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Abstract

Cells use homology-dependent DNA repair to mend chromosome
breaks and restore broken replication forks, thereby ensuring
genome stability and cell survival. DNA break repair via homology-
based mechanisms involves nuclease-dependent DNA end resec-
tion, which generates long tracts of single-stranded DNA required
for checkpoint activation and loading of homologous recombina-
tion proteins Rad52/51/55/57. While recruitment of the homologous
recombination machinery is well characterized, it is not known
how its presence at repair loci is coordinated with downstream re-
synthesis of resected DNA. We show that Rad51 inhibits recruit-
ment of proliferating cell nuclear antigen (PCNA), the platform for
assembly of the DNA replication machinery, and that unloading of
Rad51 by Srs2 helicase is required for efficient PCNA loading and
restoration of resected DNA. As a result, srs2A mutants are defi-
cient in DNA repair correlating with extensive DNA processing, but
this defect in srs2A mutants can be suppressed by inactivation of
the resection nuclease Exol. We propose a model in which during
re-synthesis of resected DNA, the replication machinery must
catch up with the preceding processing nucleases, in order to close
the single-stranded gap and terminate further resection.
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Introduction

In both prokaryotes and eukaryotes, DNA double-stranded breaks
(DSBs) predominantly occur as a result of broken replication forks
(Vilenchik & Knudson, 2003). DSBs can also be generated due to

DNA exposure to toxic chemicals or radiation as well as introduced
by endogenous nucleases during developmentally programmed
mechanisms such as meiosis and yeast mating type switching.
DSBs are routinely repaired either by direct ligation of broken ends
or by homology-dependent mechanisms such as homologous
recombination (HR), break-induced replication (BIR) and single-
strand annealing (SSA) (Symington et al, 2014). Alternatively,
telomerase, the enzyme responsible for telomere maintenance
(Greider & Blackburn, 1987), can interfere with repair by adding
telomeric repeats to a DSB in a process called de novo telomere
addition (Schulz & Zakian, 1994). Failure to repair DSBs results in
decreased cell viability, particularly after exposure to DNA-
damaging agents, increased gross chromosomal rearrangements
and cancer predisposition underlying the biological significance of
DNA repair mechanisms.

Homology-dependent DSB repair is highly conserved in eukary-
otes. In yeast Saccharomyces cerevisiae, it involves (i) initial DSB
processing by MRX(Mrell-Rad50-Xrs2)/Sae2 producing a short
3’ overhang; (ii) long-range DNA resection by two redundant
machineries, Dna2/Sgs1-Top3-Rmil and Exol nuclease (Mimitou &
Symington, 2008; Zhu et al, 2008), which generate long tracts of
ssDNA covered by the ssDNA-binding protein RPA and required for
DNA damage checkpoint activation and loading of homologous
recombination machinery (Zou & Elledge, 2003; Lisby et al, 2004);
(iii) loading of the homologous recombination protein Rad52
followed by recruitment of Rad51 which generates a nucleoprotein
filament stabilized by Rad55/57 (Symington et al, 2014). During HR
and BIR, Rad52/51/55/57 promote homology search and invasion
of intact donor dsDNA by the processed broken end to initiate repair
(Anand et al, 2013; Symington et al, 2014). In contrast, SSA does
not require DNA external to the broken chromosome as homologous
sequences on either side of the break provide complementarity
between the processed ends and Rad52, but not Rad51/55/57,
catalyse the strand annealing (Fishman-Lobell et al, 1992; Ivanov
et al, 1996).
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However, HR can be also toxic emphasizing the need for its tight
regulation. The Srs2 helicase inhibits HR machinery by disassembling
Rad51 filament and reducing DNA extension, as demonstrated in vitro
(Burkovics et al, 2013; Krejci et al, 2003; Veaute et al, 2003). This
function is believed to be important for repression of excessive recom-
bination, particularly at replication forks where Srs2 is recruited and
regulated through its C-terminal domain (Papouli et al, 2005; Pfander
et al, 2005; Burgess et al, 2009). Loss of Srs2 results in a paradoxical
phenotype. On one hand, srs2 mutants are hyper-recombinogenic
(Aguilera & Klein, 1988), and on the other hand, they are deficient in
DSB repair via HR and SSA (Vaze et al, 2002; Saponaro et al, 2010).
Here we elucidate at the molecular level the role of Srs2 in multiple
repair mechanisms involving extended DNA resection by showing
that Srs2 is capable of dislodging Rad51 from ssDNA in order to
promote loading of proliferating cell nuclear antigen (PCNA) and
DNA replication machinery to restore dsDNA at repair loci. This func-
tion is distinct from the role of Srs2 at replication forks and essential
for completion of DNA repair involving extended resection.
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Results
Srs2 is not required for DNA damage checkpoint inactivation

Cell death of srs2 mutants undergoing DSB repair is accompanied
by accumulation of ssDNA and persistent activation of the DNA
damage response (DDR) (Vaze et al, 2002; Yeung & Durocher,
2011). In order to distinguish between the defects of srs2 mutants
in DNA repair and the recovery from DDR, we designed a system
in which DSB induction led to activation of DDR, but DNA repair
was not required for cells to survive DSBs (Fig 1A). In this system,
one side of the break contained 81 bp of (TG, 3), telomeric
sequence which protected the centromere-proximal DNA end from
resection while the other side contained either 2 or 20 kb of non-
essential DNA. Only 20 kb, but not 2 kb, should be long enough
to generate sufficient sSDNA post-resection to activate DDR. When
the 20-kb terminal fragment becomes completely degraded, the
ssDNA as a signal for checkpoint activation disappears: if cells are
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Figure 1. Srs2 is not required for the recovery from the DNA damage-induced arrest.

A On the left, schematic of chr.VIIL variants, either with 2 or with 20 kb between a DSB and a telomere, used to study the effect of DNA damage checkpoint activation
on cell viability in panels (B-D). Triangles represent HO sites, dashed lines represent telomeric sequences, TG81 represents 81 bp of (TG;_3),, and grey boxes represent
genes with the grey arrows above showing promoters. The diagram on the right outlines the DNA damage response (DDR) activation as the reaction of the two

different strains on DSB induction by the addition of galactose (GAL).

B Analysis of cell cycle arrest (in G2) in response to DSB induction assayed by flow cytometry.

C Rad53 phosphorylation (Rad53-P) in response to DSB assayed by Western blotting.

D Cell survival upon DSB induction. Average + SD (n = 4) is shown for each genotype.
Data information: Strains used: NK4230, NK4231; NK4264, NK4265; NK1949; NK4268, NK4269.
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capable of checkpoint inactivation, they should be able to resume
cycling.

Activation of DDR after DSB induction was assayed by Western
blotting of Rad53, the key DNA damage signalling kinase, which
becomes hyper-phosphorylated in response to DNA damage. We also
used FACS analysis to ask whether cells accumulate in G2 as a result
of DDR activation. As expected, DSB induction in both wild-type and
srs2A strains resulted in activation of DDR in cells with 20 kb between
the break and the telomere, but not when this distance was much
shorter (Fig 1B and C). However, both SRS2 and srs2A efficiently
recovered from the cell cycle arrest as their survival was not affected
by DSB induction (Fig 1D). Therefore, Srs2 is not required for the
recovery from the DNA damage-induced arrest per se and the previ-
ously observed cell death of s7s2A (Vaze et al, 2002) might come from
the inability to complete DNA repair. Therefore, we next focused on
the role of Srs2 in DSB repair by different mechanisms: we analysed
de novo telomere addition, BIR and SSA in SRS2 and srs2A cells.

Analysis of de novo telomere addition in SRS2 and srs2 mutant cells

De novo telomere addition was assayed in SRS2 and srs2A using a
previously described genetic test (Makovets & Blackburn, 2009)
involving a single galactose-inducible DSB (Fig 2A). Because
de novo telomere addition normally occurs with a very low
frequency due to telomerase inhibition by Pifl (Schulz & Zakian,
1994), the pifiI-m2 background was used in the genetic assay. In
sts2A, de novo telomere addition was reduced ~47-fold, but this
effect was completely suppressed by additional deletions of RADS2,
RADS1, RADSS or RADS7 (Fig 2B). These data suggest that the pres-
ence of the HR machinery at DSBs may inhibit de novo telomere
addition and that the Srs2-dependent removal of the HR proteins
might reverse this inhibition.

De novo telomere addition involves (i) extension of the 3’-end
as a result of addition of telomeric TG;_; repeats by telomerase and
(ii) synthesis of the complementary strand (C-strand) by the
conventional replication machinery. In order to find out whether
Srs2 is required at the earlier or the later step of this process,
we first compared the addition of the telomeric TG; ; repeats to
the 3’-end of a break in SRS2 and srs2A. Cells with a galactose-
inducible DSB were grown in YP + raffinose to mid-log phase and
upon addition of galactose to the medium cell aliquots were taken
for DNA analysis. qPCR was used to monitor addition of telomeric
repeats through the time-course. One of the primers in the reaction
was telomere-specific, that is consisted of AC, 3 repeats (Fig 2C),
and therefore, the PCR product could be formed only after telo-
merase-dependent extension of the 3’-end of the break. The other
primer annealed 168 bp away from the HO-cleavage site as most of
the de novo telomeres in pifl-m2 are added close to the breakpoint
(Schulz & Zakian, 1994). Consistent with the previously established
functions of telomerase and Pifl, no addition of TG; ; repeats to
DSBs was detected in wild-type cells, where telomerase is inhibited
by Pifl (Fig 2D, dark blue), and telomerase-deficient pifi-m2 est2A
control (Fig 2D, orange). In contrast, addition of the TG, 5 repeats
in the pifl-m2 telomerase-positive yeast was readily observed
(Fig 2D, light blue) and was not affected by the lack of either Srs2
(Fig 2D, pink) or Rad51/52 (Fig 2D, green). Therefore, Srs2 is not
required for the telomerase-dependent addition of TG;_; repeats to
DSBs.

