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Abstract

Background: Multiple studies have reported the prognostic impact of DNA methylation changes in acute myeloid
leukemia (AML). However, these epigenetic markers have not been thoroughly validated and therefore are still not
considered in clinical practice. Hence, we aimed to independently verify results of selected studies describing the
relationship between DNA methylation of specific genes and their prognostic potential in predicting overall survival
(OS) and event-free survival (EFS).

Results: Fourteen studies (published 2011-2019) comprising of 27 genes were subjected to validation by a custom
NGS-based sequencing panel in 178 newly diagnosed non-M3 AML patients treated by 3 + 7 induction regimen. The
results were considered as successfully validated, if both the log-rank test and multivariate Cox regression analysis
had a p-value <0.05. The predictive role of DNA methylation was confirmed for three studies comprising of four
genes: CEBPA (OS: p=0.02; EFS: p=0.03), PBX3 (EFS: p=0.01), LZTS2 (OS: p=0.05; EFS: p =0.0003), and NR6AT (OS:
p=0.004; EFS: p=10.0003). For all of these genes, higher methylation was an indicator of longer survival. Concurrent
higher methylation of both LZTS2 and NR6AT was highly significant for survival in cytogenetically normal (CN) AML
group (OS: p<0.0001; EFS: p<0.0001) as well as for the whole AML cohort (OS: p=0.01; EFS <0.0001). In contrast, for
two studies reporting the poor prognostic effect of higher GPX3 and DLX4 methylation, we found the exact opposite,
again linking higher GPX3 (OS: p=0.006; EFS: p <0.0001) and DLX4 (OS: p=0.03; EFS =0.03) methylation to a favorable
treatment outcome. Individual gene significance levels refer to the outcomes of multivariate Cox regression analysis.
Conclusions: Out of twenty-seven genes subjected to DNA methylation validation, a prognostic role was observed

for six genes. Therefore, independent validation studies are necessary to reveal truly prognostic DNA methylation
changes and to enable the introduction of these promising epigenetic markers into clinical practice.
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Introduction

Acute myeloid leukemia (AML) is a hematopoietic malig-

nancy characterized by a complex interplay of aberrations
*Cormespondence: hanaremesova@uhki.cz at dlffefent leyels of the genome (ie. genetlc‘, epigenetic,
! Department of Genomics, Institute of Hematology and Blood transcriptomic, and proteomic) [1-3]. This complex-
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of pathogenesis and prognosis. In clinical practice, only
properly introduced and validated genetic lesions alto-
gether with cytogenetics are considered into treatment
decision making [4]. This still applies despite growing
evidence that some other markers, such as epigenetic fac-
tors, may add valuable information about the predicted
course of the disease in individual AML patients [3].
DNA methylation is one of the longest-studied epigenetic
mechanisms and is stable and relatively easy to measure
[5, 6]. Therefore, its status can be readily harnessed as a
clinically relevant stratifier. Indeed, there are an increas-
ing number of articles assessing the influence of DNA
methylation on AML prognosis—reviewed in [7]. These
studies interrogate one, a few or multiple loci depend-
ing on the methodology used. Typically, as a result of
such research, authors define gene(s) that may serve as
new biomarkers to improve risk stratification in AML
patients. The main weakness is that such works are usu-
ally not validated by other researchers and hence there is
not sufficient validation of these potential biomarkers for
them to be introduced into clinical practice. Therefore,
we designed a comprehensive NGS-based DNA meth-
ylation panel comprising of genes previously published as
having an impact on AML prognosis. For validation pur-
poses, we selected fourteen studies published between
years 2011 and 2019 [8-21] covering 27 genes (Addi-
tional file 1: Table S1). We chose works targeting only
one or a few loci at once (averaged 2 loci per publica-
tion, range 1 to 7), because lower numbers of biomarkers
would be more feasible for introduction into a laboratory
routine practice. The list of the selected studies and their
basic characterization is summarized in Table 1. The aim
of this work was to make an independent verification of
results published by other researchers to narrow down
the list of actually prognostically relevant genes that may
allow more precise AML stratification in the future.

