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Accurate determination of solvation free energies
of neutral organic compounds from first principles

Leonid Pereyaslavets"8®, Ganesh Kamath'®, Oleg Butin', Alexey lllarionov!, Michael Olevanov'?, Igor Kurnikov?,
Serzhan Sakipov® ', Igor Leontyev!, Ekaterina Voronina2, Tyler Gannon', Grzegorz Nawrocki',

Mikhail Darkhovskiy 1 llya lvahnenko!, Alexander Kostikov!, Jessica Scaranto3, Maria G. Kurnikova® 3,
Suvo Banik® %>, Henry Chan® 4, Michael G. Sternberg® Subramanian K. R. S. Sankaranarayanan® 4>,
Brad Crawford® ©, Jeffrey Potoff®, Michael Levitt, Roger D. Kornberg7 & Boris Fain"8

The main goal of molecular simulation is to accurately predict experimental observables of
molecular systems. Another long-standing goal is to devise models for arbitrary neutral
organic molecules with little or no reliance on experimental data. While separately these
goals have been met to various degrees, for an arbitrary system of molecules they have not
been achieved simultaneously. For biophysical ensembles that exist at room temperature and
pressure, and where the entropic contributions are on par with interaction strengths, it is the
free energies that are both most important and most difficult to predict. We compute the free
energies of solvation for a diverse set of neutral organic compounds using a polarizable force
field fitted entirely to ab initio calculations. The mean absolute errors (MAE) of hydration,
cyclohexane solvation, and corresponding partition coefficients are 0.2 kcal/mol, 0.3 kcal/
mol and 0.22 log units, i.e. within chemical accuracy. The model (ARROW FF) is multipolar,
polarizable, and its accompanying simulation stack includes nuclear quantum effects (NQE).
The simulation tools’ computational efficiency is on a par with current state-of-the-art
packages. The construction of a wide-coverage molecular modelling toolset from first prin-
ciples, together with its excellent predictive ability in the liquid phase is a major advance in
biomolecular simulation.
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nderstanding the energetics of solvation is a fundamental

part of describing biophysical processes. The liquid

state properties are important in their own right, play a
key role in battery design, and are a major part of more
structured biological ensembles: e.g., protein shape and behavior,
protein-ligand complexes and cell membranes. Because of the
overwhelming complexity of ab initio calculations the underlying
quantum mechanics must be represented by Newtonian models.
The art and science of simulating these systems have been in
development since the 1960’s'? and many force fields that
describe proteins and other functional groups have been created
and are widely used. However, state-of-the-art wide-coverage
molecular force fields>= in simulation packages that enable free
energy computations derive some or all of their parameters
by fitting to empirical observables. There are at least two draw-
backs to this approach. First, even available experimental data
(e.g., densities, heats of vaporization) are insufficient to produce
models that describe existing compounds precisely; and there will
always be molecules (that, for example, haven’t been synthesized)
that will require more precise description than is available from
existing inference. Second, if an empirical model’s prediction is

erroneous, it is exceedingly difficult to decide exactly which
parameter(s) to remove, add, correct or adjust. A major advan-
tage of Quantum Mechanical (QM)-parametrized physics-based
molecular models (force fields)!011 is that, with some caveats for
molecular size, QM calculations!'? can be obtained for arbitrary
molecules. Another advantage is that prediction errors can be
traced to the imprecise description of the interaction energies and
rectified in the model. It is therefore highly desirable to create
models parameterized entirely from first-principles (ab initio)
Quantum Mechanical calculations.

The value of +0.5 kcal/mol for the desired (“chemical”) accuracy
of free energy predictions arises from several considerations. First
and foremost, 0.59 kcal/mol is the thermal noise at ambient con-
ditions (room temperature and pressure). This is the inherent
fuzziness of our everyday biological world. Additionally, for
example, in ligand-protein lead optimization the definition of
“incremental lead improvement” is about 0.5 kcal/mol or ~2-3-fold
increase in binding affinity.

