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Abstract: The analgesic effect of venlafaxine (VLX), which is a selective serotonin and noradrenaline
reuptake inhibitor (SNRI), has been observed on oxaliplatin-induced neuropathic pain in mice.
Significant allodynia was shown after oxaliplatin treatment (6 mg/kg, i.p.); acetone and von Frey hair
tests were used to assess cold and mechanical allodynia, respectively. Intraperitoneal administration
of VLX at 40 and 60 mg/kg, but not 10 mg/kg, significantly alleviated these allodynia. Noradrenaline
depletion by pretreatment of N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4, 50 mg/kg,
i.p.) blocked the relieving effect of VLX (40 mg/kg, i.p.) on cold and mechanical allodynia.
However, serotonin depletion by three consecutive pretreatments of para-chlorophenylalanine
(PCPA, 150 mg/kg/day, i.p.) only blocked the effect of VLX on mechanical allodynia. In cold
allodynia, the α2-adrenergic antagonist idazoxan (10 µg, i.t.), but not the α1-adrenergic antagonist
prazosin (10 µg, i.t.), abolished VLX-induced analgesia. Furthermore, idazoxan and 5-HT3 receptor
antagonist bemesetron (MDL-72222, 15 µg, i.t.), but not prazosin or mixed 5-HT1, 2 receptor antagonist
methysergide (10 µg, i.t.), abolished VLX-induced analgesia in mechanical allodynia. In conclusion,
40 mg/kg of VLX treatment has a potent relieving effect against oxaliplatin-induced neuropathic
pain, and α2-adrenergic receptor, and both α2-adrenergic and 5-HT3 receptors are involved in this
effect of VLX on cold and mechanical allodynia, respectively.

Keywords: chemotherapy-induced neuropathic pain; noradrenaline; oxaliplatin; serotonin;
venlafaxine

1. Introduction

Oxaliplatin is a third-generation platinum-based chemotherapeutic agent widely used for different
types of cancer [1,2]. It is reported to be safer than the first- and second-generation platinum-based
agents, as it does not induce nephrotoxicity and hepatotoxicity [3]. However, oxaliplatin is known
to induce peripheral neurotoxicity [1,4], which leads to the development of neuropathic pain. It is
reported that about 90% of oxaliplatin-treated patients experience significant pain [5], as even a
single injection can induce acute neuropathy within 24–48 h [6]. Cold and mechanical allodynia
are common manifestations of this neuropathic pain [7]. To treat this oxaliplatin-induced pain,
anticonvulsants and antidepressants, such as gabapentinoids and tricyclic antidepressants (TCAs)
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respectively, and serotonin and noradrenaline reuptake inhibitors (SNRIs) are generally used [8,9].
However, some reported that anticonvulsants and TCAs may be ineffective against oxaliplatin-induced
neuropathic pain [10,11], and compared to SNRIs, anticonvulsants and TCAs are known to cause more
adverse effects [11].

SNRIs enhance the action of serotonin and noradrenaline, which are both known to be involved
in the endogenous analgesic mechanism. It is well known that enhancing the action of serotonin
and noradrenaline can lead to pain attenuation [12,13]. Venlafaxine (VLX) is a SNRI, and studies
reported that VLX is effective against neuropathic pain, such as painful diabetic neuropathy and
poly-neuropathy in humans [14,15]. In addition, other clinical trials showed that VLX could be used to
attenuate the neuropathic pain induced by chemotherapeutic agents [16,17]. However, compared to
the large number of clinical studies, research conducted on animals is small. In addition, as clinical
studies mostly focused on the analgesic effect of VLX [16–18], but rarely on its analgesic mechanism,
the mechanism of VLX is still poorly understood [17].

Over the past several years, we found an effective treatment method to attenuate
oxaliplatin-induced neuropathic pain [3,19–21]. Various types of different treatment methods were
used, and our data showed that the noradrenergic and serotonergic systems are important in relieving
the pain caused by oxaliplatin. Activating the spinal adrenergic receptors via its agonist significantly
reduced the upregulated spinal neuronal cells after oxaliplatin injection [22], and also blocking the
adrenergic and serotonergic receptors by their antagonists greatly reduced the analgesic effect of the
treatments [22–26].