© 2016 The Authors
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For the completion of de novo telomere addition, the complemen-
tary C-strand needs to be synthesized all the way to the resected
5’-end. In order to monitor the conversion of the ssDNA into
dsDNA, we used a previously reported approach based on digestion
of qPCR template with restriction enzymes in order to differentiate
between ssDNA and dsDNA (Zierhut & Diffley, 2008): if the
template is single-stranded, that is synthesis of the complementary
strand has not occurred, then it cannot be cleaved by a restriction
enzyme. By comparing relative amounts of template DNA in parallel
gPCRs with and without restriction digestion, fractions of ssSDNA
and dsDNA in the template DNA can be calculated as explained in
Materials and Methods. Time-course experiments, where GI1-
arrested SRS2 and srs2A cells were subjected to DSB induction 1 h
prior to S/G2 release into YP + galactose with nocodazole, were
used to monitor the progress of de novo telomere addition both at
the stage of TG, 3 repeat synthesis by telomerase and during conver-
sion of ssDNA into dsDNA at the break. Consistent with the experi-
ments in non-synchronized cells (Fig 2D), srs2A had no defect in
addition of TG ; repeats by telomerase: during the earlier time
points, the repeat addition was even more efficient in the mutants
than in SRS2 (Fig 2E and F). However, when Psil restriction enzyme
was used to digest DNA templates prior to PCRs, a significant dif-
ference between SRS2 and srs2A in the DNA status at the breaks
healed by telomerase was observed. The mutant cells consistently
had higher fractions of ssDNA at multiple time points (Fig 2E and
F), suggesting that conversion of ssDNA into dsDNA during de novo
telomere addition was delayed in srs2A mutants. Thus, Srs2 is
required for the conversion of the ssDNA into dsDNA after telom-
erase-dependent addition of TG, 3 repeats to the 3’-end and the
reduced frequency of de novo telomere addition in srs2A in the
genetic assay (Fig 2B) can be explained by the mutants’ inability to
restore dsDNA required in order to complete the repair.

Srs2 is required for restoration of resected DNA during DSB
repair by BIR

Repair of DSBs via BIR involves extensive DNA resection at the
break locus in order to expose ssDNA regions which are essential
for the search of intact homologous sequences. The efficiency of BIR
among other factors depends on the extent of homology between
broken DNA ends and donor chromosomes. In order to monitor BIR
by Southern blotting, we constructed a system where the usage of
BIR to repair a galactose-inducible DSB was very high due to the
long (~6.3 kb) homology between the broken end on chr.VIIL and
the homologous sequence on chr.Il (Fig 3A). In a corresponding
genetic assay, ~60% of wild-type cells survived DSB induction by
using BIR for repair. BIR in isogenic srs2ZA mutants was reduced to
~30% (data shown below as part of Fig 7A).

In order to analyse progression of BIR in SRS2 and srs2A, a DSB
on chr.VIIL was induced by expression of the HO endonuclease gene
from a GAL promoter in yeast cultures arrested in G1. One hour
after the HO induction, cells were released from the arrest into
YP + galactose with nocodazole to prevent cell cycle progression of
cells with repaired breaks. Both re-synthesis of resected DNA and
BIR-dependent duplication of the chr.II fragment downstream of the
homology region were monitored by quantitative Southern blotting
(Fig 3B-E, respectively). Break resection is expected to convert
dsDNA into ssDNA which should lead to a decrease in the
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Figure 2. Srs2 is required to restore dsDNA during de novo telomere

addition.

A Schematic of the genetic de novo telomere addition assay used in (B). Cells
with a galactose-inducible HO-cut are grown on YP agar with raffinose
prior to plating appropriate dilutions on YPD (no DSB induction) to score
cell titre, and YP with galactose to induce HO expression and DSBs. DSB
repair via de novo telomere addition leads to URA3 loss and the ADH4-
MNT2 locus becoming part of terminal restriction fragments containing
telomeres, which can be assayed by Southern blotting. Triangle represents
the HO site.

B Srs2 requirement in de novo telomere addition in cells with and without
functional HR. All strains are pifl-m2. Strains used: NK1264; NK2375,
NK2376; NK2014, NK2015; NK2451, NK2452; NK2012, NK2013; NK2457,
NK2458; NK2363, NK2364; NK2469; NK2369, NK2370; NK2473-2475.
Average + SD (n = 3 or more) is shown for each genotype.

C Schematic of the qPCR assay used in (D) to monitor (TG, 3), addition to
DSBs. Triangle represents HO site, and blue arrows represent qPCR primers.

D Dynamics of (TG, 3), addition monitored by gPCR through a time-course
experiment (asynchronous populations). The y-axis shows a fold increase in
de novo telomere-specific PCR product relative to the background levels at
0 h and normalized against an internal control (ARO1 locus). Average + SD
(n = 3) is shown for each time point of each genotype. Strains used:
NK3292, NK3293; NK4670, NK4671; NK4112, NK4113; NK4114, NK4115;
NK3292 est2A, NK3293 est2A; NK4232, NK4233.

E Schematic of the qPCR assay coupled with Psil digestion used in (F) to
quantify ssDNA/dsDNA ratio at the de novo telomere addition locus.
Numbers indicate positions of Psil restriction sites and gPCR primer
sequences relative to DSBs. Blue arrows represent gPCR primers, and
dashed lines represent telomeres.

F  Comparative analysis of ssDNA/dsDNA at de novo telomere addition loci in
SRS2 and srs2A during a time-course experiment (synchronized
populations). The y-axis shows a fold increase in de novo telomere-specific
PCR product relative to the background levels at 0 h and normalized
against an internal control (ARO1 locus). Average + SD (n = 3) is shown for
each time point of each genotype. Top set of error bars represents SD in
relative increase of the de novo telomere-specific PCR product (as in panel
D), while the lower set of error bars corresponds to quantifications of ss/
dsDNA fractions. Strains used: NK3292, NK3293; NK4670, NK4671.

hybridization signal for the corresponding restriction fragment (as
ssDNA is not cut by restriction enzymes), while re-synthesis of
resected DNA should restore dsDNA and the hybridization signal
at the analysed locus. Analysis of DNA dynamics at three different
loci on chr.VIIL, 2.6, 6.8 and 15.2 kb away from the break,
showed that srs2A mutants had a severe defect in restoration of
resected DNA (Fig 3B and C). At the 2.6 and 6.8 kb loci, the frac-
tion of cells with dsDNA status was much lower than in the SRS2
population although the delayed restoration of dsDNA can be seen
at 6 h (Fig 3C, right and middle panels). Resection may have
never reached the 15.2-kb region in SRS2 (the values at all time
points are close to 1), perhaps due to completion of re-synthesis
before resection has reached the region (Fig 3C, left panel). At the
same time, only a small fraction of srs2A mutants possessed
dsDNA in this region by the end of the experiment (6-h time
point). Therefore, Srs2 is required for re-synthesis of resected DNA
during BIR.

Break-induced replication in our system results in addition of
~94-kb sequence from chr.IIR to the DSB site (Fig 3A). Since ~60%
of wild-type cells successfully repair DSBs by BIR, in the post-repair
population the relative amount of DNA corresponding to the 94-kb
sequence should increase 1.6-fold (100% on chr.IIR + 60% copied
to chr.VIIL). Progression of BIR was monitored by Southern blotting
using BIR6, BIR36 and BIR77 probes corresponding to DNA

© 2016 The Authors
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Figure 3. Analysis of Srs2 requirement in BIR.
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A Schematic of the quantitative BIR assay. Modified chr.VIIL (red) and chr.lIR (blue) share a 6,272-bp homology (grey shadow) used to repair an HO-induced DSB by BIR.
Black boxes indicate hybridization probes used in Southern blotting experiments to monitor re-synthesis of resected DNA (RS probes, red) and BIR (BIR probes, blue),
respectively. Numbers next to the one-ended arrows indicate distances (in bp) from the homology to the distal restriction sites of the DNA fragments analysed by
Southern blotting using the corresponding probes. Numbers between the restriction sites indicate the sizes of restriction fragments detected by the corresponding

hybridization probes.

B Southern blot analysis of re-synthesis of resected DNA during BIR in SRS2 and srs2A corresponding to the data quantifications in (C). DNA was digested with EcoRI
and BamH|, resolved on 0.7% agarose gels, transferred onto charged Nylon membrane and hybridized to the mixture of four probes (three RS probes and a reference
probe, REF, hybridizing to an ARS522-containing fragment on chr.V which is not involved in the repair). A representative image of one of the three repeats is shown.

C Re-synthesis of resected DNA on chr.VIIL in SRS2 and srs2A cells (solid and dashed lines, respectively) at the distance of 15.2 (RS15.2), 6.8 (RS6.8) and 2.6 (RS2.6) kb
away from the homology region. Average + SD (n = 3) is shown for each time point.

