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Porous 3D Prussian blue/cellulose 
aerogel as a decorporation agent 
for removal of ingested cesium 
from the gastrointestinal tract
Ilsong Lee1,2, Sung-Hyun Kim3, Muruganantham Rethinasabapathy1, Yuvaraj Haldorai4,7, 
Go-Woon Lee1,5, Sang Rak Choe1, Sung-Chan Jang1,2, Sung-Min Kang1, Young-Kyu Han4, 
Changhyun Roh   2,6, Wan-Seob Cho3 & Yun Suk Huh1

In the present study, we successfully synthesized a porous three-dimensional Prussian blue-cellulose 
aerogel (PB-CA) composite and used it as a decorporation agent for the selective removal of ingested 
cesium ions (Cs+) from the gastrointestinal (GI) tract. The safety of the PB-CA composite was evaluated 
through an in vitro cytotoxicity study using macrophage-like THP-1 cells and Caco-2 intestinal epithelial 
cells. The results revealed that the PB-CA composite was not cytotoxic. An adsorption study to examine 
the efficiency of the decorporation agent was conducted using a simulated intestinal fluid (SIF). The 
adsorption isotherm was fitted to the Langmuir model with a maximum Cs+ adsorption capacity of 
13.70 mg/g in SIF that followed pseudo-second-order kinetics. The PB-CA composite showed excellent 
stability in SIF with a maximum Cs+ removal efficiency of 99.43%. The promising safety toxicology 
profile, remarkable Cs+ adsorption efficacy, and excellent stability of the composite demonstrated its 
great potential for use as an orally administered drug for the decorporation of Cs+ from the GI tract.

A considerable amount of radionuclides have been released into the environment owing to the use of nuclear 
explosive devices or radiological dirty bombs and enter the human body via inhalation, ingestion, and wound 
contamination1–6. All radionuclides, whether primarily ingested from contaminated food and water or second-
arily ingested via the respiratory tract, will enter the systemic circulation7,8 and may pose significant health risks 
to the exposed individuals9 depending on the dose of the radioactive contaminant and the biological status of 
the subject, such as age and health. The gastrointestinal (GI) tract is a critical target organ for many insoluble 
radioactive contaminants owing to contaminants traveling the length of the tract unabsorbed and the excretion 
via hepatobiliary clearance. Thus, it is important to develop a safe and effective procedure for the removal of radi-
onuclides from the body after contamination10.

Radioactive cesium (137Cs) is the most harmful naturally occurring radionuclide, with a long half-life (30.17 
years) and high water solubility and mobility, which readily enters the animal and human food chains through 
the consumption of contaminated water, plants, meat, fish, and milk11,12. Moreover, Cs in animals and humans is 
processed pharmacokinetically in the same way as sodium (Na) and potassium (K) owing to its chemical analogy 
with those elements13,14. Approximately 10% of Cs is eliminated rapidly with a biological half-life of 2 days, 90% 
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is eliminated gradually with a biological half-life of 110 days, and less than 1% remains with a longer biological 
half-life of approximately 500 days15. Decorporation agents enhance the elimination or excretion of absorbed 
radioactive contaminants, are associated with the absorption of 137Cs from the GI tract into the systemic cir-
culation, and improve elimination after absorption; therefore, they are of great use for the minimization of the 
absorbed radiation dose when people are exposed to these radionuclides4,16. Owing to the similar biological 
nature of Cs and Na/K, decorporation agents should have a high selectivity for Cs to avoid electrolytic imbalances 
caused by the elimination of Na and K from the GI tract1,17–19.

Prussian blue (PB; trade name Radiogardase®) is the only drug that is currently approved by the U.S. Food 
and Drug Administration (FDA) and European Medicines Agency for the decorporation of internal Cs contam-
ination20,21. The side effects of PB include constipation and undefined gastric distress22 may increase radiation 
exposure by increasing the transit time of 137Cs. In addition, recent developments in nanoparticulate PB have 
exposed some latent problems, such as absorption through intestinal epithelial cells, agglomeration in neutral 
buffered conditions, and binding to other elements (e.g., K), which result in electrolyte imbalance. Therefore, the 
practical application of these decorporation agents has limitations from the perspectives of safety and efficacy.

Highly efficient clinically acceptable decorporation agents should be developed through the elimination of the 
safety issues related to the existing decorporation agents. In a previous study, two types of PB composite, based 
on nanoporous silica or carbon sponge, were suggested for internal Cs removal23,24. Currently, intensive research 
has focused on the viability of natural polymers, such as alginate, chitosan, collagen, starch, and cellulose, for use 
in a range of biomedical applications. Among these polymers, cellulose has emerged as an increasingly attractive 
compound owing to its excellent physical stability and biocompatibility25. In addition, the strongly interacting 
hydroxyl functional groups present in cellulose confer a strong affinity for self-association and form an extended 
network through inter- and intra-molecular hydrogen bonds. In particular, the cellulose materials have an ultraf-
ine nanofibrous network structure with high strength and are not digested in the human GI tract. Cellulose is 
approved and regarded as safe by the U. S. FDA19,26–29.