Results

Our validation study confirmed association of DNA
methylation status and prognosis for four genes:
CEBPA [13], PBX3 [10], UZTS2 [16], and NR6AI [16].
A summary of the results is presented in Table 2. Sur-
prisingly, for two studies [19, 20], we found the exact
opposite effect of DNA methylation on prognosis than
originally reported—higher GPX3 and DLX4 methyla-
tion—was linked to a better outcome according to our
data. Kaplan—Meier curves for OS and EFS for all six sig-
nificant genes are shown in Figs. 1 and 2, respectively.
In four additional studies [8, 9, 15, 21], only the results
from log-rank test displayed statistical significance that
was lost in the subsequent multivariate testing (Table 2).
These results were not considered as sufficiently conclu-
sive for classifying them as validated. The mean DNA
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methylation values in hypo- versus hypermethylated sub-
groups for each of the significant genes are depicted in
Fig. 3.

Discussion

Despite a large number of studies addressing the impor-
tance of DNA methylation changes for AML progno-
sis, these aberrations are still not considered for risk
stratification, although many promising results have
been already reported. The lack of independent valida-
tion studies is probably the main obstacle that does not
allow the implementation of epigenetic markers along-
side the well-established genetic ones. Most of the pub-
lications present just more new potential epigenetic
biomarkers, making the actual role of DNA methyla-
tion harder to grasp and interpret for clinical purposes.
With the aim to verify the prognostic role of specific and
already described DNA methylation changes in AML,
we designed our custom NGS-based DNA methylation
panel that covers 27 genes (Additional file 1: Table S1)
taken from 14 studies published between years 2011 and
2019. The reported prognostic significance was verified
for three studies [10, 13, 16]. These three studies do not
share any apparent features such as size of test cohort,
presence of a validation cohort, methodology, or bio-
logical material utilized for the DNA methylation assess-
ment (see Table 1). We briefly summarize and discuss
the genes with a confirmed role of DNA methylation in
AML prognosis. CEBPA is a well-known gene involved
in AML pathogenesis. Double CEBPA mutations have
been connected to better OS and EFS [4]. Con cord-
antly, hypermethylation of distal CEBPA promoter was
reported as a favorable prognostic biomarker, which we
proved in AML subgroup excluding favorable cytoge-
netics and without CEBPA and NPMI mutations, but
not in CN-AML without CEBPA and NPMI mutations
as also originally described by Lin et al. [13]. PBX3 has
been identified as an oncogene in AML that transcrip-
tionally regulates HOXA genes and promotes cell pro-
liferation and resistance to chemotherapeutical agents
[22]. Hajkova et al. [10] reported PBX3 overexpression
associated with a higher incidence of relapses. They also
showed a clear correlation between PBX3 overexpression
and hypomethylation. In line with this, we detected PBX3
hypomethylation as an independent negative prognos-
tic factor for EFS. Qu et al. [16] identified higher meth-
ylation in CpG island (CGI) shores of LZTS2 and NR6A1
genes as a predictor of better prognosis in CN-AML.
Interestingly, we confirmed the predictive role of LZTS2
and NR6A1 hypermethylation not only in CN-AML, but
in the whole non-M3 diagnostic AML cohort as well. The
strongest link between DNA methylation and progno-
sis was observed if the concurrent hypermethylation of
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hyper =hypermethylated, Strata—stratified by a variable

Fig. 1 Kaplan-Meier (KM) curves for overall survival (OS): A CEBPA methylation KM curves in AML subgroup excluding favorable cytogenetics
and without CEBPA and NPM 1 mutations (n =83). B GPX3 methylation KM curves in the whole non-M3 AML cohort (n=178). C DLX4 methylation
KM curves in the whole non-M3 AML cohort (n=178). D LZTS2 methylation KM curves in the whole non-M3 AML cohort (n=178). E NR6AT
methylation KM curves in the whole non-M3 AML cohort (n=178). F LZTS2&NR6AT methylation KM curves in the whole non-M3 AML cohort
(n=178). G LZTS2 methylation KM curves in the CN-AML subgroup (n=85). H NR6AT methylation KM curves in the CN-AML subgroup (n=85).

I LZTS2&NR6AT methylation KM curves in the CN-AML subgroup (n=85). CN-AML = cytogenetically normal AML, hypo = hypomethylated,

both genes was present. Validation of the works of Zhou
et al. [19, 20] produced contradictory results to the origi-
nal studies. Unlike them, we observed a clear associa-
tion between higher GPX3/DLX4 promoter methylation
and better survival. This discrepancy is hard to explain
because even usage of different methodology (QMSP ver-
sus NGS) or biological material (BM versus PB) would
not completely reverse the impact of particular gene’s
hypermethylation. The recent GPX3 review described its
dichotomous role in different cancer types; it can act as
either an oncogene or a tumor suppressor [23]. Tumors
with high GPX3 expression have an increased resistance
to chemotherapy due to the GPX3 involvement in the
antioxidant enzyme system [24]. This would support our
findings about GPX3 hypermethylation (and thus prob-
able downregulation) and favorable outcome in AML
cohort treated by standard 3+ 7 induction regimen. As
for DLX4, its overexpression was described in numerous
tumor types (including AML) in association with tumor
progression and/or invasion [25—28]. This again supports
the link between DLX4 hypermethylation and better
AML prognosis.