D Southern blot analysis of BIR-dependent DNA synthesis in SRS2 and srs2A corresponding to the data quantifications in (E). DNA was digested with EcoRl and BamHl,
resolved on 0.7% agarose gels, transferred onto charged Nylon membrane and hybridized to the mixture of four probes (three BIR probes and a reference probe, REF,
hybridizing to an ARS522-containing fragment on chr.V which is not involved in the repair). A representative image of one of the three repeats is shown. C indicates

control strain NK3980.

E BIR-dependent DNA synthesis in SRS2 and srs2A cells (solid and dashed lines, respectively) at the distance of 6 (BIR6), 36 (BIR36) and 77 (BIR77) kb away from the

homology region. Average + SD (n = 3) is shown for each time point.
Data information: Strains used: NK4070, NK4079; NK5321, NK5322.

© 2016 The Authors
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sequences located 6, 36 and 77 kb away from the homology region,
respectively. The srs2A mutation resulted in slower but successful
BIR-dependent DNA synthesis: like wild-type cells, srs2A reached
1.6-fold increase in chr.IIR sequences by the end of the time-course
experiments (Fig 3D and E). Therefore, during BIR, Srs2 is predomi-
nantly required for restoring resected DNA.

Srs2-dependent removal of Rad51 is necessary for efficient DNA
synthesis during SSA

To investigate the effect of sts2A on SSA, we used a genetic system
where ura3-52 and URA3 were separated by ~4 kb of DNA which
included KAN and a recognition site for the HO-nuclease expressed
from a galactose-inducible promoter (Fig 4A). SRS2 and srs2A cells
pre-grown on YP + raffinose agar were plated on YPD (to score total
cell titre in the experiment) and YP + galactose plates for DSB induc-
tion. On galactose, upon DSB repair via SSA the vast majority of cells
become Kan® Ura™, as the 766-bp homology closest to the break in
ura3-52 is predominantly used. The ratio between the Kan® Ura™ colo-
nies grown on galactose plates and the ones on YPD was used to
calculate the frequency of SSA (Fig 4B). Consistent with the previ-
ously published results (Vaze et al, 2002), srs2A conferred a genetic
defect in SSA which was suppressed by a deletion of RADS1 (Fig 4B).

Single-strand annealing involves (i) DSB processing to generate
ssDNA at the regions of homology, (ii) annealing of the homolo-
gous sequences, (iii) Radl/Rad10-dependent cleavage of the non-
homologous ssDNA ends, and (iv) DNA synthesis to reconstitute
DNA integrity at the repair loci (Symington et al, 2014)
(Fig EV1A). To determine whether Srs2 was required at any of the
first three steps, we monitored the cleavage of non-homologous
ends using qPCR spanning the cleavage point but observed no
significant effect of srs2A on the progress of SSA at this stage
(Fig EV1B-E). Therefore, Srs2 loss has no effect on DSB resection
(at least up to the processing of the homologous regions), anneal-
ing of the ssDNA homologies, or Radl/Rad10-dependent cleavage
of non-homologous ends and the defect of srs2A mutants in SSA
should be attributed to a later stage of repair.

SRS2 and srs2A might differ either in DSB resection over longer
distances or in DNA repair synthesis required to complete SSA. To
compare resection in SRS2 and srs2A, a pair of isogenic strains
with unrepairable DSBs was constructed by removing the ura3-52
allele from the yeast used for SSA assays (Fig EV2A). Three dif-
ferent probes, R5, R14 and R20, specific to DNA sequences 5, 14
and 20 kb away from the break, respectively, were used to moni-
tor DSB resection over time by Southern blotting (Fig EV2A and
B). SRS2 and srs2A showed very similar behaviour in break
processing (Fig EV2C), and therefore, Srs2 is not involved in DSB
resection.

To assay the dynamics of DNA synthesis during SSA, we anal-
ysed the progress of Sall-EcoRI fragment formation (fragment L—
Long) which involved a total of 7.9 kb of DNA synthesis to reach
the restriction sites (Fig 4C). Consistent with the genetic data
(Fig 4B), srs2A led to slower L-fragment generation, whereas loss of
Rad51 resulted in the suppression of the srs2A defect on the rate of
the fragment L formation (Figs 4D and EV3). We next tested the
requirement of RadS51 removal by Srs2 for DNA synthesis in our
reconstituted in vitro strand extension assay using purified proteins
(Sebesta et al, 2011) and observed robust RadS1-dependent
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synthesis inhibition which was almost fully suppressed by Srs2
(Fig 4E and G). Therefore, presence of Rad51 inhibits DNA
synthesis and its removal by Srs2 alleviates this inhibition.

Removal of Rad51 by Srs2 is required for PCNA loading onto DNA

To gain insights into the mechanisms of DNA synthesis inhibition
by Rad51 in vivo, two shorter DNA fragments of different lengths
(fragments S1 and S2) were monitored through SSA by quantitative
Southern blotting (Figs 5A and B, and EV4A and B). The fragment
S1 required a minimum of 14 and 4 bp of DNA synthesis to produce
dsDNA at the BspCNI and Smal sites, respectively (Fig 5A). The
fragment S2 required 358 and 1,396 bp of DNA synthesis to reach
the two BglII sites on either side of homology (Fig 5A). Comparative
analysis of fragments S1 and S2 in SRS2 and srs2A revealed a signifi-
cant difference between the two strains, with srs2A showing ~0.5 h
delay in production of both dsDNA fragments (Fig 4B, red arrow).
However, there was no significant difference between the produc-
tion of the two fragments within either SRS2 or srs2A (Fig 5B)
although generation of the fragment S2 involved ~100 times more
DNA synthesis than the fragment S1 did (14 + 4 vs. 358 + 1,396 bp).
This highly important observation suggests that the slower fragment
generation in the srs2A mutants could not be attributed to a slower
rate of DNA polymerization per se because if this were the case then
the srs2A mutant strain would have shown a drastic difference
between the fragments S1 and S2 due to significantly more DNA
synthesis (~100-fold) involved in the production of the fragment S2.
In fact, it proves the opposite: the rate of DNA synthesis per se is so
fast in both the wild-type and mutant cells that the 100-fold length
difference in the analysed DNA synthesis tracts S1 and S2 cannot be
differentiated in our experimental setting. Therefore, the observed
difference between the SRS2 and srs2A cells in the generation of the
fragments S1 and S2 must be due to a step in repair which takes
place in the narrow window after the non-homologous end cleavage
by Rad1/Rad10, but prior to the start of DNA synthesis (Fig EV1)
and this step must be slower in the srs2A mutants. Such step is
likely to be the recruitment of the DNA synthesis machinery to the
repair locus, in particular RFC-PCNA which requires the presence of
RPA at the recruitment loci (Yuzhakov et al, 1999) and which in
turn could be abrogated by the presence of Rad51 at the potential
PCNA recruitment site.

Our attempts to assay PCNA recruitment to the repair loci in vivo
by ChIP were unsuccessful, perhaps, because PCNA is present there
very transiently (it would move away along with the replication
machinery as soon as polymerase is recruited), irrespectively of
whether PCNA recruitment is fast or has a delay. To test the effect
of Rad51 on PCNA loading in vitro, we radio-labelled PCNA and
monitored its loading on DNA substrate using PCNA-loading assay
(Fig 5C). As reported earlier (Yuzhakov et al, 1999), RPA greatly
stimulated the loading of PCNA (Fig 5D, lanes 2 and 3). In contrast,
Rad51 dramatically inhibited PCNA loading (Fig 5D, lanes 3-7), but
addition of increasing concentrations of the Srs2 fragment 1-910
resulted in suppression of the Rad51 inhibitory effect (Fig 5SE and
G), thereby confirming the requirement of Rad51 removal prior to
loading of PCNA and initiation of DNA repair synthesis. The ability
to counteract Rad51 was specific to Srs2 as Pifl helicase could not
substitute for Srs2 (Fig SH). If Srs2 removes Rad51 so that it could
be replaced on ssDNA by RPA, then higher RPA concentration in

© 2016 The Authors
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Figure 4. Srs2 is required to relieve Rad51-dependent inhibition of DNA synthesis.

A Schematic of the genetic system used to analyse inducible DSB repaired by SSA. Chr.V contains ura3-52 and URA3 (at the endogenous URA3 locus) separated by ~4 kb
of DNA containing KAN (grey box, arrow above indicates the promoter) and an HO site (triangle). Galactose-inducible expression of the HO endonuclease leads to DSB
formation at the HO site. After DSB repair via SSA, the majority of cells become Kan® Ura™ as the 766-bp homology between URA3 and ura3-52 (grey shadows) is
predominantly used.

B Frequency of DSB repair via SSA in SRS2 and srs2A cells with and without functional HR in the assay based on the system shown in (A). Average & SD (n = 4) is
shown for each genotype. Strains used: NK4691-4693; NK4805-4808; NK5081-5084; NK5085-5091.

C Schematic of the quantitative SSA assay used in panel (D). Grey shadow represents the annealing region of 766 bp present on both sides of a DSB. Numbers next to the
one-ended arrows indicate distances (in bp) from the homology to the restriction sites, Sall and EcoRl, used to generate DNA fragment L analysed by Southern blotting.

D Fragment L formation in SRS2 and srs2A cells in the presence and absence of Rad51. See also Fig EV3 for blot images. Average + SD (n = 4) is shown for each time
point. Strains used: NK4691-4693; NK4805-4808; NK5081-5084; NK5085-5091.

E Schematic for the basic DNA strand extension assay used in (F and G).