In this study, we synthesized an orally applicable, 3D, porous PB-CA composite and examined the decorpora-
tion of cesium ion (Cs+) from the GI tract. The cytotoxicity and cell viability were tested using macrophage-like 
THP-1 cells and Caco-2 intestinal epithelial cells. In order to investigate the efficiency of the decorporation agent, 
adsorption isotherm studies, kinetic analyses, and stability tests were conducted in simulated gastric fluid (SGF) 
and simulated intestinal fluid (SIF) to mimic GI fluid, and gamma ray irradiated condition.

Results and Discussion
Synthesis, and structural, surface, and morphological studies.  A schematic illustration of the GI 
tract, in which decorporation of Cs+ takes place by the PB-CA composite, is shown in Fig. 1A. The tight caging 
of Prussian blue in cellulose matrix is schematically represented in Figure B. While considering the mechanism 
of Cs adsorption by PB, both ion- and proton-exchange takes place together30. In ion-exchange process, Cs is 
adsorbed by physical adsorption in the regular lattice spaces of PB through cation exchange (Fig. 1C, upper 
panel). Whereas, the chemical adsorption with proton-exchange is the major Cs adsorption mechanism in which 
Cs is adsorbed by the hydrophilic defect site of PB with proton elimination from the coordinated water (Fig. 1C, 
lower panel). The decorporation agents to remove Cs are normally orally administered and are expected to be 
absorbed in the intestinal sections of the GI tract20,31.

A schematic diagram of the fabrication of the PB-CA composite is shown in Fig. 2A. During the synthesis 
process, the acetate ions present in tetrabutylammonium acetate (TBAA) of TBAA/DMSO (tetrabutylammonium 
acetate/dimethyl sulfoxide) (solvent to dissolve cellulose) block the hydroxyl groups of cellulose through the for-
mation of new hydrogen bonds32 that disrupt the intra- and inter-molecular hydrogen bonding33 to form cellulose 
solution and then PB-cellulose solution by the addition of PB. The PB-cellulose solution was then added dropwise 
to DW in room temperature to form PB-cellulose hydrogel with immediate gelation which may be attributed to 

Figure 1.  (A) Schematic diagram of the action of PB-CA in the gastrointestinal tract. (B) Illustrative 
morphology of PB-CA composite. (C) Cesium adsorption mechanism of PB.
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the diffusion of acetate ions from the hydroxyl group of cellulose to DW. Finally, PB-cellulose aerogel (PB-CA) 
was obtained by freeze drying.

Figure 2B shows the XRD patterns of CA and the PB-CA composite. The XRD pattern of CA showed two weak 
peaks at 19.6° and 21.6°, which corresponded to the (101) and (002) reflections, respectively25,34–36. The PB-CA 
composite exhibited intense characteristic peaks of PB at 2θ values of 17.5°, 24.9°, 35.5°, 39.5°, 43.5°, 50.7°, 54.0°, 
and 57.1°, which corresponded to the (200), (220), (400), (420), (422), (440), (600), and (620) planes, respectively, 
along with the less intense characteristic peaks of cellulose37–39, which confirmed the formation of the composite.

Figure 2C compares the FT-IR spectra of CA and the PB-CA composite. The FT-IR spectrum of CA showed 
characteristic bands of cellulose at 3430, 2901, 1163, 1024, and 892 cm−1 corresponding to O-H, C-H, C-O-C 
of the glycosidic bond, C-O stretching, and C-H deformation, respectively26,40,41. The same set of bands were 
observed for the PB-CA composite. The Fe-O band at 601 cm−1 due to the interaction between the hydroxyl 
groups of cellulose and the ferric ions of PB25,42,43 (Figure S1A) confirms the enhanced interaction with cellulose 
and PB44. As a reference, the FT-IR spectrum of pure PB and cellulose is shown in Figure S1B. The bands at 2080 
and 468 cm−1 corresponded to the C=N stretching and FeII-CN-FeIII formation38,42,45, respectively.

The Brunauer-Emmett-Teller (BET) specific surface area of the PB-CA composite and CA were 58.31 (Fig. 2D) 
and 43 m2 g−1 (Figure S1C), respectively. The addition of PB NPs onto CA increased the volume of porous CA 
with increased surface area of the composite which facilitated the rapid diffusion of Cs+ into the composite, 

Figure 2.  Fabrication and characterization of PB-CA. (A) Schematic diagram of the fabrication of PB-CA 
composite, (B) XRD patterns of CA and PB-CA composite, (C) FT-IR spectra of CA and PB-CA composite,  
(D) BET isotherm of PB-CA composite (inset: pore size distribution of PB-CA composite), (E) XPS survey 
spectra of CA and PB-CA composite, (F) C 1s spectra of PB-CA composite, and (G) O 1s spectra of PB-CA 
composite.
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allowing virtually all of the PB sites to bind Cs+, and resulted in a larger absorption capacity and faster kinetics. 
The PB-CA composite exhibited mesopores (2–50 nm) and macropores (>50 nm) (Fig. 2D, inset) related to the 
Type IV and V adsorption isotherm of IUPAC classification46.