Thus, in this study we focused on the effect of VLX, a noradrenaline and serotonin transporter
inhibitor, against oxaliplatin-induced neuropathic pain. We firstly observed whether three different
doses of VLX could significantly attenuate the neuropathic pain and the elapsed time of their effect
was also investigated. Secondly, we clarified the role of noradrenaline and serotonin by systematically
depleting them. Finally, by injecting adrenergic and serotonergic receptor antagonists intrathecally,
we investigated which receptor subtypes present at the spinal cord play a major role in the effect
of VLX.

2. Results

2.1. Time Course of the Anti-Allodynic Effects of Venlafaxine (VLX) in a Mouse Model of Oxaliplatin-Induced
Cold and Mechanical Allodynia

First, we evaluated the analgesic effects of VLX on oxaliplatin-induced cold and mechanical
allodynia. VLX at three different doses (10, 40 and 60 mg/kg, i.p.) were administered four days after
the single oxaliplatin injection (6 mg/kg, i.p.), when both the cold and mechanical allodynia were
significantly shown. As compared to the control (saline; SAL group), both 40 and 60 mg/kg of VLX
exerted significant suppressive effects, lasting for 120 and 60 min, on cold and mechanical allodynia,
respectively (Figure 1). The highest dose of VLX (60 mg/kg) was shown to have slightly stronger
analgesic effects than the intermediate dose (40 mg/kg), but neither of the effects of these two doses
lasted up to 180 min after the drug injections. The lowest dose of VLX (10 mg/kg) failed to show
significant relieving effects compared to the control at any time point on cold and mechanical allodynia
(Figure 1). Based on these results, 40 mg/kg of VLX was used in the following experiments.
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Figure 1. Elapsed time of the anti-allodynic effects of venlafaxine (VLX) on oxaliplatin-induced cold 
(A) and mechanical (B) allodynia in mice. Mice were divided arbitrarily into four groups. ‘SAL’ 
refers to saline, which was used as control, and “10”, “40” and “60 mg/kg” refers to the doses of VLX 
used. On the timeline, “Bl” refers to the baseline measured prior to the administration of oxaliplatin 
(OXA, 6 mg/kg, i.p., dotted line). “0” refers to the measurements performed just before the treatment 
of VLX or saline on day four. Data was expressed as mean ± standard deviations (S.D.). * p < 0.05, ** p 
< 0.01, *** p < 0.001, vs. saline with two-way ANOVA followed by Bonferroni’s post-test. 

2.2. Development of Cold and Mechanical Allodynia by a Single Intraperitoneal Administration of 
Oxaliplatin in Noradrenaline or Serotonin Depleted Mice 

To observe whether N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) 
and para-chlorophenylalanine (PCPA) affect the development of oxaliplatin-induced neuropathic 
pain, mice were treated with single DSP-4 (50 mg/kg, i.p.) or multiple PCPA (150 mg/kg/day, for 
three days, i.p.) to deplete noradrenaline and serotonin, respectively. Results showed that neither 
DSP-4 nor PCPA pretreatment exerted an influence on the severity of cold and mechanical 
allodynia, as no significant differences were shown compared to the control (SAL + OXA + SAL 
group, Figure 2). These results indicate that both noradrenaline and serotonin have limited 
contribution to the development of cold and mechanical allodynia induced by a single treatment (6 
mg/kg, i.p.) of oxaliplatin. 

 
Figure 2. Effects of noradrenaline or serotonin depletion on cold (A) and mechanical (B) allodynia 
induced by oxaliplatin administration. Before oxaliplatin (OXA, 6 mg/kg, i.p., dotted line) 
administration, mice were treated with single DSP-4 (50 mg/kg, i.p.) or three consecutive 
para-chlorophenylalanine (PCPA) injections (150 mg/kg/day, i.p.). On day four, the measurements 
were performed before the injection of saline (SAL) and 60 min after. “Bl”, baseline; N.S., no 
significance (p > 0.05), vs. SAL + OXA + SAL. Data was expressed as mean ± S.D. and analyzed with 
two-way ANOVA followed by Bonferroni’s post-test. 