F Rad51 inhibits DNA synthesis of X174 ssDNA substrate (0.5 nM) by Pol3. Increasing amount of Rad51 (0.03, 0.08, 0.15, 0.25, 0.5, 0.75, 1.5 uM) was incubated with the
pre-loaded replication complex (RFC (17.5 nM), proliferating cell nuclear antigen (PCNA) (10 nM) and DNA) and DNA synthesis was started by the addition of Pold
(10 nM) and nucleotides containing a->*P labelled dATP.

G Srs2(1-910) suppresses the inhibition of DNA synthesis by Rad51. The reaction was carried out the same way as in (F) except of the increasing amount of Srs2(1-910)
(5,15, 50, 150 nM) was added to indicated reactions before the start of DNA synthesis. The relative % of DNA synthesis is indicated.

the system should increase RPA occupancy on DNA and suppress presence of the same amounts of Rad51 and almost completely
the need for Srs2. Indeed, raising RPA concentration from 0.08 to suppressed Rad51-dependent inhibition of this process (Fig 5I).
1.4 uM resulted in a significant increase in PCNA loading in the These results can be explained by mutually exclusive binding of
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Figure 5. Srs2-dependent removal of Rad51 is required for efficient PCNA loading.

A Schematic of the quantitative SSA assay used in (B). Grey shadow represents the annealing region of 766 bp present on both sides of a DSB. Numbers next to the
one-ended arrows indicate distances (in bp) from the homology to the restriction sites used to generate DNA fragments analysed by Southern blotting: BspCNI and

Smal for the fragment S1, and Bglll for the fragment S2.

B Generation of double-stranded fragments S1 and S2 in SRS2 and srs2A during a time-course experiment. See also Fig EV2B and C for blot images. Red two-ended
arrow indicates time delay of ~0.5 h in fragment S1/S2 formation in srs2 mutants relative to SRS2 cells. Average + SD (n = 4) is shown for each time point. Strains

used: NK4691-4693; NK4805-4808.
C Schematic of PCNA-loading assay used in (D and I).

D Rad51 inhibits PCNA loading. Increasing amount of Rad51 (0.3, 0.6, 1.2, 2.3 uM) was added to $pX174 ssDNA substrate (0.5 nM) pre-incubated with RPA (75 nM).
Loading of PCNA was started by the addition of RFC (21 nM) and **P-PCNA (10 nM). The relative amount of loaded PCNA in each reaction is indicated below.

E Schematic of PCNA-loading assay shown in (F and H).

F Srs2(1-910) overcomes the inhibitory effect of Rad51 on PCNA loading. $X174 substrate (0.5 nM) was pre-incubated with RPA (75 nM) followed by the addition of
Rad51 (2.3 pM). Increasing amounts of Srs2(1-910) (2.7, 5.5, 11, 22 nM) were added to the reaction, and PCNA loading was started by the addition of RFC (21 nM) and

32p_pCNA (10 nM).

G Quantitative analysis of PCNA loading as a function of increased Srs2(1-910) concentration. Average + SD (n = 3) is shown for each Srs2 concentration.

H Pifl cannot substitute for Srs2 in promoting PCNA loading. Experiments were done as in (F), except Pifl at 2.8, 5.5, 11 and 22 nM was used instead of Srs2 in samples
shown in lanes 5-8. Lane 9, control reaction with 22 nM Srs2(1-910). The relative amount of loaded PCNA in each reaction is indicated below.

I Increased concentrations of RPA suppress the inhibitory effect of Rad51 on PCNA loading. $X174 substrate (0.5 nM) was pre-incubated with RPA (0.08, 0.3 and
1.4 uM) followed by the addition of Rad51 (2.3 uM). PCNA loading was started by the addition of RFC (21 nM) and **P-PCNA (10 nM).

ssDNA by RPA and Rad51 whereby Srs2-dependent removal of
Rad51 indirectly promotes RPA binding and subsequent PCNA load-
ing onto DNA.

Comparative analysis of DNA synthesis during SSA involving all
the three fragments described above (Fig 6A) revealed that in srs2A
mutants fragment L was restored ~0.5 h later than S1/S2 (Fig 6B,
blue arrow). Because the fragment S1 vs. S2 comparison (Fig 5B)
suggests indistinguishably fast rate of DNA synthesis in both SRS2
and srs2A strains and proves that the difference between SRS2 and
srs2A is not due to slower DNA polymerization per se, the difference
between the fragments S2 and L in the srs2A cells has to be attrib-
uted to additional Srs2-dependent events taking place on longer

DNA tracts. These events could be additional rounds of PCNA load-
ing on longer DNA, possibly due to spontaneous disruptions of DNA
synthesis followed by stalling and/or disassembly of the replication
machinery.

Relative rates of DNA resection and re-synthesis of processed
DNA are important for completion of DSB repair

We hypothesized that break resection would normally be chased
and terminated by DNA re-synthesis which would have a much
faster rate than the processing [140 kb/h for conventional replica-
tion (Raghuraman et al, 2001), but could be slower during repair
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Figure 6. Using an increased length DNA fragment to monitor re-synthesis of processed DNA during SSA.
A Schematic of DNA repair involving generation of the fragments S1 (BspCNI-Smal), S2 (Bglll-Bglll) and L (Sall-EcoRl) as products of SSA (see Figs 4A and 5A for further

explanation).

B Comparative analysis of fragment S1, S2 and L production in SRS2 and srs2A cells during a time-course experiment (combined data from Figs 4D and 5B). Blue two-
ended arrow indicates a ~0.5 h time difference between the formation of fragments S2 and L in srs2A mutants. Since the distance between the Bglll site on the right
and the EcoRl site is ~6 kb, the rate of restoration of dsDNA in srs2A mutants can be roughly estimated at 12 kb/h. The rate of re-synthesis is much faster in wild-
type cells as the difference between S2 and L is not even detectable at the 1 h time point. Strains used: NK4691-4693; NK4805-4808. Average + SD (n = 3) is shown
for each time point of each genotype.
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synthesis, vs. 4 kb/h for resection (Fishman-Lobell et al, 1992)].
In fact, by comparing the reconstitution of fragments S2 and L
(Fig 6B), we could estimate the rate of dsDNA restoration in srs2A.
The fragments have relatively short DNA stretches to synthesize
on the left-hand side of the homology (Sall side), and therefore,
the full fragment reconstitution is likely to be dictated by DNA
synthesis on the other side (EcoRI side) (Fig 6A). DNA synthesis at
the EcoRI site occurs ~0.5 h after the restoration of the BglIl site
which is 5,810 bp away from the EcoRI site (Fig 6B, blue arrow).
This means that in srs2A, dsDNA is restored with the average rate
of ~12 kb/h, but it consists of phases of fast movement of replica-
tion machinery interrupted by slow recruitment of RFC/PCNA due
to Rad51 presence. Because resection always has a head-start over
DNA re-synthesis and in the absence of Srs2 re-synthesis is
impeded by slow PCNA recruitment, the polymerase in some of
the srs2A cells may never catch the “run-away” resection machin-
ery. This explains why srs2A mutants accumulate ssDNA, often far
away from the damage site, cannot inactivate the DNA damage
checkpoint and die (Yeung & Durocher, 2011). Therefore, Rad51
removal by Srs2 might be required for efficient PCNA loading not
only at the site of initiation of DNA synthesis but along the whole
length of processed DNA before it can be restored to its double-
stranded form.

According to our hypothesis above, the following predictions can
be made. Further slowing down of DNA re-synthesis might exacer-
bate the effect of srs2A on cell survival, whereas slowing down DNA
resection would have the opposite effect by helping srs2A mutants
to complete repair. Consistent with this hypothesis, loss of the DSB
resection nuclease Exol partially compensated for the lack of Srs2
during SSA and completely suppressed the srs2A defect in BIR and
de novo telomere addition (Fig 7A). To slow down DNA synthesis
during SSA, we used low concentrations of hydroxyurea (HU at 5,
10 and 25 mM) to deplete dNTPs pool. In the genetic assays, the
drug had no effect on SSA in SRS2 cells but further reduced the
survival of srs2A yeast in a concentration-dependent manner
(Fig 7B). The reconstitution of the fragment L in the presence of
25 mM HU was delayed in both strains, likely due to a slower rate
of nucleotide incorporation in the presence of HU. While the wild-
type cells efficiently reconstituted the fragment in the presence of
HU, albeit with a 1 h delay, srs2A could not re-synthesize the frag-
ment L with the same efficiency as the cells repairing the break in
the absence of HU (Fig 7C). Therefore, slowed down DNA re-synth-
esis further reduces the efficiency of SSA in srs2A mutants, while
exolA suppresses the defect of srs2A in DSB repair.

The role of Srs2 in DSB repair is different from its role at
replication forks

At the C-terminus, Srs2 contains a variety of regulatory motifs,
which are modulated through post-translational modifications
and/or required for the interactions of Srs2 with other proteins,
including PCNA, and these are important for its role at replication
forks (Papouli et al, 2005; Pfander et al, 2005; Burgess et al,
2009) and regulation of the D-loop extension (Burkovics et al,
2013). However, most of the C-terminus was not required for the
role of Srs2 in DSB repair via de novo telomere addition, BIR and
SSA (Fig 8A-D). Longer C-terminal truncations including BRCv
motif required for Srs2-Rad51 interactions resulted in a partial
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loss of Srs2 activity both in vivo (de novo telomere addition) and
in vitro (Fig 8C and E). In contrast, the Srs2 ATPase activity was
important for all the repair mechanisms analysed (Fig 8B-D).
Therefore, the role of Srs2 in DSB repair is different from its role
at replication forks and does not require Srs2-PCNA interaction
(Papouli et al, 2005; Pfander et al, 2005). Instead, Srs2 acts
upstream of PCNA by removing Rad51 from DNA repair loci in
order to stimulate PCNA recruitment, thereby promoting the speed
with which ssDNA is converted into its functional double-stranded
form.