The XPS survey scan of the PB-CA composite (Fig. 2E) showed C1s, N1s, O1s, and Fe2p peaks with binding 
energies of 286.56, 397.72, 533.0, and 708.46 eV, respectively. The C1s spectrum (Fig. 2F) of the composite was 
deconvoluted into four constituents: C-C (284.70 eV), C-N (285.02 eV), C-O (286.59 eV), and O-C-O (287.74 eV). 
The C-N peak demonstrated the existence of PB NPs in the composite, which was absent in the spectrum of 
CA (Figure S1D). The O1s spectrum (Fig. 2G) exhibited two peaks at 286.59 eV and 531.18 eV, corresponding 
to C–O35 and Fe–O44, respectively. The spectrum clearly indicated a chemical bond between PB and cellulose 
(Figure S1A) based on the presence of the Fe-O peak that was absent in the deconvoluted O 1 s spectrum of 
CA26,47 (Figure S1E). The Fe 2p spectrum of the PB-CA composite was deconvoluted into three peaks (Figure S1F) 
with binding energies of 708.48 eV, 712.18 eV and 721.68 eV corresponded to the ferrous ions of ferrocyanide, the 
high spin (Fe 2p3/2) and low spin (Fe 2p1/2) states of ferric ions48,49, respectively.

Figure 3 shows the SEM images of the PB-CA composite. As shown in Fig. 3A and Figure S2A, the compos-
ite was highly dense and the surface was rough. This surface roughness may result from the tightly packed PB 
NPs inside the cellulose matrix. Figure 3B and C shows the 3D porous network structure of PB-CA composite, 
in which cubic PB NPs with an average particle size of 50 nm were uniformly dispersed with dense packing. In 
addition, the porous fibrillar network structure of cellulose was retained and stable in the composite, even when 
loaded with PB. A cross-sectional SEM image of the composite is also shown in Fig. 3D. For reference, the SEM 
images of the surface and inner structure of the CA are displayed in Figure S2B and C.

Cytotoxicity of PB and the PB-CA composite.  To evaluate cell viability, we selected macrophage-like 
THP-1 cells that represent the cells of the innate immune system against the invasion of foreign materials and 
Caco-2 intestinal epithelial cells, which are the major type of cells that interact with swallowed decorporation 
agents. In macrophage-like THP-1 cells, PB was strongly cytotoxic and the effective concentration required to 
effect a 50% reduction in growth (EC50) was approximately 205 μg/mL; however, the PB-CA composite did not 
show any cytotoxicity within the tested dosage range (Fig. 4A, solid line). In Caco-2 intestinal epithelial cells, 
PB showed strong cytotoxicity with an EC50 of approximately 96 μg/mL, whereas the PB-CA composite was not 
cytotoxic at the tested dosage (Fig. 4A, dashed line).

The differences in cytotoxicity of the PB NPs may result from the differences in the efficiency of their cellu-
lar uptake. In macrophage-like THP-1 cells, some PB NPs were endocytosed, but most were not; however, the 
PB-CA composite was not endocytosed at all, which may be attributable to the large size of the PB-CA composite 
(Fig. 4B). In Caco-2 intestinal epithelial cells, neither PB nor the PB-CA composite was endocytosed (Fig. 4C). 
The time-course observations of the agglomeration effects of PB showed that PB NPs were well dispersed in DW, 
but severe agglomeration was evident in PBS and cell culture media (DMEM and RPMI-1640) (Figure S3). The 
PB NPs agglomerated immediately after dispersion and this continued for 12 h. The high tendency for agglomer-
ation could explain the minimal uptake of PB in both cell types. Oxidative stress is often considered a key factor 
for cell damage induced by PB NPs. The ROS level measured by the cell-free DCFH-DA assay showed that PB 

Figure 3.  SEM images of the PB-CA composite. (A) Surface morphology, (B,C) inner morphology at different 
magnifications, and (D) cross section morphology.
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had a more marked ROS burst than that of the PB-CA composite and the dose-response curve of ROS of PB was 
consistent with its cytotoxicity pattern (Fig. 4D).

In biological environments such as cell culture media and body fluids, the surface of NPs will be shielded by 
the formation of a “protein corona” that can alter the surface charge and active residues on the particles, which 
can result in behavioral changes in biological media50. In the protein binding assay, PB showed a higher adsorp-
tion capacity than that of the PB-CA composite because of its high surface area and high binding affinity towards 
the protein (Fig. 4E). The acidification of the cell culture medium by the release of protons (H+) from PB or the 
PB-CA composite can be considered as an indirect cytotoxicity mechanism. The pH of the culture medium was 
measured before and after the addition of PB or PB-CA. Briefly, PB or the PB-CA composite was dispersed in 
DMEM medium at 800 μg/mL. The suspensions were incubated for 24 h under the same conditions as the cell 
culture study and the pH was measured. The pH changes of PB and the PB-CA composite before and after incu-
bation for 24 h with different cell culture media are shown in Fig. 4F. Small changes were observed in pH, which 
suggested that the protons released upon the binding of PB with the salts of the culture media did not cause any 
significant changes in cytotoxicity.