Figure 1. Elapsed time of the anti-allodynic effects of venlafaxine (VLX) on oxaliplatin-induced cold
(A) and mechanical (B) allodynia in mice. Mice were divided arbitrarily into four groups. ‘SAL’ refers
to saline, which was used as control, and “10”, “40” and “60 mg/kg” refers to the doses of VLX used.
On the timeline, “Bl” refers to the baseline measured prior to the administration of oxaliplatin (OXA,
6 mg/kg, i.p., dotted line). “0” refers to the measurements performed just before the treatment of VLX
or saline on day four. Data was expressed as mean ± standard deviations (S.D.). * p < 0.05, ** p < 0.01,
*** p < 0.001, vs. saline with two-way ANOVA followed by Bonferroni’s post-test.

2.2. Development of Cold and Mechanical Allodynia by a Single Intraperitoneal Administration of Oxaliplatin
in Noradrenaline or Serotonin Depleted Mice

To observe whether N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) and
para-chlorophenylalanine (PCPA) affect the development of oxaliplatin-induced neuropathic pain,
mice were treated with single DSP-4 (50 mg/kg, i.p.) or multiple PCPA (150 mg/kg/day, for three days,
i.p.) to deplete noradrenaline and serotonin, respectively. Results showed that neither DSP-4 nor PCPA
pretreatment exerted an influence on the severity of cold and mechanical allodynia, as no significant
differences were shown compared to the control (SAL + OXA + SAL group, Figure 2). These results
indicate that both noradrenaline and serotonin have limited contribution to the development of cold
and mechanical allodynia induced by a single treatment (6 mg/kg, i.p.) of oxaliplatin.
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Figure 2. Effects of noradrenaline or serotonin depletion on cold (A) and mechanical (B) allodynia
induced by oxaliplatin administration. Before oxaliplatin (OXA, 6 mg/kg, i.p., dotted line)
administration, mice were treated with single DSP-4 (50 mg/kg, i.p.) or three consecutive
para-chlorophenylalanine (PCPA) injections (150 mg/kg/day, i.p.). On day four, the measurements
were performed before the injection of saline (SAL) and 60 min after. “Bl”, baseline; N.S., no significance
(p > 0.05), vs. SAL + OXA + SAL. Data was expressed as mean ± S.D. and analyzed with two-way
ANOVA followed by Bonferroni’s post-test.
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2.3. Effects of VLX on Oxaliplatin-Induced Cold and Mechanical Allodynia in Noradrenaline-Depleted Mice

Next, we investigated the role of noradrenergic system in the anti-allodynic effect of VLX by
conducting behavioral tests 60 min after its administration on day four, when significant allodynia
signs were shown. Compared to control (SAL + OXA + SAL group), VLX (40 mg/kg, i.p., SAL +
OXA + VLX group) administration significantly attenuated cold and mechanical allodynia (Figure 3,
p > 0.05). However, pretreatment of DSP-4 significantly reversed this analgesic effect of VLX in both
kinds of allodynia (DSP-4 + OXA + VLX group vs. SAL + OXA + VLX group, p < 0.05, respectively).
These results reveal that the noradrenergic system is involved in VLX-induced analgesic actions on
cold and mechanical allodynia in oxaliplatin-administered mice.
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Figure 3. Roles of noradrenaline on the relieving effects of VLX on oxaliplatin-induced cold (A) and
mechanical (B) allodynia in mice. Oxaliplatin (OXA, 6 mg/kg, i.p., dotted line) was injected one day
after the DSP-4 (50 mg/kg, i.p.) or saline (SAL, vehicle) treatment. On day four, mice were subjected to
the measurements just before the VLX (VLX, 40 mg/kg, i.p.) or saline (SAL) injection and 60 min after
the treatments. “Bl”, baseline; # p < 0.05, vs. SAL + OXA + VLX; N.S., no significance (p > 0.05), vs. SAL
+ OXA + SAL. Data was expressed as mean ± S.D. and analyzed with two-way ANOVA followed by
Bonferroni’s post-test.