Discussion

Homology-dependent DSB repair mechanisms require extensive
resection of broken ends which are then used as a platform for local-
ization of DNA damage signalling complexes as well as DNA repair
machineries, in order to trigger DNA damage checkpoint, cell cycle
arrest and break repair (Symington et al, 2014; Villa et al, 2016). At
the late stages of repair, ssDNA must be restored into a double-
stranded state by re-synthesis of the resected DNA which will
otherwise constantly signal for checkpoint activation leading to a
persistent cell cycle arrest and cell death. Failure to complete DNA
re-synthesis step might also be fatal for the cell due to the inability
to transcribe genes at resected DNA loci (Manfrini et al, 2015). In
spite of its importance for the completion of repair, DNA re-synthesis
remains poorly understood, particularly in comparison with the
earlier steps of DSB repair. Here we show that the Srs2-dependent
removal of Rad51 from resected DNA promotes restoration of
dsDNA: Rad51 dislodging from ssDNA allows its replacement with
RPA which in turn recruits RFC-PCNA and promotes PCNA loading
and subsequent initiation of re-synthesis of resected DNA.

In this study, we used quantitative analyses to monitor progres-
sion of DSB repair by multiple mechanisms and demonstrated that
srs2A mutants have a defect in re-synthesis of resected DNA. This
defect is caused by the presence of Rad51 on resected DNA as loss
of RADSI eliminates the need for Srs2 during SSA and de novo
telomere addition. Moreover, Rad51 inhibits DNA re-synthesis in
wild-type cells as even in the presence of Srs2 SSA products form
faster in rad5S1A than in RADS1 (Fig 4D). Localization of RadS1 to
ssDNA does not interfere with the in vivo DNA synthesis per se but
rather limits PCNA loading onto DNA as shown in our in vitro
experiments. PCNA recruitment to DNA relies on RFC-RPA interac-
tion specifically at the ss-dsDNA junction (Yuzhakov et al, 1999).
Rad51 bound at the junction is not a suitable substrate for RFC inter-
action, and therefore, Srs2 is needed to dislodge Rad51 from ssDNA
in order to allow RPA binding and PCNA loading. Consistent with
this model, excess of RPA which can outcompete Rad51 for DNA
binding partially compensates for the need of Srs2 in our in vitro
PCNA-loading assays (Fig 5SI).

DNA re-synthesis during BIR and de novo telomere addition, but
not SSA, requires Polo primase to initiate synthesis of the comple-
mentary strand. Recruitment of Pola to DNA and its activity which
both rely on Pola interaction with RPA (Braun et al, 1997) might
also depend on Rad51 removal by Srs2. During de novo telomere
addition, the primase is expected to be recruited to the newly added
TG repeats, perhaps via Pol12-Stn1 interaction (Grossi et al, 2004).
It remains unclear whether Rad51 filaments would spread into the

© 2016 The Authors
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Figure 7. The srs2A defects in DNA repair can be suppressed by slowing down resection and exacerbated by slowing down DNA synthesis.

A Loss of Exol suppresses srs2A defect in multiple DSB repair mechanisms involving extended resection of broken ends: SSA (left), de novo telomere addition (middle)
and BIR (right). Average + SD (n = 4) is shown for each genotype for all experiments presented. Unpaired t-test was used to calculate the P-value shown for the SSA
experiments. Strains used: SSA: NK4691-NK4693; NK4805-4808; NK5070-5073; NK5074-5080; de novo telomere addition: NK1264; NK2375, NK2376; NK2016, NK2017;
NK5244, NK5245; BIR: NK4070, NK4079; NK5321, NK5322; NK5446, NK5447; NK5448, NK5449.

B The effect of HU on the survival of SRS2 and srs2A cells after DSB induction (top panel). The control experiment involving similar HU treatments in the absence of
DSBs is shown in the bottom panel. Average + SD (n = 4) is shown for each genotype. Strains used: NK4691-4693; NK4805-4808.

C Formation of fragment L in SRS2 and srs2A cells in the presence and absence of 25 mM HU. Average + SD (n = 3) is shown for each time point. Strains used:

NK4691-4693; NK4805-4808.

telomeric sequences or if Cdcl3-Stnl-Tenl would prevent the
spreading.

Lack of Srs2 does not block the re-synthesis completely: consis-
tent with the previously published results (Vaze et al, 2002) prod-
ucts of DSB repair can be observed by Southern blotting in srs2A
cells. However, quantitative analysis of repair progression shows
that srs2A cells re-synthesize resected DNA at a much slower rate
than wild-type yeast. We believe that efficient re-synthesis has a
dual function in DNA repair. Firstly, it restores resected DNA into
its original double-stranded form, and secondly, it is required to

© 2016 The Authors

terminate further resection. While the inefficient re-synthesis in
the absence of Srs2 can only partially perform the first role, as a
result of it, it often fails at the second one resulting in a defect in
DSB repair in srs2A mutants. Although in the mutant cells, repair
can be completed around the break site, albeit with a delay,
ssDNA gaps “migrate” further away from DSBs (Fig 3), consistent
with the previously observed accumulation of ssDNA long distance
away from the initial damage site (Yeung & Durocher, 2011). Our
understanding of the role of Srs2 in DNA repair is also supported
by the previously published data on SSA in a set of three strains
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Figure 8. The role of Srs2 in DSB repair requires its ATPase activity but is independent of its C-terminus.

A Schematic of the full-length Srs2 protein shown as a bar. I-VI, Srs2 helicase motifs; K41, a lysine residue required for ATP binding and hydrolysis; BRCv, BRC repeat
variant motif; Rad51-BD, Rad51-binding domain; PIM, PCNA-interacting motif; SIM, SUMO-interacting motif; asterisks indicate sumoylation sites. Numbers below

the protein indicate positions of amino acid residues within the Srs2 protein.

B-D The efficiency of DSB repair via SSA (B), de novo telomere addition (C) and BIR (D) in different alleles of SRS2. Average + SD (n = 3) is shown for each genotype in
all experiments. Strains used: SSA: NK4691-4693; NK4805-4808; NK5104-5107; NK5066-5069; NK5062-5065; NK5058-5061; de novo telomere addition: NK1264;
NK2375, NK2376; NK3332-3334; NK3308-3310; NK4217, NK4247; NK3353-3355; BIR: NK4070, NK4079; NK5321, NK5322; NK5536, NK5537; NK5450, NK5451; NK5452,

NK5453; NK5454, NK5455.

E Srs2(1-783) is less active than Srs2(1-910) in promoting PCNA loading in vitro. The assay was performed as shown in Fig SE.

which differ in the distance between the homologies: 0.7, 5 and
30 kb (Vaze et al, 2002). The SRS2 deletion conferred the strongest
defect in SSA in the background with the longest distance between
the homologies by bringing down the DSB survival rates to 55, 10
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and < 2%, respectively (Vaze et al, 2002). Since the position of
the break was next to one of the homologies and in turn 0.7, 5 or
30 kb away from the other one, by the time the farthest from the
break homology was processed (so that both homologies are
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available for the annealing step), there was ~0.7, 5 and 30 kb,
respectively, of to-be-restored ssDNA generated on the other side
of the break. Since re-synthesis is impaired in srs2A, having resec-
tion machinery which is already 30 kb away from the start of the
re-synthesis locus presents a much harder problem than if this
distance equals to only 0.7 or 5 kb.

We propose a model where the fast rate of re-synthesis of
processed DNA is necessary for the replication machinery to catch

The EMBO Journal

continuity (Fig 9). In the absence of Srs2, the recruitment of
PCNA is impaired and DNA restoration is slowed down. When re-
synthesis involves long tracts of ssDNA, the replication machinery
is likely to undergo multiple rounds of disassembly-reassembly
and the role of Srs2 in Rad51 removal to stimulate PCNA recruit-
ment becomes critical for successful restoration of dsDNA. In
srs2A, the replication machinery often fails to catch the
“run-away” resection and cells accumulate ssDNA as a result of

nucleases in order to stop further resection and restore strand unsuccessful repair.
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Figure 9. A model for the role of the Srs2 helicase in restoration of dsDNA during DSB repair.