Physicochemical stability of PB-CA composite.  An understanding of the stability and PB-release of 
the PB-CA composite is important to determine the suitability of the PB-CA composite as an orally adminis-
tered decorporation agent for the removal of Cs from the GI tract. A number of physiochemical factors can play 
important roles in the stability and release of PB from the composite. The potential effects of digestive fluid, which 
contains various enzymes, salts, and pH conditions, and gamma-rays emitted from radioactive Cs are of signifi-
cant concern. The stability and PB release tests were conducted by the dispersion of the PB-CA composite in SGF 
and SIF (to simulate real conditions) for 24 h and the solutions were analyzed by UV-vis spectroscopy. As shown 
in Fig. 5A, the composite retained its structure without the release of PB, even after treatment for 24 h, and the 
sample remained transparent with no turbidity or phase separation. However, the PB NPs were aggregated and 
deposited in SGF and changed the color of SIF (Fig. 5A, insets). The absorption band at 690 nm that corresponded 
to PB was absent in the UV-vis spectrum, which confirmed that the PB NPs were not released from the PB-CA 
composite. A similar experiment was performed to evaluate the influence of gamma-rays on the stability of the 
PB-CA composite in SGF and SIF by irradiation at different dosages (0, 6, and 60 kGy). As shown in Fig. 5B, the 
PB-CA composite was stable in both fluids and no decomposition was observed, even at the 60 kGy dose. The 
absence of the PB absorbance peak at approximately 690 nm in the UV-vis spectra confirmed that the PB NPs 
were not released from the PB-CA composite. This in vitro data indicated that the composite was stable and 

Figure 4.  Cell viability analysis of PB and PB-CA (direct and indirect mechanisms). (A) Cytotoxicity of PB and 
PB-CA in macrophage-like THP-1 cells (solid line) and Caco-2 intestinal epithelial cells (dashed line). (B) Optical 
images of macrophage-like THP-1 cells treated by PB NPs (upper panel) and PB-CA (lower panel). (C) Optical 
images of Caco-2 intestinal epithelial cells treated by PB NPs (upper panel) and PB-CA (lower panel). (D) Potential 
of ROS generation of PB and PB-CA measured by DCFH-DA assay. (E) Protein corona binding affinity assay of PB 
and PB-CA (the data are expressed as adsorbed protein levels). (F) The change of pH before and after incubation of 
PB and PB-CA in various media.
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unaffected by gamma radiation, gastric fluid, or intestinal fluid and suggested that the PB-CA composite would 
outperform PB in terms of stability.

Adsorption isotherms and kinetic studies.  The equilibrium adsorption isotherm process on the sur-
face of the adsorbent was described by Langmuir and Freundlich adsorption isotherm models51,52. The classical 
Langmuir isotherm model refers to homogeneous monolayer adsorption (the adsorbed layer is one molecule 
thick), in which adsorption can only occur at a finite (fixed) number of identical and equivalent definitively local-
ized sites, with no lateral interactions between the adsorbed molecules, even on adjacent sites53,54. The linear and 
nonlinear forms of the Langmuir isotherm39,43 are written as:

= +
C
q K

C
q

1

(1)
e

e L

e

max

=
+

q q K C
K C1 (2)e max

L e

L e

where qe is the equilibrium adsorption capacity (mg/g) and qmax is the monolayer maximum adsorption capacity 
(mg/g), respectively; Ce is the equilibrium Cs+ concentration of the aqueous phase, and KL is affinity coefficient 
between the adsorbent and adsorbate.

The Freundlich adsorption isotherm model is used to describe the adsorption characteristics for a hetero-
geneous surface and can be applied to the multilayer adsorption of an adsorbate over an adsorbent surface. The 
Freundlich isotherm is expressed by the equations:
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where KF is the measured adsorption capacity of the adsorbent and 1/n is the adsorption intensity.
The Cs+ adsorption experiments were performed in DW (Fig. 6A) and SIF (Fig. 6B) and the data were fitted 

to the Langmuir and Freundlich isotherms. The linear regression correlation (R2) and Cs+ adsorption parameters 
are listed in Table 1. The adsorption isotherm agreed with the Langmuir model with an excellent fit, which was 
indicative of the monolayer adsorption of Cs+. The maximum Cs+ adsorption capacities of the PB-CA composite 
in DW and SIF were 15.38 and 13.70 mg/g, respectively. Compared with SIF, the PB-CA composite showed higher 
Cs+ adsorption capacity in DW. The lower Cs+ adsorption capacity of SIF may be attributed to the presence of 
a large concentration (approximately 2000 ppm) of competitive K+ ions that come into contact with the active 
adsorption sites of the composite55. It has been observed experimentally that with the addition of an excess 10% 
by weight of the adsorbent, the adsorption capacity of PB-CA in SIF was equivalent to that in DW. The Freundlich 
factor n represents the heterogeneity factor and the n value between 1 and 10 determines the favorability of the 

Figure 5.  Adsorption stability test of PB-CA. (A) UV spectra of PB-CA treated in SGF (upper panel) and SIF 
(lower panel) for 24 h (the insets present optical microscopy images to show the stability behavior of PB NPs 
and PB-CA in SGF (upper panel) and SIF (lower panel) treated for 24 h). (B) UV spectra of PB-CA after gamma 
ray irradiated at 0 kGy (upper panel), 6 kGy (middle panel), and 60 kGy (lower panel) (the insets represent 
optical microscopy images to show the behavior of PB-CA after gamma ray irradiation at 0 kGy (upper panel), 6 
kGy (middle panel), and 60 kGy (lower panel)).
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binding affinity between the adsorbate and adsorbent; a higher n value represents stronger binding. In the present 
study, the calculated values of n in DW and SIF were 4.55 and 4.17, respectively, which indicated the physical 
adsorption of Cs+ onto the PB-CA composite.