2.4. Roles of Serotonergic Pathway on the Anti-Allodynic Effects of VLX in Oxaliplatin-Administered Mice

In our subsequent studies, we examined the role of serotonin (5-HT) on the analgesic effect of VLX
by depleting the serotonin through PCPA administration. In the acetone test (Figure 4A) 40 mg/kg of
VLX significantly reduced the hind paw frequency of licking and shaking following acetone stimuli,
and PCPA pretreatment did not prevent this effect (SAL + OXA + VLX vs. SAL + OXA + SAL,
PCPA + OXA + VLX). However, on mechanical allodynia, PCPA pre-administrations entirely blocked
the analgesic effect of VLX, as it completely blocked the effect of VLX (vs. SAL + OXA + VLX group,
p < 0.01). These results demonstrate that the serotonergic pathway is involved in the VLX-induced
analgesic action on mechanical allodynia, but not on cold allodynia in oxaliplatin-administered mice.
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Figure 4. Roles of serotonergic pathway on the relieving effects of VLX on oxaliplatin-induced cold
(A) and mechanical (B) allodynia in mice. PCPA (150 mg/kg/day, i.p.) or saline (SAL, vehicle)
was administered before the oxaliplatin (OXA, 6 mg/kg, i.p., dotted line) treatment. On day four,
mice underwent the measurements twice; just prior to the VLX (VLX, 40mg/kg, i.p.) or saline (SAL,
vehicle) injection, and 60 min after the treatments. “Bl”, baseline; *** p < 0.001, vs. SAL + OXA + SAL;
## p < 0.01, vs. SAL + OXA + VLX; N.S., no significance (p > 0.05). Data was expressed as mean ± S.D.
and analyzed with two-way ANOVA followed by Bonferroni’s post-test.

2.5. Spinal Mechanisms of α-Adrenergic Receptors on VLX-Induced Analgesia in Cold Allodynia

To further demonstrate which α-adrenergic receptor subtypes mediate the VLX-induced analgesic
action against cold allodynia at the spinal level, prazosin (α1-adrenergic antagonist) or idazoxan
(α2-adrenergic antagonist) was injected intrathecally in a volume of 5 µL, 20 min before the VLX
(40 mg/kg, i.p.) administration. Figure 5 shows that idazoxan (10 µg), but not prazosin (10 µg)
or vehicle (SAL) reversed the relieving effects of VLX, revealing that VLX alleviates cold allodynia
through the activation of spinal α2-adrenergic receptors, but not α1-adrenergic receptors.
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Figure 5. Effects of intrathecal injection with α-adrenergic antagonists on the analgesic action of
VLX against cold allodynia. Mice with cold nociception were divided arbitrarily into three groups:
saline (SAL), prazosin (10 µg) and idazoxan (10 µg) were intrathecally (i.t.) injected 20 min before VLX
(VLX, 40mg/kg, i.p.) treatment (A–C, respectively). Measurements were performed twice; just before
the intrathecal injection (Before) and 60 min after VLX treatment (After). Data was expressed as mean
± S.D.; N.S., no significance (p > 0.05); *** p < 0.001, vs. Before; by paired t-test.

2.6. Spinal Mechanisms of α-Adrenergic or Serotonergic Receptor on the VLX-Induced Analgesia in
Mechanical Allodynia

Finally, to identify which α-adrenergic or serotonergic receptor subtypes mediate the VLX-induced
analgesic action against mechanical allodynia at the spinal level, prazosin, idazoxan, methysergide
(mixed 5-HT1, 2 receptor antagonist), or bemesetron (MDL-72222,5-HT3 receptor antagonist) was
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injected intrathecally in a volume of 5 µL, 20 min before the treatment. As shown in Figure 6,
prazosin (10 µg) and methysergide (10 µg), along with two other vehicles (SAL and DMSO), induced
a significant decrease in the percentage of paw withdrawals after VLX treatments. In contrast,
in the idazoxan (10 µg) and MDL-72222 (15 µg) pretreated mice, the VLX-induced analgesia was
mainly blocked (Figure 6D,E). Thus, these results show that activation of α2-adrenergic and 5-HT3