Noticeably, all verified prognostic DNA methylation
changes have one thing in common: higher methylation
equals better prognosis. Six out of fourteen studies sub-
jected to the validation reported higher methylation/
lower expression and superior outcome. From these six
studies, three were verified by both log-rank and mul-
tivariate Cox regression analysis [10, 13, 16] and three
showed significance by log-rank test [8, 15, 21]. On the
other hand, from eight studies describing the relationship
between higher methylation and poor prognosis, only
one displayed significance by log-rank test [9], none was
verified by multivariate Cox regression analysis, and for
two studies the opposite relation between higher meth-
ylation and prognosis was revealed [19, 20]. Altogether,
it seems that higher methylation has predominant influ-
ence on prognosis in AML. However, the exact location
of differential methylation and what specific genes are
affected are probably the key elements determining the
direction of how DNA methylation influences patients’
outcome.

In three studies, the indirect relation of DNA methyla-
tion (through its association with gene expression) and

prognosis was reported [10, 12, 15]. From these, only
one study was validated [10]. Technically speaking, we
cannot exclude the role of gene expression deregulation
in patients’ outcome in the remaining two studies [12,
15], because in our study design we did not examine the
impact of gene expression on AML prognosis.

Another important aspect to discuss is the usage of PB
versus BM for DNA methylation assessment. Our AML
cohort consists of PB samples only, whereas PB alone was
a starting material in 3/14 studies that underwent valida-
tion. Some articles have already dealt with the compari-
son of DNA methylation results obtained from PB versus
BM, and they reported their interchangeability for these
purposes [8, 10, 16]. In line with this, the result of DNA
methylation validation was not determined by the bio-
logical material used. In fact, genes with validated role
of their methylation status in AML prognosis were all
revealed in studies using either BM alone [13, 19, 20] or
studies using a combination of PB and BM [10, 16]. PB is
a starting material that is easily accessible to the majority
of laboratories and it is not as burdensome for patients
as BM aspirates.

In practical terms, implementation of a new biomarker
represented by a single gene/region is always more feasi-
ble than that of a complex methylation pattern. The low
number of genes for which we confirmed the prognos-
tic impact with our NGS-based approach highlights the
importanc e of such validation and a need for a consistent
and easily reproducible approach to assess the impact of
various changes in DNA methylation on AML prognosis.

Conclusions

We showed that validation of previously published prog-
nostically significant DNA methylation changes is essen-
tial to confirm their relevance for patients’ stratification.
Out of 27 genes, a statistically significant correlation
between DNA methylation status and prognosis was
proved for six of them: CEBPA, PBX3, LZTS2, NR6AI,
GPX3, and DLX4. We propose that further independent
validation studies may build upon our results, because
only markers properly verified by several independent
studies can be considered for AML prognosis refinement
in clinical practice.
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Methods

Patients

We examined 178 adult AML patients: 128 patients
from the Institute of Hematology and Blood Transfu-
sion (Prague, Czech Republic) and 50 patients from the
University Hospital Brno (Brno, Czech Republic). All
patients were diagnosed with AML between 2013 and
2016 and were treated with curative intent starting with
3+7 induction regimen [29]. The clinical and basic
molecular characteristics used for statistical analysis
are stated in Additional file 1: Table S2. Healthy donors
(n=11) were also analyzed. The study was approved by
the Ethics committees of both participating institutions
and all patients provided their full consent. The research
conforms to The Code of Ethics of the World Medical
Assoc iation.