The adsorption kinetics were investigated by pseudo-first- and pseudo-second-order kinetic models to assess 
the rate of Cs+ adsorption and to understand the adsorption process that controlled the reaction mechanism56,57. 
The Cs+ adsorption kinetics of the PB-CA composite in DW and SIF are shown in Fig. 6C and D. The pseudo 
first-order rate equation is given as:

= −
dq
dt

k q q( ) (5)
t

e t1

where qe and qt are the adsorption capacities (mg/g) at equilibrium and at time t, respectively, and k1 is the 
pseudo-first-order rate constant (min−1). Upon integration and application of the boundary conditions, t = 0 to 
t = t and qt = 0 to qt = qe, a simple linear form of the rate equation was obtained:

− = −ln q q lnq k t( ) (6)e t e 1

In Figure S4A and B, the plots of ln(qe − qt) versus t are shown and Table S1 lists the kinetic parameters.

Figure 6.  Cesium adsorption isotherm and kinetics studies of PB-CA. (A) Cesium adsorption isotherms fitted 
with Langmuir and Freundlich models in DW. (B) Cesium adsorption isotherms fitted with Langmuir and 
Freundlich models in SIF. (C) Cesium adsorption kinetics of PB-CA in DW fitted with pseudo-second order 
kinetics model. (D) Cesium adsorption kinetics of PB-CA in SIF fitted with pseudo-second order kinetics 
model.

Langmuir model Freundlich model

KL [L/mg] qmax [mg/g] R2 KF [L/mg] n R2

DW 0.23 15.38 0.9515 3.67 4.55 0.8969

SIF 0.05 13.70 0.8468 3.32 4.17 0.9888

Table 1.  Cesium adsorption parameters of the Langmuir and Freundlich models of PB-CA in DW and SIF.
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The pseudo-second-order kinetic model assumes that the reaction kinetics were influenced not only by Cs+ 
concentration, but also by the active sites on the adsorbent. The pseudo-second-order model is represented by 
the following equations:

= −
dq
dt

k q q( ) (7)
t

e t2
2

= +
t
q k q q

t1 1

(8)t e e2
2

The second-order rate constant (k2) and equilibrium adsorption capacities (qe) were calculated from the linear 
plot of t/qt vs t using equation (8) (Figure S4C and D). Compared with the first-order model, the second-order 
model had a higher correlation coefficient, which implied that the Cs+ was chemisorbed and the adsorption rate 
of the composite depended on the active sites rather than the concentration of Cs+ in the solution.

The kinetic studies showed that the equilibrium Cs+ adsorption capacity of the composite was higher in SIF 
than DW, even though the rate of reaction was faster in DW (Table S1). The difference between the equilibrium 
adsorption capacities of the composite in DW and SIF can be explained by the differences in the pH value of the 
aqueous solution, which is a significant parameter in controlling the adsorption process. The PB in the PB-CA 
composite possesses a cubic lattice structure with Fe(II) and Fe(III) occupying the corners of the cube and the 
cyanide group positioned on the sides along with the presence of 14–16 coordinated water molecules. Normally, 
Cs+ are completely trapped by chemical adsorption through hydrophilic lattice defect sites of PB and the proton 
(H+) is eliminated from the hydrated water. Thus, the elimination of protons decreased the pH value of the solu-
tion through an increase in the H+ concentration30. This mechanism was represented as follows:

- - - - - - - -[Fe CN Fe OH ] Cs [Fe CN Fe OH ] Cs H (9)II III
2

II III→ ++ − + +

where [FeII–CN–FeIII–OH2] is a unit of PB (Figure S1A). During the forward reaction, the increased H+ con-
centration inhibits the adsorption of Cs+ onto the composite. Thus, the composite exhibits a lower equilibrium 
adsorption value at lower pH conditions. The pH variations of DW and SIF during Cs+ adsorption over 8 h at 
different initial Cs+ concentrations are shown in Figure S5A. In DW, 1.4-, 2.4- and 5.0-fold increases in pH were 
observed at the initial Cs+ concentrations of 0.1, 1, and 5 ppm, respectively. In contrast, only a small increase in 
pH was observed in SIF, which may be attributable to the presence of KH2PO4. As the concentration of KH2PO4 
in SIF is 50 mM, the H2PO4

− ions buffer the SIF solution and stabilize the pH between 7 and 8 (the optimum pH 
range for Cs+ adsorption) at equilibrium17 (Figure S5B). From these results, it was clear that the SIF did not limit 
the equilibrium adsorption of Cs+ and the PB-CA composite showed higher adsorption capacity at pH 7–8. In the 
experiments with 1 ppm Cs+ solution, the PB-CA composite showed 99.71%, 88.30%, and 99.43% Cs+ removal 
within 10 min in DW, SGF, and SIF, respectively (Fig. 7). These results indicated that the composite was an efficient 
adsorbent for the removal of Cs+ from the GI tract. Moreover, the selective adsorption of Cs+ by the PB-CA com-
posite is evident from the kinetic analysis in SIF, which mimics the physiological conditions of the GI tract with 
K+. In SIF, the composite exhibited the highest Cs+ absorption (5.089 mg/g for 5 ppm Cs+; Table S1). Therefore, 
our material selectively adsorbed Cs+ without causing any damage to the electrolyte balance of the body.