receptors, but not α1-adrenergic or 5-HT1, 2 receptors, contribute to the relieving actions of VLX on
mechanical allodynia.
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Figure 6. Effects of intrathecal injection with α-adrenergic or serotonergic antagonists on the analgesic
action of VLX against mechanical allodynia. Mice with mechanical nociception were divided arbitrarily
into six groups: saline (SAL), DMSO, prazosin, idazoxan, methysergide and bemesetron (MDL-72222)
were intrathecally (i.t.) injected 20 min before VLX (VLX, 40mg/kg, i.p.) treatment (A–F, respectively).
Then measurements were performed just before the i.t. injection (Before) and 60 min after VLX
treatment (After). Data was expressed as mean ± S.D.; N.S., no significance (p > 0.05); * p < 0.05,
*** p < 0.001, vs. Before; by paired t-test.

3. Discussion

In this study, we investigated the analgesic effect of VLX on oxaliplatin-induced neuropathic pain,
and clarified the mechanism of its effect. Three different doses of VLX were used; 10, 40, and 60 mg/kg.
However, 40 and 60 but not 10 mg/kg of VLX were shown to attenuate the pain induced by oxaliplatin
injection. The effects of both 40 and 60 mg/kg of VLX lasted until 120 min after the administration
on cold allodynia, whereas on mechanical allodynia, their effects were not observable at 120 min
(Figure 1). This data shows that VLX may be more effective against cold than mechanical allodynia.
Similarly, the other group also reported that VLX only reversed the cold but not mechanical allodynia
induced by oxaliplatin, suggesting that VLX may be more effective against cold than mechanical
allodynia [27]. In our subsequent experiments, we used 40 mg/kg of VLX, as 10 mg/kg was not
potent enough against oxaliplatin-induced pain, and also as the effect of 60 mg/kg of VLX was not
significantly different from that of the 40 mg/kg. VLX was reported to be more effective when used
at a dose above 30 mg/kg as it acts as a serotonin and noradrenaline transporter inhibitor, whereas
at a dose below 10 mg/kg, it only acts as a serotonin reuptake inhibitor [28]. This may explain why
in our experiment, the lowest dose of VLX (10 mg/kg) was not effective against oxaliplatin-induced
neuropathic pain.
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In the next experiments, we used DSP-4 and PCPA to elucidate the underlying mechanisms of
VLX, by depleting endogenous noradrenaline and serotonin, respectively. DSP-4 and PCPA injection
did not cause any effect on the development of cold and mechanical allodynia (Figure 2); however,
single pretreatment of DSP-4 blocked the analgesic effect of VLX on both cold and mechanical allodynia
(Figure 3). PCPA pretreatment only blocked the effect of VLX on mechanical allodynia, showing that
the serotonergic system is not involved in the analgesic effect of VLX against cold allodynia induced
by oxaliplatin (Figure 4).

For the next step, we focused on the action of adrenergic and serotonergic receptors subtypes
present at the spinal cord, as noradrenalin and serotonin contents in the spinal cord were shown
to be up-regulated after VLX treatment [29,30]. Our results showed that α2-adrenergic, but not
α1-adrenergic receptors are involved in the action of VLX against cold allodynia (Figure 5), whereas
on mechanical allodynia, both α2-adrenergic and 5-HT3 receptors were shown to be involved
(Figure 6). Spinal α2-adrenergic receptors are known to play an important role in the analgesic
effect, as activating spinal α2-noradrenergic receptors by using its agonist clonidine resulted in pain
attenuation in various animal models of pain [31,32]. Moreover, in our previous studies conducted on
oxaliplatin-induced neuropathic pain, blocking the spinal α2-noradrenergic receptors by its antagonists
blocked the analgesic effect of other treatments [22,24–26]. However, in another study [33], we reported
that duloxetine, a serotonin-noradrenaline reuptake inhibitor similar to VLX, could also decrease
oxaliplatin-induced cold and mechanical allodynia, by acting on α1-adrenergic receptors, as the effect
of duloxetine was blocked by an α1-(prazosin), but not α2-(idazoxan) adrenergic receptor antagonist.
Altogether, these results suggest that activation of both α1- and α2-adrenergic receptors may suppress
the allodynia induced by oxaliplatin [22].