During DSB repair by a variety of mechanisms shown on the left, sSSDNA gaps require DNA synthesis to restore dsDNA (a). ssDNA formed as a result of DSB processing is
covered by Rad51. In wild-type cells, the Srs2 helicase displaces Rad51 (b), thereby promoting RPA binding to the ssDNA. Presence of RPA at ssDNA-dsDNA junction is
required for PCNA loading (via RPA-RFC interaction) followed by recruitment of DNA polymerase (c). Because DNA synthesis is faster than resection, the ssDNA gap shortens
(d). When long stretches of DNA have to be synthesized, the likelihood of the replication machinery stalling and disassembly is increased (e). However, its re-assembly is
efficient in wild-type cells as Srs2 ensures that ssDNA is clear from Rad51 and covered with RPA. Once loaded, the polymerase rapidly catches up with the resection
machinery due to a higher speed of replication vs. resection (f). As a result, DNA processing is terminated. Therefore, due to efficient initial loading as well as re-loading
of PCNA, SRS2 cells are able to restore dsDNA and complete repair (g). In contrast to wild-type cells, in srs2A mutants, the replacement of Rad51 with RPA at the
ssDNA-dsDNA junction is slow as it occurs either stochastically or relies on another, less efficient helicase (h, i). As a result, recruitment of PCNA and initiation of DNA
synthesis is delayed and the ssDNA gap becomes longer (j). Once loaded, the replication machinery in srs2A mutants moves at the same rate as in wild-type cells and
shortens the gap (k), albeit more DNA synthesis is now required to fill in the gap. If uninterrupted, the replication machinery will eventually catch up with the
processing nucleases and complete repair, like in wild-type cells (see f and g). Re-loading of disrupted PCNA-polymerase complexes in srs2A cells depends on

inefficient replacement of Rad51 with RPA at the ssDNA-dsDNA junction which leads to an increase in the ssDNA gap (I) and, depending on the balance between DNA
synthesis and resection, may result in “run-away” resection and inability of srs2A to complete restoration of dsDNA (m).
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During BIR, the replication machinery is involved in two distinct
processes: assembly and progression of BIR forks as well as re-
synthesis of resected DNA on broken chromosomes (Fig 3A).
While srs2A cells show defects in both, we argue that the delayed
progression of BIR forks has a minor effect on cell survival because
by the end of the experiment the forks in srs2A catch up with those
in SRS2 (Fig 3E, 6 h) and successfully progress almost all the way
to the end of the donor chromosome (77 kKb out of 94 kb to
complete replication). As BIR fork migration occurs in a Rad51-free
environment, the difference between SRS2 and srs2A could be
caused by a delayed start of BIR synthesis in srs2A: Rad51 brought
to the newly formed D-loops by invading 3’-ends might affect the
recruitment of PCNA to the D-loops as it has been demonstrated
in vitro (Li et al, 2013). In contrast to BIR synthesis, DNA re-
synthesis was drastically reduced in srs2A, with the defect becom-
ing more pronounced with the increasing distance from the break.
Analysis of DNA dynamics at different positions on the resected
chromosome suggests ssDNA gap “migration” away from the break
site over time: while ssDNA is becoming double-stranded again
closer to break, more ssDNA is produced away from the break
(Fig 3C).

Break-induced replication involves resection and invasion of a
one-ended DNA break. Similarly, break processing and strand-
invasion operate during DSB repair by homologous recombination,
but on two DNA ends. Not surprisingly, Srs2 is also required for
DSB repair involving both ends (Vaze et al, 2002; Aylon et al, 2003)
as re-synthesis of both processed DNA ends would be required to
complete the repair.

Accumulation of ssDNA during DSB repair explains the persis-
tence of the checkpoint activation in srs2A cells (Vaze et al, 2002;
Yeung & Durocher, 2011). It has been suggested that cell death in
srs2A with DSBs occurs from inability to inactivate the DNA
damage checkpoint triggered by DSB processing because mecl
and mecl srs2 cells have similar survival rates in genetic assays
for DSB repair by SSA (Vaze et al, 2002). By using an inducible
DSB which leads to DNA damage checkpoint activation but does
not require DNA repair, we show that srs2A cells do not have a
defect in checkpoint inactivation. Then, how do mutations in the
checkpoint genes suppress the defect of srs2A in DSB repair?
Long-range resection is known to be limited to S/G2 phase of the
cell cycle but is inactive in G1 (Aylon et al, 2004; Ira et al, 2004).
Lack of G2 arrest in checkpoint-deficient srs2A cells might termi-
nate long-range resection by transitioning cells with unfinished
repair into G1. ssDNA gaps might then be repaired in Gl or
Rad51 might be removed from the DNA in an Srs2-independent
manner. Alternatively, checkpoint inactivation might affect the
stability of the Rad51 nucleoprotein filament in S/G2. Rad55
which is implicated in stabilization of Rad51 on DNA is phospho-
rylated in a Mecl-Rad53-dependent manner (Bashkirov et al,
2000) and the presence of functional Rad55/57 was reported to
dictate the requirement for Srs2 in cells with DNA damage (Liu
et al, 2011). Therefore, in checkpoint-deficient cells, the lack of
Rad55 phosphorylation might decrease the stability of Rad51 on
DNA and promote stochastic replacement of Rad51 with RPA,
thereby alleviating the need for Srs2.

Srs2-dependent removal of Rad51 from ssDNA has two distin-
guishable functions in DNA metabolism. When Srs2 operates on
Rad51 nucleoprotein filament prior to initiation of recombination
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events, it acts as an anti-recombinase. However, the same enzy-
matic function is needed to complete recombination events when
Rad51 is no longer needed on ssDNA and should be replaced by
RPA in order to recruit the replication machinery and complete
repair. Therefore, Srs2 can be either a pro- or an anti-recombinase.
This explains the srs2A puzzling phenotype which includes
both recombination deficiency and hyper-recombination. The anti-
recombination role of Srs2 is particularly important for inhibition of
recombination at replication forks and involves complex regulation
of Srs2 through post-translational modifications at its C-terminus
(Saponaro et al, 2010; Kolesar et al, 2012). The C-terminal part is
not needed for the role of Srs2 in re-synthesis of resected DNA, and
therefore, the Srs2 pro-recombination function is genetically separa-
ble from its role at replication forks. It remains uncertain if physical
interactions between Srs2 and Rad51 are required for the disassem-
bly of the Rad51 nucleofilament by Srs2. The previously reported
Rad51 binding domain [a.a.875-902 (Colavito et al, 2009)] is clearly
dismissible. This observation is consistent with the study by
Sasanuma et al which demonstrated that Srs2 lacking the
Rad51-binding domain was proficient in disruption of Rad51 fila-
ments during meiotic recombination (Sasanuma et al, 2013).
However, Srs2 contains a BRC repeat variant (BRCv, a.a.836-860).
Srs2-BRCv structurally resembles the BRC repeat of the human
tumour suppressor BRCA2 (Islam et al, 2012) which mediates
BRCA2-RADS1 interaction, thereby promoting recruitment of
RADS1 to DSBs and regulation of RADS1 recombinase activity
(Jensen et al, 2010; Liu et al, 2010; Thorslund et al, 2010). Srs2-
BRCv also promotes Srs2-Rad51 interaction in vitro (Islam et al,
2012). Notably, in our genetic assays, srs2 mutants lacking BRCv,
Srs2(1-836), had an intermediate phenotype: they resembled wild
type in SSA and BIR but were partially deficient in de novo telomere
addition (Fig 8B-D). Srs2(1-836) might be partially active due to
attenuated interaction with Rad51. This protein malfunction might
only affect de novo telomere addition because more DNA re-
synthesis might be required for completion of de novo telomere
addition than BIR or SSA. Srs2(1-741) behaves like a null allele
(Fig 8B-D), perhaps because the protein is no longer a functional
helicase in vivo. Alternatively, the Srs2 region a.a.741-836 might be
important for its interaction with Rad51 or other factors.
Recruitment of the replication machinery is evolutionarily
conserved, particularly at the step of clamp loading. It has been
shown that both in bacteria and humans, the clamp loaders
(y-complex and RFC) interact with single-stranded DNA binding
proteins, SSB and RPA, respectively, to load clamps onto DNA
(Kelman et al, 1998; Yuzhakov et al, 1999). Localization of RecA in
bacteria and Rad51 in eukaryotes to SSB-/RPA-coated ssDNA leads
to displacement of SSB/RPA (Kowalczykowski et al, 1987;
Sugiyama & Kowalczykowski, 2002), thereby inhibiting clamp load-
ing at repair loci until the recombination proteins are removed. Srs2
is required for Rad51 removal in yeast, UvrD is a bacterial structural
homolog, and RTEL1 and RECQ5 have been suggested as functional
homologs in Caenorhabditis elegans and mammals (Barber et al,
2008; Schwendener et al, 2010). FBH1 helicase is also a strong
candidate for the role of Srs2 in mammals as it shares more struc-
tural similarity with Srs2 than RTEL1 and RECQS5 and has been
shown to regulate RAD51 (Chu et al, 2015). Identifying human
functional homolog for the role of Srs2 in restoration of resected
DNA might improve not only our understanding of genome stability
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mechanisms and but also human diseases stemming from defects in
genome maintenance.

Materials and Methods
Yeast strains, oligonucleotides and plasmids

Yeast strains are described in Table EV1. Oligonucleotides are listed
in Table EV2. pYT147 is described in Makovets & Blackburn (2009).
To construct pYT341, the 5-end of srs2-K41A was amplified by
recombinant PCR: step 1a. OSM1370 + OSM1373 primers on NK1
genomic DNA; step 1b. OSM1371 + OSM1372 oligonucleotides on
NK1 genomic DNA; step 2. OSM1370 + OSM1371 oligonucleotides
using the mixture of step 1 fragments as a template. The final PCR
product containing srs2-K41A was digested with Eagl+Sall and
ligated into pRS404 digested with Eagl+Sall.

Genetic assays

De novo telomere addition assay was performed as described
before (Makovets & Blackburn, 2009). Briefly, cells with an indu-
cible DSB at MNT2 locus on chr.VIIL were patched on YPRaffi-
nose plates and grown overnight. Cells were then resuspended in
YP broth, and serial dilutions were plated on YPD and YPGalac-
tose plates. Colonies grown on YPGalactose plates were replica
plated on media without uracil. The frequency of de novo telo-
mere addition was calculated as the ratio between the number of
Ura~ colonies to the number of colonies on YPD plates (total
number of cells in the experiment). The Ura colonies were also
assayed by Southern blotting for the presence of a telomere at the
break.