Figure 7.  Cesium removal efficiency in DW, SGF, and SIF after 1 and 10 min (10 mL of cesium solution with 
50 mg of PB-CA).
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Intraparticle diffusion model.  The pseudo-second-order model reported that Cs+ ions were chemisorbed 
onto the PB-CA composite based on the assumption that chemisorption may be the rate-limiting step. It is most 
likely that the adsorbate species are transported from the bulk of the solution to the adsorbents through intra-
particle diffusion, which is often a rate-limiting step in many adsorption processes58. The mechanism of Cs+ 
adsorption into the composite was investigated by an intraparticle diffusion model using the following equation59:

=q k t (10)t p
1
2

where the qt is the adsorption capacity at time t and kp is intra-particle diffusion rate constant (mg/g·min1/2). The 
amount of adsorbed Cs+ versus the square root of time (qt vs t1/2) (Fig. 8A and B) showed multi-linearity. The plot 
was divided into three linear regions60,61 attributed to: (i) the external mass transfer across the external surface of 
the adsorbent (the external mass transfer rate constant is kf) or the boundary layer diffusion of solute molecules; 
(ii) the gradual adsorption stage, where the intraparticle diffusion of the adsorbate onto the adsorbent active site 
takes place, which is rate-limiting; and (iii) the final equilibrium stage, in which the adsorption sites are saturated 
and intraparticle diffusion tends to slow down owing to the extremely low concentration of adsorbate in the 
solution.

Additionally, Fig. 8A and B show that the three processes controlled the rate of Cs+ adsorption, but that only 
one process was rate determining in any particular time interval. The slope of each region of the lines and their 
rate constant values revealed the adsorption rate. The slope of the external mass transfer (kf) section was steeper 
than that of the intraparticle diffusion section (kp), i.e. kf > kp, in both DW and SIF (Table S2), which indicated 
that the external mass transfer rate was faster than the intraparticle diffusion step. In turn, this suggested that 
intraparticle diffusion was a rate-controlling process. The lower slope of the line or the smaller value of the rate 
constant indicated a slower reaction rate21. The values of kf were 0.0414 and 0.0180 mg g−1 min−1/2 and the values 

Figure 8.  Intra-particle diffusion model of cesium adsorption. (A) Diffusion studies of cesium into PB-CA 
from DW. (B) Diffusion studies of cesium into PB-CA from SIF (dashed lines represent external mass transfer, 
solid lines represent intra-particle diffusion, and dotted lines represent saturation of cesium ions in PB-CA). 
(C) Schematic diagrams of cesium adsorption into the PB-CA from DW. (D) Schematic diagrams of cesium 
adsorption into the PB-CA from SIF (cesium and potassium concentrations are 0.1 and 2000 ppm, respectively).
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of kp were 0.00537 and 0.00256 mg g−1 min−1/2 in DW and SIF, respectively. DW produced higher kf and kp values 
than SIF, which may be the result of the presence of a significant amount of K+ in SIF that hinders the adsorption 
of Cs+. The mole fraction of Cs+ to K+ was 0.1:2000 ppm. In Fig. 8C and D, it is shown that both Cs+ and K+ were 
present in SIF, whereas only Cs+ was present in DW. The Cs+ concentration gradient between the external film 
and the intraparticle environment was higher in DW than SIF. The external mass transfer rate and intraparticle 
diffusion rate of DW were twice that of SIF. The elemental mapping of the composite after the adsorption of 0.1 
ppm Cs+ in DW for 8 h is shown in Fig. 9. All possible elemental information of Fe, Cs, and the Cs-Fe-overlay are 
shown to elucidate the distribution of PB and Cs in the PB-CA composite. A cryo-fractured PB-CA composite is 
shown in Fig. 9A, in which the iron mapping (Fig. 9B) revealed the uniform distribution of PB in the composite. 
Cs mapping (Fig. 9C) showed the homogeneous dispersion of Cs+ onto the composite through the intraparticle 
diffusion process. The overlaid image of iron with Cs (Fig. 9D) proved the correlation between PB and the Cs+ 
distribution. The mapping data indicated that the Cs+ were completely diffused onto the composite, which is a 
prerequisite for a good adsorbent material.

Conclusions
An edible PB-CA composite was fabricated as a decorporation agent for the removal of Cs+ from the GI tract. 
The SEM images revealed a 3D porous morphology in which the cubic PB NPs were uniformly distributed on 
the cellulose matrix. The cell viability analysis confirmed that the composite was not cytotoxic to either THP-1 or 
Caco-2 cells at the dosages tested. Owing to its larger size than PB, PB-CA was not endocytosed into THP-1 or 
Caco-2 cells and resulted in a low level of ROS production; thus, the composite was non-cytotoxic. The adsorp-
tion studies revealed that the adsorption isotherm was in good agreement with the Langmuir isotherm model 
and indicated monolayer adsorption with maximum Cs+ adsorption capacities of 15.38 and 13.70 mg/g in DW 
and SIF, respectively. In addition, the composite showed an excellent Cs+ removal efficiency of 99.43% in SIF over 

Figure 9.  Cesium distribution on PB-CA after adsorption. (A) SEM image of the cryo-fractured PB-CA. (B) EDS 
mapping of iron. (C) EDS mapping of cesium. (D) EDS mapping of iron-cesium-overlay.
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a period of 10 min. The PB-CA composite showed good stability in both SIF and gamma ray irradiation, which 
suggested the material was safe for use as an oral treatment agent for Cs+ decorporation from GI tract. The Cs+ 
ions were shown to be chemisorbed with an adsorption rate controlled by intraparticle diffusion. The results 
showed that the composite was an effective adsorbent for Cs+ removal in comparison with pure PB with respect 
to the stability, cell viability, biocompatibility, and adsorption capacity. These findings demonstrated the great 
potential of the composite for use as an orally administered drug for the decorporation of Cs+ from the GI tract.