Serotonin, along with noradrenaline, is a critical neurotransmitter deeply involved in the
endogenous pain inhibitory system [13], and 5-HT3 receptors are known to be involved in pain
attenuation as they are reported to be largely present on the inhibitory interneurons of the spinal dorsal
horn [34]. In our study, the serotonergic system was not involved in the analgesic effect of VLX against
cold allodynia induced by oxaliplatin. Although it is difficult to clarify the reason for this difference
with our own data, the mechanism of cold and mechanical allodynia has been reported to be different.
The cold allodynia is mostly mediated by unmyelinated C fibers [35–37], whereas mechanical allodynia
is mediated by both A and C fibers [38]. A fibers are known to innervate both in the superficial and
deep laminae of the spinal dorsal horn, whereas C fibers mostly innervate in the superficial layer of
the dorsal horn. On the superficial layer, inhibitory interneurons are widely present and death of these
interneurons were reported to contribute to pain [39,40]. Moreover, their activities can be modulated
by serotonin as they possess serotonin receptors [41,42]. However, as it was reported that the number
of interneurons could decrease following a nerve damage [43], we suppose that oxaliplatin injection
may have lessened the role of these interneurons, decreasing the analgesic action of serotonin on C
fibers, but more detailed experiments are needed to clarify this.

In conclusion, our results show that 40 mg/kg of VLX treatment has a significant analgesic effect
against oxaliplatin-induced neuropathic pain. Noradrenaline was shown to mediate its effect on both
cold and mechanical allodynia, whereas serotonin was only involved in the action against mechanical
allodynia. Furthermore, VLX was shown to alleviate cold allodynia through the activation of spinal
α2-adrenergic receptors, but not α1-adrenergic receptors. On mechanical allodynia, activation of
α2-adrenergic and 5-HT3 receptors, but not α1-adrenergic or 5-HT1, 2 receptors, were shown to
contribute to the relieving actions of VLX.

4. Materials and Methods

4.1. Animals

Young adult, male C57BL/6 mice (six weeks old) weighing 18 to 25 g were obtained from Daehan
Biolink (Chungbuk, Korea). They were housed four per cage under controlled temperature (23 ± 2 ◦C)
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and humidity (65% ± 5%) with food and water available ad libitum under standard pathogen-free
laboratory conditions. Artificial lighting was maintained on a fixed 12 h light/dark cycle (a light
cycle; 07:00–19:00, a dark cycle; 19:00–07:00). Animals were habituated to the behavioral testing
environment with handling procedures by the investigator at least one week before the beginning of
experiments. All experimental protocols were approved by the Kyung Hee University Animal Care
and Use Committee (KHUASP (SE)-16-153, 29 December 2016).

4.2. Oxaliplatin or VLX Administration

Oxaliplatin (Sigma, St. Louis, MO, USA) was dissolved in a 5% glucose solution at a concentration
of 2 mg/mL and was intraperitoneally (i.p.) injected at 6 mg/kg bodyweight [44,45]. As control,
the same volume of 5% glucose solution was intraperitoneally injected.

VLX (Sigma) was dissolved in saline (SAL) at three different concentrations (1, 4 and 6 mg/mL)
and was intraperitoneally injected at doses of 10, 40 and 60 mg/kg, respectively [46,47]. Also,
the control group received the same volume of saline (SAL).