We have implemented a QM-parametrized force field in a
simulation stack that covers arbitrary organic molecules and
predicts solvation free energies of molecular systems to accuracy
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Fig. 1 QM: FF energies’ correspondences and deviations. a FF vs. QM energies for all the dimers in our training sets. The functional form reproduces the
lower energy conformations very well and is designed to permit a larger error in less important high-energy high electron overlap regions. b the distribution
of errors for our training dimer sets. The MAE of errors are 0.17 kcal/mol for all, 0.19 kcal/mol for dimers with water (total number of dimers = 36,309),
and 0.16 kcal/mol for dimers with alkanes (total number of dimers = 25,986): A specific system (ethanol-water) provides a more detailed illustration of
model energies and their correspondence with QM. ¢, d dissociation curves for primary (¢) and secondary (d) minima of the ethanol-water dimer. QM
energies are solid lines and FF values are filled circles. The colors designate the energy components: electrostatics (ES), exchange-repulsion (EX),

dispersion (DS) and induction (IND). The agreements for the total energy and for each component are excellent. e-g Error distributions for the ethanol-
water dimer: e is analogous to a; f is a difference plot offering a more detailed view and is projected onto (g) the error distribution. The MAE for the errors

in this system is 0.08 kcal/mol.

2

NATURE COMMUNICATIONS | (2022)13:414 | https://doi.org/10.1038/s41467-022-28041-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

of ~0.3 kcal/mol for neutral species. The predictions in the liquid
phase are satisfyingly accurate, and it is also satisfying that the
model is created solely from ab initio computational methods
without fitting to any experimental data. We demonstrate the
predictive ability of the model and simulation machinery by
computing solvation free energies for a wide range of chemical
functional groups in water and cyclohexane.

Results

QM-FF agreement. We start by creating a model that represents
the QM energies of the ensemble accurately enough. A descrip-
tion of the intermolecular functional form, the component
decomposition, and the parametrization procedure is in Supple-
mentary methods (Quantum mechanical details, force field
description, force field functional form of ARROW FF, and
parameter fitting), Supplementary Fig. 1 and in references®!3.
Though models of isolated chemical species with exquisite
agreement to QM energies do exist!41°, the complexity required
by such precision has prevented researchers from describing
arbitrary functional groups simultaneously. One of the con-
tributions of this work is determining the degree of faithfulness
that is sufficient for modeling the liquid phase of arbitrary organic
molecules and mixtures while keeping the model complexity
manageable.

The first step is choosing the level and accuracy of the
underlying QM computations. We fit the intermolecular inter-
actions to dimer and select multimer QM energies at the highest
level of theory practical for large-scale parameterization. This
“silver-like standard”1® is commonly used as a benchmark in the
computational chemistry community, and is within 0.05 kcal/mol
from the “gold standard”!®. More details can be found in
Supplementary methods (Quantum Mechanical details).

The next step is encapsulating the QM interaction energies in a
physics-based analytical model®!3. The required faithfulness
demands a significant level of complexity from the functional
form: polarizability terms enable proper transferability from
dimer to bulk energies!”; multipole descriptions of both the
electrostatic!® and exchange-repulsion interactions permit a
precise fit of the potential energy surface for all dimer
orientations®!%; a fairly detailed typification accounts for the
difference in interaction properties of identical atoms in diverse
chemical environments. The force field description including the
functional form, and the parametrization workflow and pseudo-
code, are discussed in detail in the Supplementary methods. The
deviation (MAE) between Quantum mechanical (QM) and force
field (FF) energies for all the benchmark dimers and multimers in
our training set is 0.17 kcal/mol and the error distribution is
centered around zero (Fig. 1a, b, e, f, g). In Fig. 1c, dwe illustrate
the QM-FF agreement for a single representative system, a
strongly interacting ethanol-water dimer. Additionally, the
FF:QM errors for ethanol-water dimers as a function of closest
distance are shown in Supplementary Fig. 2. Both the total
energies as well as their individual components for this system
agree to within 0.1 kcal/mol to their ab initio counterparts. To aid
transferability, in addition to reproducing the total energy, we
also match the individual components to their corresponding QM
counterparts (Fig. 1lc, d). To investigate the training-test
convergence dependence of dimer space on our force field
parameters we conducted this test on a subset of molecules and
convergence plots are presented in Supplementary Fig. 4.