Targeted bisulfite sequencing

Sequencing libraries consisted of 16-18 samples and
were prepared according to the SeqCap Epi proto-
col (Roche, Basel, Switzerland) with KAPA Hyper-
Prep Kit (Roche). Diagnostic whole-blood DNA from
AML patients (800-1200 ng) was first mixed with the
Bisulfite-conversion Control (unmethylated DNA from
phage lambda) provided in the SeqCap Epi Accessory kit
(Roche) and then fragmented either via E220 Focused
ultrasonicator (Covaris, Woburn, MA, USA) or Biorup-
tor Pico instrument (Diagenode, Liége, Belgium) to get
an average size of 200 bp. EZ DNA Methylation Light-
ning Kit (Zymo Research, Irvine, CA, USA) was used
for the bisulfite conversion. Pooled samples from each
library were hybridized for about 68 h with a custom set
of probes (made by Roche Company). The final concen-
tration of the libraries was measured using KAPA Library
Quantification Kit (Roche), and the average size of the
libraries’ fragments was assessed on 4200 TapeStation
System (Agilent Technologies, Santa Clara, CA, USA).
Libraries were sequenced on a MiSeq instrument (Illu-
mina, San Diego, CA, USA) using the MiSeq Reagent Kit
v2 (300-cycles) (Illumina).

Sequencing data analysis

FastQC (version 0.11.8) [30] and MultiQC (version 1.7)
[31] software was used to check the quality of fastq files.
Reads were then trimmed and filtered using Cutadapt
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(version 2.4) [32] and the quality of reads was checked
again. Filtered data were mapped with software Segemehl
(version 0.3.4) [33] to human genome version GRCh37/
hgl9 with added sequence of Enterobacteria phage
lambda NC_001416.1. Mapping statistics were assessed
and we checked that more than 80% of reads were
mapped for each sample. Bam files containing mapped
reads were sorted and indexed by Samtools software
(version 1.10). Subsequently, we used Haarz tool (ver-
sion 0.3.4) [33] with enabled "callmethyl” option to select
methylated positions and create vcf files that were further
processed in R software. Positions that corresponded to
the lambda phage sequence were separated and used to
check that the bisulfite conversion ratio was>99% for
each sample. Remaining positions were filtered and only
CpG positions were left in the data. Finally, we selected
regions corresponding to loci published in the original
articles results and the average methylation across the
regions was assessed. The list of selected regions is pro-
vided in Additional file 1: Table S1. Raw sequencing data
are available at the Gene Expression Omnibus repository
(accession number GSE165435).

Statistical analyses and definitions

For the statistical analyses, R software (version 4.0.0) was
used. Surviving patients were censored to the April 6,
2020. Overall survival (OS) was established as time from
diagnosis until death of any cause. Event-free survival
(EES) was established as time from the first complete
remission until death or hematological relapse. Multivar-
iate Cox regression analysis was computed with follow-
ing covariates: age, leukocyte count, cytogenetics [34],
transplantation in the first complete remission, presence
of FLT3-ITD and NPM1 mutations. For five studies (see
Table 2), Cutoff Finder [35] was utilized to determine the
optimal DNA methylation threshold. We used the same
DNA methylation threshold as originally published or it
was set up in the most similar and meaningful way. We
also adapted the selection of AML patients because some
studies detected a prognostic effect of DNA methylation
only in a specific subset of AML such as cytogenetically
normal (CN) AML. To properly evaluate the prognos-
tic significance of the studied regions, we performed
Kaplan—Meier analysis with log-rank test. Subsequently,

(See figure on next page.)

Fig. 2 Kaplan-Meier (KM) curves for event-free survival (EFS): A CEBPA methylation KM curves in AML subgroup excluding favorable cytogenetics
and without CEBPA and NPM1 mutations (n=83). B PBX3 methylation KM curves in the whole non-M3 AML cohort (n = 178). C GPX3 methylation
KM curves in the whole non-M3 AML cohort (n = 178). D DLX4 methylation KM curves in the whole non-M3 AML cohort (n=178). E LZTS2
methylation KM curves in the whole non-M3 AML cohort (n=178). F NR6AT methylation KM curves in the whole non-M3 AML cohort (n=178). G
LZTS2&NR6AT methylation KM curves in the whole non-M3 AML cohort (n=178). H LZTS2 methylation KM curves in the CN-AML subgroup (n=85).
I NR6AT methylation KM curves in the CN-AML subgroup (n=85).J  LZTS2&NR6AT methylation KM curves in the CN-AML subgroup (n=85).
CN-AML = cytogenetically normal AML, hypo = hypomethylated, hyper = hypermethylated, Strata—stratified by a variable
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we assessed the effect of DNA methylation levels on
overall (OS) and event-free survival (EFS) using multivar-
iate Cox regression for those loci significantly affecting
OS or EFS in Kaplan—Meier analysis. p-value <0.05 was
considered as statistically significant.
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