4.3. Behavioral Tests

The first aim of this study was to investigate the dose-dependent anti-allodynic effects of VLX in
a mouse model of oxaliplatin-induced hypersensitivity. In our previously published works [24,25], the
significant cold and mechanical allodynia symptoms were ascertained from three days after a single
oxaliplatin (6 mg/kg, i.p.) injection and maintained up to nearly seven days. Therefore, in this study,
behavioral tests were performed before the administration of oxaliplatin (Bl), prior to the treatment of
VLX in day four (time point 0), and resumed 60, 120 and 180 min after the injections of VLX (+60, +120,
+180, respectively). The investigator was blinded to the usages of all drugs. Behavioral tests were only
performed during the light period.

To quantify cold allodynia, brisk reactions of hind paw in response to acetone stimuli were
measured [48,49]. Mice were caged beneath an inverted clear plastic cage (12 × 8 × 6 cm) atop a metal
mesh floor and enabled to acclimate for 30 min prior to the measuring. Acetone (10 µL, Reagents
Chemical Ltd., Gyonggi-do, Korea) was applied to the mid-plantar skin of each side three times and
the frequencies of brisk withdrawal, licking and shaking of the testing hind paws were counted after
the acetone stimuli for 30 s.

To quantify mechanical allodynia, quick hind paw withdrawal induced by von Frey filament
application was measured [48,50]. Mice were caged beneath an inverted clear plastic cage
(12 × 8 × 6 cm) atop a metal mesh floor and enabled to acclimate for 30 min before the measuring.
A von Frey hair (Linton Instrumentation, Norfolk, UK) with a bending force of 0.4 g was applied
to the mid-plantar skin of each side 10 times (once every 5 s). The number of brisk withdrawal
reactions to the von Frey filament stimuli from both hind paws was counted and expressed as an
overall percentage response.

4.4. Depletion of Noradrenaline or Serotonin

To estimate whether and how the noradrenergic or serotonergic system mediates the anti-allodynic
mechanism of VLX in oxaliplatin-administered animals, two different groups of mice were treated with
N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) or Para-chlorophenylalanine
(PCPA), respectively. The formulae of DSP-4 and PCPA were determined according to the previous
works [51–54], which could widely deplete correlative neurotransmitter stores in the central nervous
system level (noradrenaline and 5-HT, respectively).

Briefly, animals were intraperitoneally injected with DSP-4 (Tocris, Cookson, UK, 50 mg/kg,
5 mg/mL) or vehicle (SAL) a day before the oxaliplatin administration [51,52]. On the other hand,
PCPA (Sigma, 150 mg/kg/day, 15 mg/mL) or vehicle (SAL) was intraperitoneally injected to animals
prior to oxaliplatin treatment for three days [53,54].
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4.5. Adrenergic or Serotonergic Receptor Antagonist Administration

To further examine which adrenergic or serotonergic receptor subtype at the spinal cord level
mediates the analgesic effects of VLX in oxaliplatin-administered mice, four specific antagonists were
administered intrathecally (i.t.) 20 min prior to the VLX administration. The formulae of antagonists
were determined based on previous reports [23,25,55]. Concisely, α1-adrenergic receptor antagonist
prazosin (10 µg, Sigma), α2-adrenergic receptor antagonist idazoxan (10 µg, Sigma), a mixed 5-HT1, 2

receptor antagonist methysergide maleate (10 µg, Tocris, Cookson, UK) were dissolved in saline.
Besides, 5-HT3 receptor antagonist MDL-72222 (15 µg, Tocris) was dissolved in 20% DMSO [23,56].
All antagonists or vehicles were administered intrathecally in volumes of 5 µL. In a prone position,
mice were anaesthetized with a combination of 2–2.5% isofluorane in N2O/O2 (50:50 v/v), and then a
Hamilton syringe needle was inserted into the subarachnoid space in L5–L6 intervertebral level [57,58].

4.6. Statistical Analysis

Data were presented as mean ± S.D. Statistical analysis was done with the software of Prism
5.0 (Graph Pad Software, San Diego, CA, USA, 2008). Paired t-test or two-way ANOVA followed
by Bonferroni’s multiple comparison test was used for statistical analysis. In all cases, p < 0.05 was
considered statistically significant.
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