Molecular deformations (“bonded interactions”), especially
torsions, are critical for correct solvation results because they
determine the proper solvent accessibility. A variety of accurate
models long established in the field>>® as well as brilliant
recent developments20-21 provide excellent reproduction of the

intramolecular energies. We take the functional form of the
bonded interactions from MMFF943), with force constants and
equilibrium values fitted to QM energies at the MP2/aug-cc-
pVTZ level of theory.

Solvents. We selected water and cyclohexane as our solvents for
this benchmark study. Water, of course, is the most ubiquitous
molecule in any biophysical model. We chose cyclohexane
because it is nonpolar, it equilibrates relatively quickly, and
because there is ample reliable experimental data for both
cyclohexane (CHEX) solvation free energies, as well as for the
cyclohexane/water (CHEX/H,0) partition coefficients. Though
the two molecules were parameterized with exactly the same
procedure as every other functional group, they participate in
bulk and thus warrant extra examination of their liquid-state
properties.

The liquid phase must properly model not only the molecular
2-body interactions described in the previous section, but also the
many-body contributions. For water, which is small, polar, and
polarizable, the many-body energies are estimated to be a sizable
27% of the total?2. Figure 2a shows the non-additive energies of
select optimized water multimers. Additionally, we also show the
non-additive behavior in the case of ethanol-water multimers, see
Supplementary Fig. 3. They are in excellent agreement with their
reference QM values, confirming that the energy partitioning
and the induction terms of our polarizable model capture the
non-additive fraction properly.

Biological systems exist mostly at room temperature and
pressure, where the shifting interplay between enthalpy and

Non-additive error : qm

1.5 T
(@) hexamers
o 1r * pentamers |
Ie) * tetramers
£ 057 trimers ||
8 .. e o
& 0Of ) A A ¢ & i
N L]
g-05f .
L
qF .
A5 ‘ ‘ ‘ ‘
-50 -40 -30 -20 -10 0
QM (kcal/mol)
0-O RDF
3.5 T
sl (b) —Expt.
Arrow FF MD
25F Arrow FF PIMD8|
Q 1
o ?r 1
=151 |
(@]
1r p//_\ ~N—
os5F | |
0 — \ \ \ \ \
2 3 4 6 7 8

Fig. 2 Properties of the ARROW water model. a The non-additive many-
body error for water multimers vs. their total QM intermolecular energy. All
the many-body errors are below 0.5 kcal/mol or 1% of total energy, and
below 3% of the many-body contributions. b The radial distribution
function for the O-0O distance in water. The MD RDF (dotted green) is over-
structured compared with the experimental curve, and the presence of NQE
(solid green) brings the structure of ARROW H,0 in excellent agreement
with the experimental one.
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entropy enables the immense variety of biological phenomena.
Therefore, it is the free energies of ensembles that are both the
most useful and interesting and also the most difficult to predict
correctly, and what we focus on here. For solvation, in addition to
capturing the enthalpy of interaction with itself and the solute, a
solvent model must also reproduce the entropic effects of pushing
aside and reordering molecules to create a cavity for placing the
solute. This is especially important for water as it is small, highly
polar, and, though called a liquid, is highly structured at room
temperature and pressure. In Table 1 we list three bulk properties
of our solvents: density, heat of vaporization (Hvap) and the
highly informative self-solvation. The values for water agree with
experimental values to within 3% or better. Additional proof that
our model has captured the free energy of cavity creation in water
accurately is that the hydration of anthracene, a large, non-polar
molecule, is correct to within 2% (0.1 kcal/mol) (Supplementary
Data la). The derivative of the system Hamiltonian with respect
to the alchemical reaction coordinate (<dH/dA) for desolvation of

anthracene in water and its accumulated statistical errors are
shown in Supplementary Fig. 5. The cyclohexane predictions are
slightly less accurate for two reasons: 1) it is a larger molecule so
per heavy atoms the energetics are actually very good and 2) we
designated its atoms to be the same atom type(s) as linear alkanes
(unlike those of smaller, strained, cyclic alkanes), which
introduces a slight discrepancy with QM energies. Nonetheless,
the bulk energetics of cyclohexane are well within our target
accuracy of 0.5 kcal/mol.