To generate a system with high frequency BIR, a 5-kb DNA
sequence present on chr.IIR was placed on chr.VIIL so that chr.VIIL
and chr.IIR shared extensive homology. To this end, we first placed
a fragment of the KAN-MX6 cassette linked to an HO site on chr.VIIL
(MNT2 locus) and another fragment of the same cassette at on
chr.IIR (HIS7 locus) so that when a DSB was induced on chr.VIIL, it
could be repaired via BIR using the KAN homology on chr.IIR. BIR
resulted in Kan® colonies which contained ~100 kb of chr.IIR
(ARO4-telomere) copied next to MNTZ2. The mutated version of
chr.VIIL was then truncated by placing the HOsite-URA3-STAR-telo-
mere construct next to SPO23 (the clones were screened by PFGE to
differentiate between the truncations of chr.VIIL and chr.IIR). There-
fore, the two chromosomes share 6,272 bp of homology which
includes incomplete KAN-MX6 and ARO4-SPO23 region. To calculate
the efficiency of BIR, cells were patched on YPRaffinose agar and
grown overnight. Yeasts were then resuspended in YP broth, and
serial dilutions were plated on YPGalactose and YPD. The frequency
of BIR was calculated as the ratio between the numbers of colonies
on YPGalactose and YPD.

To construct a system for SSA assays, a KAN cassette was
amplified by PCR with one of the primers containing an HO recog-
nition sequence and the PCR product was cloned into pRS406 as
an Eagl-Sall fragment to generate a plasmid pYT381. The plasmid
was linearized with Stul and integrated at the ura3-52 locus by
selection on media without uracil. To assay the efficiency of SSA,
cells were patched on YPRaffinose plates and grown overnight.
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Cells were then resuspended in YP broth, and serial dilutions were
plated on YPGalactose and YPD. Colonies grown on YPGalactose
plates were replica plated on YPD+G418 plates and on media with-
out uracil. SSA frequency was calculated as a ratio between the
number of Kan® colonies and the number of colonies on YPD
plates. The frequency of SSA in the presence of HU was assayed
by plating cells on YPGalactose and YPD plates containing HU at a
final concentration of 5, 10 and 25 mM and calculated as
described above.

Synchronization of cell populations and DSB induction

A DSB was introduced at a genetically engineered locus by
expression of the HO endonuclease placed under the galactose-
inducible promoter. With the exception of the de novo telomere
addition experiment in Fig 1D where non-synchronous popula-
tions were used, all the time-course experiments involved the
following synchronization procedure. Cultures were grown at
30°C in YPRaffinose, and o-factor was added at ODgog ~0.3 to a
final concentration of 5 pg/ml for 2 h. To induce a DSB, galactose
was added to the synchronized culture to a final concentration of
2% and this time point was counted as —1 h. After 1 h after the
addition of galactose, cells were washed from the o-factor and
released into a fresh YPGalactose medium with 15 pg/ml nocoda-
zole to block cell division after DSB repair (time point 0 h). Cell
aliquots were collected right before addition of galactose (—1 h),
before the removal of a-factor (0 h) and at further interval speci-
fic to each set of experiments. For the analysis of the kinetics of
SSA in the presence of HU, 2% galactose was added to the
culture together with 25 mM HU. After 1 h of DSB induction,
cells were released into a fresh YPGalactose medium containing
25 mM HU.

Analysis of non-homologous DNA end cleavage during SSA by qPCR

qPCRs were performed using Brilliant II SYBR® Green QPCR
Master Mix (Agilent Technologies). Each DNA sample was run in
triplicates (technical repeats) in each qPCR run. A minimum of
three biological repeats of each experiments (including all the
strain backgrounds shown) were performed to calculate average
values and standard deviations for each strain background. The
kinetics of DNA cleavage at the homology to non-homology
junction in SSA was quantified using two different PCRs (primer
pairs OSM2233 + OSM2234 and OSM2242 + OSM2244) across the
potential cleavage site. Relative amounts of DNA at the repair
locus in different samples were normalized against the AROI locus
on chr.IVR (OSM1006 + OSM1007). The fraction of non-homologous
DNA ends remaining was quantified relative to the —1 h time
point (prior to DSB induction) using the efficiency-corrected
comparative quantitation method (AAC,) (Pfaffl, 2001). The frac-
tion of DNA ends cleaved after SSA was calculated as [1—fraction
of DNA ends remaining].

Analysis of BIR and SSA by Southern blotting
All probes used in Southern blotting experiments were labelled

using **P and a random prime labelling kit Prime-It I (Agilent Tech-
nologies). Phosphor-storage screens, a Typhoon Scanner and Image
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Quant software (all GE Healthcare) were used for signal quan-
tifications.

For the analysis of DSB repair via BIR, total genomic DNA was
digested with EcoRI+BamHI (NEB), resolved on a 0.7% agarose
gel, transferred onto a positively charged nylon membrane
(Amersham Hybond-N*, GE Healthcare) and subjected to South-
ern blotting. To analyse the efficiency of re-synthesis of resected
DNA, dsDNA fragments on chr.VII were detected using RS2.6,
RS6.8 and RS15.2 hybridization probes. To analyse the efficiency
of BIR, chr.lIR-specific probes BIR6, BIR36 and BIR77 were used
to detect dsDNA fragments along the progression of BIR fork. A
fragment on chr.V detected by the ARS522 probe was used to
normalize the amount of DNA in different samples. The efficiency
of DNA re-synthesis was normalized against the —1 h time point
(prior to DSB induction, 100% of DNA is dsDNA). The efficiency
of BIR was calculated relative to NK3980, the control strain in
which the DSB has been repaired via BIR, and therefore, it
contained two copies of the ARO4-telomere region characteristic
of chr.IIR.

For the analysis of DSB repair via SSA, total genomic DNA was
digested with BspCNI+Smal (fragment S1), BglI (fragment S2) or
Sall+EcoRI (fragment L), resolved on a 0.7% agarose gel, trans-
ferred onto a positively charged nylon membrane (Amersham
Hybond-N", GE Healthcare) and subjected to Southern blotting.
The URA3-specific probe was amplified using OSM2161 and
OSM2162 primers and used to detect DNA fragments S1, S2 and L
during repair by SSA. The ARSI reference probe was amplified with
OSM189 and OSM190 and used to detect a reference fragment in
order to normalize the amount of DNA in different samples. The
efficiency of DNA repair at fragments S1, S2 and L was calculated
relative to the ura3-52 control strain NK1 (100% of dsDNA at all
three fragments).

Analysis of DNA repair via de novo telomere addition

DSB induction

A DSB was introduced at a genetically engineered locus MNT2::
HOsite-URA3-STAR-TEL on the chr.VIIL by expression of the HO
endonuclease placed under the galactose-inducible promoter.
Cultures were grown at 30°C in YPRaffinose to the early-log
phase. For the analysis of the addition of TG; ; repeats to a
broken DNA end, a DSB was induced in the asynchronous culture
by addition of galactose to a final concentration of 2%. Cultures
were incubated at 30°C for 24 h. Cell aliquots were collected
before DSB induction (0 h) and at certain intervals after DSB
induction.

For the analysis of DNA re-synthesis after addition of telomeric
repeats, cells were synchronized in G1 by addition of the o-factor at
a final concentration of 5 pg/ml to a growing culture of ODggp ~0.3
for 2 h. For DSB induction, galactose was added to a synchronized
culture to a final concentration of 2%. After 1 h of DSB induction,
cells were washed from o-factor, released into a fresh YPGalactose
medium with 15 pg/ml nocodazole to prevent cell division after
DSB repair. Cultures were incubated at 30°C for additional 6 h. Cell
aliquots were collected before DSB induction (—1 h), before release
into YPGalactose with nocodazole (0 h) and every hour after release
into YPGalactose with nocodazole until the end of the time-course
experiment.
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Detection of telomeric repeats at DSB by qPCR

qPCRs were performed using Brilliant II SYBR® Green QPCR
Master Mix (Agilent Technologies). Each DNA sample was run
in triplicates (technical repeats) in each qPCR run. A minimum
of three biological repeats of each experiments (including all
the strain backgrounds shown) were performed to calculate
average values and standard deviations for each strain back-
ground. A telomere-specific oligonucleotide OSM1487 and
OSM1502 annealing 168 bp away from the HO site on chr.VIIL
were used to detect de novo telomere addition at the induced
DSB. Relative DNA amounts in different samples were normal-
ized to the AROI locus on chr.IVR (OSM1006 + OSM1007).
De novo telomere addition was quantified relative to 0 h (prior
to DSB induction) using efficiency-corrected comparative quanti-
tation method (AAC,) (Pfaffl, 2001).

Quantification of ssDNA after de novo telomere addition by qPCR
coupled with a restriction digest

The protocol described by Zierhut & Diffley (2008) was adapted
to calculate ssDNA/dsDNA ratios during de novo telomere addi-
tion. Total genomic DNA was digested with Psil (NEB) which
cleaves 9 bp and 51 bp away from the HO site. In the mock-
digest reactions, Psil was replaced with 50% (w/v) glycerol.
Following digestion, samples were incubated at 65°C for 20 min
to heat-inactivate the restriction enzyme and subjected to qPCR
using a telomere-specific oligonucleotide OSM1487 and
OSM1502 annealing 168-bp centromere-proximal to the HO site.
qPCR product at the AROI locus generated by using OSM1006
and OSM1007 does not have any Psil sites and was used for
normalization of relative DNA amounts detected in different
samples.