Methods
Materials.  Cellulose, pepsin, dimethyl sulfoxide (DMSO), Prussian blue, tetrabutylammonium acetate 
(TBAA), monopotassium phosphate (KH2PO4), pancreatin, nickel oxide, L-glutamine, penicillin and streptomy-
cin, phorbol myristate acetate (PMA), Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS), 
Dulbecco’s phosphate-buffered saline (DPBS), and bovine serum albumin (BSA) were purchased from Sigma-
Aldrich. 2′, 7′-Dichlorofluorescein diacetate (DCFH-DA) was obtained from Calbiochem, La Jolla, CA, USA. All 
other reagents were of analytical grade and used as received.

Synthesis of the PB-CA composite.  Briefly, a 2% cellulose solution was prepared by the dissolution of 
0.408 g cellulose in a TBAA/DMSO mixture (3 g TBAA/17 g DMSO). The cellulose hydrogel was prepared by 
the addition of the cellulose solution dropwise to DW. Finally, the as-prepared hydrogel was washed with DW 
and freeze-dried to obtain the cellulose aerogel (CA). In a typical experiment to prepare the PB-CA composite, 
approximately 1 mL PB (1 M) solution was added to a 2% cellulose solution and then mixed. The prepared solu-
tion was added dropwise to DW to fabricate the PB-cellulose hydrogel. The obtained product was washed with 
DW and freeze-dried to obtain the PB-CA composite.

Characterization.  X-ray diffraction (XRD) was conducted on a D2 PHASER (Bruker, Germany) and pat-
terns were obtained using CuKα radiation. Fourier transform infrared (FTIR) spectroscopy was conducted by 
using a Jasco FT/IR-6600. The Brunauer-Emmett-Teller (BET) surface area analysis was conducted on a TriStar 
II (Micromeritics, GA, USA) was obtained from the N2 adsorption/desorption isotherm using a fully automatic 
physisorption analyzer. Scanning electron microscopy (SEM) was conducted on a Nova NanoSEM 450 (FEI, OR, 
USA) at an acceleration voltage of 5 kV. SEM-energy dispersive spectroscopy (EDS) mapping was performed 
using a QuantaX200 (Bruker). X-ray photoelectron spectroscopy (XPS, Thermo Scientific, K-Alpha) was con-
ducted using an Al X-ray source. The UV-vis analysis was performed on a V770 spectrophotometer (JASCO). The 
pH of the solution was measured by using a JENWAY 3510 pH Meter.

Calculation of PB concentration in the PB-CA composite.  In order to calculate the amount of PB 
present in the PB-CA composite, approximately 10 mg of PB-CA composite was dispersed in 30 mL of colorless 
TBAA/DMSO solution. After 12 h, the color of the TBAA/DMSO solution had changed to blue, which indi-
cated the complete dissolution of PB. To calculate the amount of PB in the PB-CA composite, the UV-visible 
absorbance (Figure S6A) of five different concentrations of the composite were measured and a calibration curve 
(Figure S6B) was generated. The amount of PB was calculated from the following formula:

= . × ×A PB0 0225 5 [ ] (11)690

where A690 = 0.6376. The amount of PB was calculated to be 1.3045 mg in 10 mg of the PB-CA composite.

Cell culture.  Caco-2 cells obtained from American Type Culture Collection (Manassas, VA, USA) were cul-
tured in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 IU/mL penicillin, and 100 U/mL strep-
tomycin. THP-1 cells (American Type Culture Collection, Manassas, VA, USA) were cultured in Roswell Park 
Memorial Institute 1640 (RPMI-1640) medium supplemented with 10% FBS, 2 mM L-glutamine, 100 IU/mL 
penicillin, and 100 U/mL streptomycin. Because the THP-1 cells are monocytic, PMA was used to differentiate 
the macrophage-like cells, as described previously62. Both cell types were cultured at 37 °C in an atmosphere of 
5% CO2.

Cell viability assay.  To evaluate the cell viability, Caco-2 cells were seeded into 96-well plates at a density 
of 2 × 105 cells/mL and incubated overnight to reach approximately 80% confluence. For differentiated THP-1 
cells, monocytic THP-1 cells were seeded at 5 × 105 cells/mL in a 96-well plate and differentiated to macrophages 
by incubation with 10 ng/mL PMA for 2 days. Both cell types were washed three times with pre-warmed DPBS, 
followed by the addition of fresh medium containing PB or the PB-CA composite, and incubated for 24 h at doses 
in the range from 0–1250 μg/mL. After 24 h, the cell viability was measured by using a Cell Counting Kit-8 (CCK-
8; Dojindo Molecular Technologies, Gaithersburg, MD, USA). To exclude colorimetric interference from PB or 
the PB-CA composite, the cells were washed three times with pre-warmed DPBS, the supernatant was removed, 
and the cells were centrifuged at 15000 × g for 10 min. The absorbance was read at 450 nm on a Synergy HT 
Multi-mode Microplate Reader (Bio-Tek Instruments, Winooski, VT, USA).

