1  (See legend on previous page.)
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Methods
Patients
We examined 178 adult AML patients: 128 patients 
from the Institute of Hematology and Blood Transfu-
sion (Prague, Czech Republic) and 50 patients from the 
University Hospital Brno (Brno, Czech Republic). All 
patients were diagnosed with AML between 2013 and 
2016 and were treated with curative intent starting with 
3 + 7 induction regimen [29]. The clinical and basic 
molecular characteristics used for statistical analysis 
are stated in Additional file 1: Table S2. Healthy donors 
(n = 11) were also analyzed. The study was approved by 
the Ethics committees of both participating institutions 
and all patients provided their full consent. The research 
conforms to The Code of Ethics of the World Medical 
Assoc iation.

Targeted bisulfite sequencing
Sequencing libraries consisted of 16–18 samples and 
were prepared according to the SeqCap Epi proto-
col (Roche, Basel, Switzerland) with KAPA Hyper-
Prep Kit (Roche). Diagnostic whole-blood DNA from 
AML patients (800–1200  ng) was first mixed with the 
Bisulfite-conversion Control (unmethylated DNA from 
phage lambda) provided in the SeqCap Epi Accessory kit 
(Roche) and then fragmented either via E220 Focused 
ultrasonicator (Covaris, Woburn, MA, USA) or Biorup-
tor Pico instrument (Diagenode, Liège, Belgium) to get 
an average size of 200  bp. EZ DNA Methylation Light-
ning Kit (Zymo Research, Irvine, CA, USA) was used 
for the bisulfite conversion. Pooled samples from each 
library were hybridized for about 68 h with a custom set 
of probes (made by Roche Company). The final concen-
tration of the libraries was measured using KAPA Library 
Quantification Kit (Roche), and the average size of the 
libraries’ fragments was assessed on 4200 TapeStation 
System (Agilent Technologies, Santa Clara, CA, USA). 
Libraries were sequenced on a MiSeq instrument (Illu-
mina, San Diego, CA, USA) using the MiSeq Reagent Kit 
v2 (300-cycles) (Illumina).

Sequencing data analysis
FastQC (version 0.11.8) [30] and MultiQC (version 1.7) 
[31] software was used to check the quality of fastq files. 
Reads were then trimmed and filtered using Cutadapt 

(version 2.4) [32] and the quality of reads was checked 
again. Filtered data were mapped with software Segemehl 
(version 0.3.4) [33] to human genome version GRCh37/
hg19 with added sequence of Enterobacteria phage 
lambda NC_001416.1. Mapping statistics were assessed 
and we checked that more than 80% of reads were 
mapped for each sample. Bam files containing mapped 
reads were sorted and indexed by Samtools software 
(version 1.10). Subsequently, we used Haarz tool (ver-
sion 0.3.4) [33] with enabled "callmethyl" option to select 
methylated positions and create vcf files that were further 
processed in R software. Positions that corresponded to 
the lambda phage sequence were separated and used to 
check that the bisulfite conversion ratio was > 99% for 
each sample. Remaining positions were filtered and only 
CpG positions were left in the data. Finally, we selected 
regions corresponding to loci published in the original 
articles results and the average methylation across the 
regions was assessed. The list of selected regions is pro-
vided in Additional file 1: Table S1. Raw sequencing data 
are available at the Gene Expression Omnibus repository 
(accession number GSE165435).

Statistical analyses and definitions
For the statistical analyses, R software (version 4.0.0) was 
used. Surviving patients were censored to the April 6, 
2020. Overall survival (OS) was established as time from 
diagnosis until death of any cause. Event-free survival 
(EFS) was established as time from the first complete 
remission until death or hematological relapse. Multivar-
iate Cox regression analysis was computed with follow-
ing covariates: age, leukocyte count, cytogenetics [34], 
transplantation in the first complete remission, presence 
of FLT3-ITD and NPM1 mutations. For five studies (see 
Table 2), Cutoff Finder [35] was utilized to determine the 
optimal DNA methylation threshold. We used the same 
DNA methylation threshold as originally published or it 
was set up in the most similar and meaningful way. We 
also adapted the selection of AML patients because some 
studies detected a prognostic effect of DNA methylation 
only in a specific subset of AML such as cytogenetically 
normal (CN) AML. To properly evaluate the prognos-
tic significance of the studied regions, we performed 
Kaplan–Meier analysis with log-rank test. Subsequently, 

Fig. 2  Kaplan–Meier (KM) curves for event-free survival (EFS): A CEBPA methylation KM curves in AML subgroup excluding favorable cytogenetics 
and without CEBPA and NPM1 mutations (n = 83). B PBX3 methylation KM curves in the whole non-M3 AML cohort (n = 178). C GPX3 methylation 
KM curves in the whole non-M3 AML cohort (n = 178). D DLX4 methylation KM curves in the whole non-M3 AML cohort (n = 178). E LZTS2 
methylation KM curves in the whole non-M3 AML cohort (n = 178). F NR6A1 methylation KM curves in the whole non-M3 AML cohort (n = 178). G 
LZTS2&NR6A1 methylation KM curves in the whole non-M3 AML cohort (n = 178). H LZTS2 methylation KM curves in the CN-AML subgroup (n = 85). 
I NR6A1 methylation KM curves in the CN-AML subgroup (n = 85). J       LZTS2&NR6A1 methylation KM curves in the CN-AML subgroup (n = 85). 
CN-AML = cytogenetically normal AML, hypo = hypomethylated, hyper = hypermethylated, Strata—stratified by a variable

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Comparison of mean DNA methylation values in successfully validated genes between hypo- and hypermethylated subgroups of AML. 
CN-AML = cytogenetically normal AML, hypo = hypomethylated, hyper = hypermethylated
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we assessed the effect of DNA methylation levels on 
overall (OS) and event-free survival (EFS) using multivar-
iate Cox regression for those loci significantly affecting 
OS or EFS in Kaplan–Meier analysis. p-value ≤ 0.05 was 
considered as statistically significant.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​022-​01242-6.
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