Finally, an excellent measure of how well liquid structure is
captured by a model is the radial distribution function (RDF). In
Fig. 2b we demonstrate that the ARROW FF reproduces the
experimental water oxygen-oxygen (O-O) RDF and, therefore,
describes the order of water very well. Additionally, we show that
employing eight beads reaches sufficient convergence for the free
energies and structural properties (see Supplementary Figs. 7
and 8 and Supplementary Table 4). The agreements for both
neat properties (Table 1) and water structure (Fig. 2b) are

Table 1 Neat properties and hydration/solvation of water and cyclohexane.

H,O Density (g/cc) Hvap (kcal/mol) Hydration (kcal/mol) Self-solvation (kcal/mol)
expt 0.997 10.51 —6.30 —6.30
ARROW FF (MD) 1.027 11.98 —6.81 —6.81
ARROW FF (PIMDS8) 1.027 10.63 —6.13 —6.13

CHEX Density (g/cc) Hvap (kcal/mol) Hydration (kcal/mol) Self-solvation (kcal/mol)
expt 0.790 7.91 1.20 —4.42
ARROW FF (MD) 0.803 8.04 —-0.10 —4.23
ARROW FF (PIMD) 0.786 7.83 1.08 —-4.02

identical.

Predictions were performed by classical simulations and with inclusion of NQE. All numbers are in good agreement with the experimental values, with PIMD simulations being significantly closer than the
classical MD ones. The self-solvation of water is a succinct measure of model accuracy and we recommend its determination for all water models. For water the self-solvation and hydration are obviously
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significantly improved by including NQE!315.23. Satisfyingly, the
small errors in initial model parameterization are not amplified
through the chain of model construction and simulation
machinery.

Solutes and solvation predictions. We chose representative
solutes containing all of the common neutral chemical functional
groups: carboxylic acids, alkanes, alkenes, aromatics, aldehydes,
ketones, alcohols, amides, esters, thiols, sulfides, disulfides, and
heterocycles?4. The simulations were performed independently by
four groups using their own respective computational resources
and architectures, and then averaged. The graphical summaries of
the solvation and hydration free energies predictions’ are in
Fig. 3a, b, and we list the results for each molecule in Supple-
mentary Data la. We also provide the free energy results as
reproduced by our collaborators in Supplementary Data 1d.
Because aqueous protein and protein-ligand systems are of spe-
cial importance, and because accurate prediction of solvation and
desolvation of amino acids is critical for modeling of these
systems2?, we highlight the results for neutral amino-acid analogs
separately (Fig. 3a inset), see Supplementary Data 1b for raw data.
The partition coefficient is a valuable measure of the model’s
simultaneous compatibility with both polar (e.g., aqueous) and
non-polar (e.g., membranes and proteins) environments which is
crucial for describing bio-molecular systems, and we show it in
Fig. 3c.

The proper art of simulation?%27 is also essential for obtaining
accurate predictions. Accurate treatment of long range electro-
static (e.g., Particle Mesh Ewald?2°) and dispersion?” interac-
tions, proper thermodynamic modeling (thermostats and
barostats)3%31, enhanced sampling techniques and the Path
Integral formulation of nuclear motion32-34 all help to translate
the FF-QM agreements to correct free-energy values. Further
details are provided in Supplementary methods (Simulation
details and protocols). We also provide computational perfor-
mance of the ARROW FF stack for CPU and CPU+GPU
implementations for both classical and path-integral simulations
in Supplementary Table 2.