Evaluation of cellular uptake of PB or PB-CA composite.  The direct or indirect interactions of chem-
icals can cause toxicity to cells. To examine the direct mechanism of toxicity, this study evaluated the cellular 
uptake of the PB-CA composite. Briefly, both cell types were cultured in chamber slides (Lab-Tek, Campbell, 
CA, USA) using the same protocol as for the cell viability assay. The cells were treated with a sublethal dose of PB 
(50 μg/mL) or the PB-CA composite (400 μg/mL) for 4 h. The cells were then washed three times with DPBS and 
fixed with methanol. To visualize the cellular uptake, the cells were stained lightly with eosin, which provided 
contrast from the blue-stained PB. The intracellular uptake of PB or the PB-CA composite by both cell types 
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was visualized by optical microscopy (Nikon, Tokyo, Japan). The stability of PB or the PB-CA composite was 
evaluated at 0 and 12 h after incubation with DW, PBS, and DMEM supplemented with 10% FBS or RPMI-1640 
supplemented with 10% FBS, because the cellular uptake can be reduced by agglomeration of the particles. The 
images were captured using a digital camera (Olympus, Korea).

Cell-free reactive oxygen species (ROS) assay.  The intrinsic capability of the overall ROS generation 
was measured using DCFH-DA by a previously described method63. The doses of PB or the PB-CA composite 
for DCFH-DA assay were 0–1.25 mg/mL and the fluorescence intensities were read at 485/590 nm on a Synergy 
HT Multi-mode Microplate Reader (Bio-Tek Instruments). The levels of ROS generation were expressed as μM 
H2O2 equivalent using a standard curve. Nickel oxide NPs (size: 5.3 ± 1.9 nm; zeta potential: + 48.9 ± 0.6 mV) at 
100 μg/mL were used as a positive control22.

Serum protein binding affinity assay.  The serum protein binding of PB or the PB-CA composite was 
evaluated because protein corona formation on the surface of NPs can mitigate cytotoxicity64. Briefly, PB or the 
PB-CA composite was dissolved in DPBS at concentrations between 0 and 1250 μg/mL and incubated with 100 
μg/mL BSA for 4 h at room temperature. PB or the PB-CA composite was then removed by centrifugation at 
15000 × g for 10 min and the levels of protein in the supernatant were measured by using the bicinchoninic acid 
(BCA) assay (Thermo Fischer Scientific, Rockford, IL, USA).

Preparation of the SGF and SIF.  To prepare SGF, 3.2 g pepsin was dissolved in acidic aqueous solution 
(7 mL of 37 wt% HCl in 1 L DW). To prepare SIF, 6.505 g KH2PO4 first was dissolved in 1 L DW to produce 0.05 M 
KH2PO4. Subsequently, 1 M NaOH was added to maintain the pH at 7.5 and then mixed with 1 g pancreatin.

Stability of PB-CA composite.  We investigated the stability of the PB-CA composite in the digestive fluid 
and under gamma-ray irradiation from a 60Co source. In a typical experiment, 10 mg of the composite (contain-
ing 1.3045 mg PB NPs) was dispersed in 20 mL SGF or SIF for 24 h. The release of PB from the composite was 
measured by UV-vis spectrophotometric analysis. Similar experiments were performed to compare the pure PB 
NPs with the PB-CA composite. In contrast, for gamma irradiation experiments, the aqueous dispersion of the 
composite was irradiated at doses of 0, 6, and 60 kGy. After irradiation, the solutions were analyzed by UV-vis 
spectroscopy. The irradiation facility was provided by Korea Atomic Energy Research Institute (KAERI), Republic 
of Korea.

Adsorption isotherm.  Cesium adsorption studies using the PB-CA composite were performed in both 
DW and SIF. The adsorption isotherms were performed based on batch experiments using inactive Cs, in which 
the initial concentration of Cs+ was between 1 and 500 ppm. A fixed amount of adsorbent (10 mg) was added 
to 10 mL of an aqueous Cs+ solution and shaken at 40 rpm on a rotary shaker for 24 h. After equilibrium was 
reached, the adsorbent was separated by filtration and the Cs+ concentration was analyzed by inductively coupled 
plasma-mass spectrometry (ICP-MS).

Conversion of Radioactive to Non-radioactive Cs Concentration.  In order to study adsorption 
kinetics, non-radioactive Cs concentrations (0.1, 1, and 5 ppm) were determined by the stagnant water Cs 
concentration. The maximum 137Cs concentration in the Fukushima-1 nuclear power plant is 3.0 × 106 Bq/mL 
(3.0 × 109 Bq/L)65. As 1 g of 137Cs has an activity of 88 Ci/g (3.26 × 109 Bq/mg)66, the Cs concentration was calcu-
lated as follows:
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The maximum Cs concentration was calculated to be 0.92 ppm.

Adsorption kinetics.  The adsorption kinetics was determined by dispersing 10 mg of PB-CA each in 0.1, 1 
and 5 ppm inactive cesium solution (20 ml) in a rotary shaker operated at 40 rpm. The samples were collected at 
different times (1, 2, 5, 10, 30, 60, 120, 240, 270, and 480 min).
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