C, values from mock-digested samples were used to quantify
de novo telomere addition relative to the —1 h time point (prior to
DSB induction) as described in the previous section. The percentage
of ssDNA within each sample was quantified using the following
equation:

100

DNA ] DNA), % = ———~7—=
ss (undigested ), % (1+ 2886 /2

(1 + E(DSB))A(1SB)
(1 4+ E(ARO1))AC(AROY

JAAC _

where 224G relative DNA quantity to —1 h time point; E (DSB): effi-
ciency of qPCR at the DSB region (OSM1487 + OSM1502); E
(ARO1):  efficiency of qPCR at the AROI  locus
(OSM1006 + OSM1007); AC, = C, (digested sample)—C, (undigested
sample), C—threshold cycle.

To control for the efficiency of Psil cleavage, UBCS5-specific
qPCRs were performed using oligonucleotides OSM2287 and
0OSM2288. This locus is not involved in repair (expected to contain
almost 100% of dsDNA) and has one Psil restriction site within the
PCR template. The relative amount of DNA detected by qPCR at the
UBCS region was normalized to the amount of DNA quantified at
the ARO1I locus, and the percentage of undigested DNA within each
sample was quantified as described above. The efficiency of Psil
cleavage was calculated by subtracting the obtained value from
100%.
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Analysis of the DNA damage checkpoint activation after DSB
induction and its effect on cell survival

Cells were grown in YPRaffinose medium at 30°C to mid-log phase.
Half of the culture was subjected to DSB induction by addition of
galactose to a final concentration of 2% while additional 2% raffi-
nose was added to the remaining culture which served as negative
control for DSB induction. Cell aliquots were collected 3 h after
galactose addition for analysis of cell cycle distribution by flow
cytometry as well as for Rad53 Western blotting. Protein extracts
were run on a 6.5% SDS polyacrylamide gel and subjected to West-
ern blotting using the anti-Rad53 primary goat antibody (Santa
Cruz, 1:500) and donkey anti-goat HRP secondary antibody
(Thermo Fisher Scientific, 1:6,000). To assay cell survival after DSB
induction, cells were patched on YPRaffinose plates and grown
overnight. Cells were then resuspended in YP broth and serial dilu-
tions were plated on YPGalactose and YPD. The frequency of
survival was calculated as a ratio between the number of colonies
on YPGalactose and the number of colonies on YPD plates.

Protein purifications

Purification of PCNApka

The plasmid (a kind gift from T. Sugiyama) expressing (His)s-tagged
PCNA with the protein kinase A recognition site (PCNApka) was
introduced into Escherichia coli strain BL21(DE3). Overnight culture
grown at 37°C in 2x TY medium was diluted 100-fold into fresh
2x TY medium and incubated at 37°C until ODgpo~0.8. The
overexpression of PCNApka protein was induced by addition of
1 mM IPTG followed by additional incubation at 37°C for 4 h. The
cell pellet (9.5 g) was resuspended in CBB (50 mM Tris—HCI, pH 7.5,
10% sucrose, 2 mM EDTA) containing 600 mM KCl, 0.01% NP-40,
1 mM B-mercaptoethanol, sonicated, and centrifuged (100,000 g,
1 h, 4°C). Clarified supernatant was loaded onto 8-ml SP-Sepharose
column with its outlet connected to a 8-ml Q-Sepharose column (GE
Healthcare). Both columns were pre-equilibrated with buffer K
(20 mM K,HPO,, 10% glycerol, 0.5 mM EDTA) containing 100 mM
KCl. The Q-Sepharose column was subsequently developed with a
80-ml gradient of 100-1,000 mM KCl in buffer K. Peak fractions elut-
ing around 400-500 mM KCl were pooled and mixed with 800 pl of
His-Select Nickel Affinity Gel (Sigma) prewashed in buffer K contain-
ing 100 mM KCl for 1 h at 4°C. The beads were washed with 10 ml
of 100 mM KCl in buffer K and eluted in steps with 50, 150, 300, 500
or 1,000 mM imidazole in buffer K containing 50 mM KCI. The peak
fractions eluting within the range of 150-500 mM imidazole were
loaded onto a 1-ml Heparin column (GE Healthcare) followed by
elution using 10-ml gradient of 100-1,000 mM KCl in buffer K. The
main fractions of PCNApka protein eluting around 100-400 mM KCl
were pooled and applied onto a 1-ml MonoQ column (GE Health-
care) which was developed with a 9-ml gradient of 300-1,000 mM
KCl. Peak fraction eluting at ~400 mM KCl was stored in small
aliquots at —80°C.

Purification of Srs2(1-783)

The plasmid expressing Srs2(1-783) with (His)s-affinity tag was
introduced into E. coli strain ArcticExpress™(DE3)RIL. Protein
expression was induced by 1 mM IPTG at 11°C for 24 h. Cells were
lysed by sonication in CBB buffer and the lysate was clarified by
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ultracentrifugation. Srs2 fragment was precipitated by adding
0.35 g/ml ammonium sulphate to the clarified supernatant. The
ammonium sulphate pellet was resuspended in buffer K and incu-
bated with 800 pl of His-Select Nickel Affinity Gel (Sigma) overnight
at 4°C. The nickel beads with bound proteins were washed with
20 ml of buffer K containing 150 mM KCl and 10 mM imidazole,
and eluted in steps with 50, 150, 300, and 500 mM imidazole in
buffer K containing 150 mM KCl. Fractions containing Srs2 were
applied onto a 1-ml Heparin column, and eluted using a 10-ml gradi-
ent of 150-1,000 mM KCI in buffer K. The peak fractions (around
400 mM KCl) were pooled, and loaded onto a 1-ml MonoS column
(GE Healthcare) followed by elution using 10-ml gradient of 150—
1,000 mM KClI in buffer K. Fractions containing Srs2 were pooled,
concentrated to 1 pg/ul in a Vivaspin concentrator and stored at
—80°C.

Rad51, RPA, RFC, PCNA, Pold and Srs2(1-910) proteins were
purified essentially as described previously (Finkelstein et al, 2003;
Van Komen et al, 2006; Colavito et al, 2009; Sebesta et al, 2011).

DNA strand extension assay

The assay was basically performed as described by Langston and
O’Donnell (Langston & O’Donnell, 2008). $X174 virion circular
ssDNA (0.5 nM) primed with a 70-mer (5-CAAAACGGCAGAA
GCCTGAATGAGCTTAATAGAGGCCAAAGCGGTCTGGAAACGTACG
GATTGTTCAGTA-3’) was incubated with PCNA (10 nM), RFC
(17.5 nM), RPA (75 nM) and Polé (10 nM) in buffer REP (20 mM
Tris-HCI pH 7.5, 1 mM DTT, 12 mM MgCl,, 50 mM KCl, 0.1 pg/ul
BSA, 0.09 uM dCTP, 0.09 uM dGTP, 1.25 mM ATP and an ATP-
regenerating system consisting of 20 mM creatine phosphate and
20 pg/ml creatine kinase) for 5 min at 30°C. Rad51 (300 nM) was
added to the indicated reactions and incubated for 5 min at 30°C
followed by the addition of various amounts of Srs2. After additional
incubation for 10 min at 30°C, the DNA synthesis was initiated by
adding start buffer (90 pM dTTP and 0.0375 pCi [0-**P]dATP in
buffer REP). Following the incubation for 5 min at 30°C, SDS (0.5%
final) and proteinase K (0.5 mg/ml) were added and mixture loaded
onto an 0.8% agarose gel. After electrophoresis, the gel was dried on
GRADE 3 CHR paper (Whatman), exposed to a phosphorimager
screen and scanned using a Fuji FLA 9000 imager, followed by analy-
sis with Multi Gauge software (Fuji).

PCNA-loading assay

Phosphorylated PCNApka (*?P-labelled PCNA) was prepared
essentially as described by Li and co-workers (Li et al, 2013).
Briefly, 22 pmol of PCNApka was incubated with 1.3 pmol cAMP-
dependent kinase and 2 pCi [y-*?PJATP in a buffer PLA (10 mM
HEPES pH 7.4, 4 mM MgCl, and 2 mM DTT) at 30°C for 30 min.
The **P-labelled PCNA was stored at 4°C.

PCNA loading was analysed on a $X174 virion circular ssDNA
(5,386 nt, used at 0.5 nM) primed with a 70-mer was incubated with
RPA (75 nM) and/or or 2.3 uM Rad51 in buffer REP1 (20 mM Tris—
HClpH 7.5, 1 mM DTT, 12 mM MgCl,, 50 mM KCI and 1 mM ATP)
for 5 min at 23°C (it has been shown that Rad51 monomer binds 3
nt, meanwhile RPA heterotrimer binds 30 nt, resulting in 2.6:1
Rad51:ntDNA binding site ratio and 1:0.84 RPA:ntDNA binding site
ratio, respectively). Then, **P-PCNA (10 nM) and RFC (21 nM) were
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added to the reactions followed by the incubation at 30°C for 5 min.
The reactions were mixed with 0.02% glutaraldehyde and incubated
for additional 10 min at 37°C, followed by addition of loading dye
(60% glycerol, 10 mM Tris—HCl, pH 7.4, 60 mM EDTA and 0.025%
orange G) and resolved on 0.9% agarose gel in 0.5x TBE buffer
(45 mM Tris—ultrapure, 45 mM boric acid, 1 mM EDTA). After
electrophoresis, the gel was analysed as in DNA strand extension
assay.

Expanded View for this article is available online.
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