The error (MAE) for the free energies of hydration is 0.2 kcal/
mol and for the neutral amino-acid subset is 0.23 kcal/mol. The
largest hydration errors seen for o-cresol and 3-methyl-indole are
only ~1 kcal/mol. For solvation in cyclohexane the MAE is 0.3
kcal/mol, and for the partition coefficient it is 0.22 log units.
These predictions are very good: most are within experimental
and simulation uncertainty, and are uniformly correct across a
diverse range of chemical groups of varying sizes and interaction
strengths.

We recently highlighted the importance of including NQE
when modeling alkanes!33>. The results presented in this
manuscript suggest that NQE must be taken into account for
precision calculations for all molecular systems. We illustrate this
in Fig. 4a where we plot the hydration predictions of classical
simulations alongside those performed with PIMD. Proper
accounting of the quantum nature of nuclear motion system-
atically shifts the predictions towards the experimental values and
improves the prediction error from MAE of 0.78 to 0.2 kcal/mol.

Comparison with other force fields. The main advance reported
in this paper is three-fold: our model is a wide-coverage
force field and simulation stack parameterized exclusively from
QM data which produces accurate predictions. It is of interest to
gauge the relative performance of ARROW FF to existing wide-
coverage state-of-the-art models for prediction accuracy. Most of
the QM-parameterized FF’s103¢ are not currently enabled in a
simulation stack which produces free energy predictions, so we
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Fig. 4 NQE effect and comparison of hydration predictions. a A visual
comparison of the hydration predictions vs. experimental values for PIMD8
vs. classical MD values. The inclusion of NQE systematically improves the
predictions and decreases the overall error (MAE) from 0.78 to 0.2 kcal/
mol. b A comparison of the hydration free energies to state-of-the art wide
coverage Force Fields. The molecules shown include the major functional
groups that have been parametrized by all three models and are therefore a
subset of those shown in Fig. 3a. The errors (MAE) for GAFF, AMOEBA,
and ARROW FF are 0.88, 0.76, and 0.22 kcal/mol, respectively.

selected two widely-used empirical models to compare with. One
is GAFF®, a representative of the many fixed-charge models, and
the other is a polarizable model AMOEBA®!8, To avoid repro-
duction discrepancies the comparison is made on the available
published subset of functional groups and is plotted in Fig. 4b.
The MAE’s for this subset are, respectively, 0.88 (GAFF AMI-
BCC)37, 0.76 (AMOEBA)? and 0.22 (ARROW) kcal/mol. A list of
molecules and their predicted hydration values for each model is
in Supplementary Data lc. Additionally, in Supplementary
Data le, Supplementary Table 3, Supplementary Fig. 6, and
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Supplementary methods (Comparison to Implicit solvent models
and Machine learning models) we summarize and discuss the
comparative performance of several excellent tools from a variety
of methodologies that focus specifically on prediction of solvation
energies383%, In Supplementary Data 1f we also show the QM-FF
agreement of ARROW FF on the S22 and S66 datasets as well as a
comparison with the same for geometry, frequency, non-covalent
force field (GFN-FF)11:39) the MAE’s for such datasets can be
found in Supplementary Table 1.

We have shown that a QM-parametrized, physics-based
force field embedded in a simulation and analysis stack predicts
the free energies of solvation of arbitrary organic molecules
to an accuracy better than thermal noise at room temperature
(£0.5 kcal/mol). The correspondence from quantum mechanics
to ensemble predictions is established via several important links.
First, the benchmark QM calculations need to be of sufficient
accuracy. Second, the model should provide a faithful description
of the QM potential energy surface (PES), which imposes a
significant yet computationally manageable level of complexity on
the functional form. Third, the established art of molecular
ensemble averaging must be performed with care. Finally, the
dynamics of sampling the system should account for nuclear
quantum effects. The ARROW FF is likely at the limit of
complexity feasible for a wide-coverage analytical force field, and
so it is satisfying that this model results in excellent prediction of
properties in the liquid phase.

Data availability

The scripts, tools, and data used in this work are available from the corresponding
authors and InterX Inc. upon request. The full results’ data has been included in
Supplementary Information Tables and further data is also available upon request.

Code availability
The codes, tools and data needed to reproduce the data presented in this article is
available on github https://github.com/freecurve/interx_solvation_suite.
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