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Abstract

The deep inspiration breath hold (DIBH) and prone (P) position are two common

heart-sparing techniques for external-beam radiation treatment of left-sided breast

cancer patients. Clinicians select the position that is deemed to be better for tissue

sparing based on their experience. This approach, however, is not always optimum

and consistent. In response to this, we develop a quantitative tool that predicts the

optimal positioning for the sake of organs at risk (OAR) sparing. Sixteen left-sided

breast cancer patients were considered in the study, each received CT scans in the

supine free breathing, supine DIBH, and prone positions. Treatment plans were gen-

erated for all positions. A patient was classified as DIBH or P using two different

criteria: if that position yielded (1) lower heart dose, or (2) lower weighted OAR

dose. Ten anatomical features were extracted from each patient’s data, followed by

the principal component analysis. Sequential forward feature selection was imple-

mented to identify features that give the best classification performance. Nine sta-

tistical models were then applied to predict the optimal positioning and were

evaluated using stratified k-fold cross-validation, predictive accuracy and receiver

operating characteristic (AUROC). For heart toxicity-based classification, the support

vector machine with radial basis function kernel yielded the highest accuracy (0.88)

and AUROC (0.80). For OAR overall toxicities-based classification, the quadratic dis-

criminant analysis achieved the highest accuracy (0.90) and AUROC (0.84). For heart

toxicity-based classification, Breast volume and the distance between Heart and

Breast were the most frequently selected features. For OAR overall toxicities-based

classification, Heart volume, Breast volume and the distance between ipsilateral lung

and breast were frequently selected. Given the patient data considered in this study,

the proposed statistical model is feasible to provide predictions for DIBH and prone

position selection as well as indicate important clinical features that affect the posi-

tion selection.
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1. | INTRODUCTION

Breast cancer is the most common malignant disease in women in

the United States, second to the lung cancer as the leading cause of

cancer death.1 While the whole breast irradiation (WBI) has demon-

strated a significant overall survival benefit and low recurrence

rate,2,3 studies have shown the increased risk of cardiac and lung

disease associated with the WBI.4

The deep inspiration breath hold (DIBH) is one common heart

sparing irradiation technique for left-sided breast patients. Since the

heart can be displaced away from the left breast during deep inspira-

tion in most patients, one approach to reducing incidental cardiac

irradiation is to treat patients during this portion of the respiratory

cycle; i.e., using DIBH. Shown in Figure 1a of an image fusion, the

distance between the chest wall and heart of the patient increased

from 0.36 cm to 1.30 cm from supine free breathing (FB) to DIBH.

On the other hand, the ipsilateral lung involvement might be

increased due to the deep breath hold.

Prone (P) position is another heart sparing technique. While the

prone position can dramatically reduce the lung dose, reduction in

the heart exposure is controversial.5,6 The image fusion (Figure 1b)

indicated that the heart was situated at further distances from the

chest wall in the supine position (heart-to-chest distance equals to

1.71 cm), whereas it lays more adjacent to the chest wall in the

prone position (heart-to-chest distance decreased to 0.56 cm).

Currently, for patients suitable for both techniques, clinicians

select one technique that might result in better organs at risk (OAR)

sparing. This decision is mainly based on experience, and might not

always yield the lowest dose. Our study aims to provide predictions

and quantitative guidelines for this clinical decision. Nine statistical

learning algorithms are investigated. To evaluate the performance,

the prediction results obtained by the models were compared to the

ground truth results that have been selected for these trial patients

by physicists based on treatment planning.

2. | MATERIALS AND METHODS

2.A | Proposed procedures

Figure 2 is the diagram of our proposed classification/prediction

training procedure. The supine free-breathing computed tomogra-

phy (CT) scans of the patients were used as input for model train-

ing. The first step is to extract anatomical features. Ten clinically

relevant features were extracted. The next step is to label the

patient to different classes based on user-defined dose criteria. In

this case, there are two classes — DIBH and prone position. Then

we apply dimension reduction techniques such as the principle

component analysis (PCA) or feature selection to these features

and train the model upon that. After several rounds of evaluation,

the model is built.

1.30cm

0.36cm

0.56cm
1.71cm

(a) (b)

F I G U R E 1 . (a) Image fusion of the CT scans in the Free Supine versus the DIBH position. The supine position is in pink, and the DIBH
position is in blue. For the supine position, the heart-to-chest distance was 0.36 cm, and this distance increased to 1.30 cm when the patient
was positioned in DIBH. (b) Image fusion of the CT scans in the Free Supine versus the prone position. The supine position is in pink, and the
prone position is in blue. For the supine position, the heart-to-chest distance was 1.71 cm, and this distance decreased to 0.56 cm when the
patient was positioned in prone. The supine scan was rotated 180 degrees to align with the prone scan.

Acquire FB 
CT scan

Extract 
features

Dimension 
reduction and 
model training

DIBH

Prone

Label the 
patient using
dose criteriaF I G U R E 2 . The diagram of model

building and prediction process.
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When a new patient FB CT comes in, the same ten features

would be extracted and employed as the input of the pre-trained

model to predict which class the patient should belong to. We say

that the predicted class is the optimum position for that patient.

Each of these steps will be described in detail in the following sec-

tions.

2.B | Patient data and planning

Sixteen left-sided breast cancer patients were included in the

prospective trial conducted by Department of Radiation-Oncology,

University Hospitals of Leuven, Belgium at the time adjuvant WBI

was planned after lumpectomy. Patients then received three non-

contrast CT in the following different positions during the simula-

tion procedure: (1) standard supine position in FB; (2) supine

position with gating in DIBH; and (3) prone position. The detailed

procedures were described by Verhoeven et al.7 The CT data were

then transferred to the treatment planning system (Eclipse; Varian

Medical Systems) for delineation and planning. Target breast vol-

umes and OAR (lungs, heart, left anterior descending artery and

contralateral breast [CLB]) were delineated. The delineations of the

CT scans in supine and prone position were done by the same

radiation oncologist.

Standard tangent fields with compensator design8 were used for

WBI to improve dose homogeneity. Typical WBI prescription

(200 cGy 9 25)was used. The normalization point was placed at

lung-chest wall interface anterior of the rib. For each patient in each

position, the plan that best covered the whole breast PTV (optimized

not to exceed 110%) and minimized the OAR doses (the volume of

the heart receiving 25 Gy dose ≤5%, and the volume of ipsilateral

lung receiving 20 Gy dose ≤20%) was selected as the optimal treat-

ment plan. The dose distributions were reviewed in three dimen-

sions. Isodose distributions and dose volume histograms were used

to analyze whole breast PTV coverage, dose homogeneity, and doses

to OAR. To evaluate the doses to OAR, mean doses, V25 heart, V20

ipsilateral lung, and V5 CLB were analyzed.

Treatment plans were generated for all the three positions of the

patient data according to our clinical guidelines. By comparing three

treatment plans of each patient, the position (Supine-free or DIBH

or prone) that introduces least OAR doses was selected as the

patient label. In this study, we investigated heart toxicity-based crite-

ria and weighted OAR toxicities-based criteria. OAR includes heart,

ipsilateral lung and CLB, and the weighted toxicity was defined as

0.6 9 V25 heart + 0.3 9 V20 lung + 0.1 9 V5 CLB. Different

weights were assigned to the OARs to reflect the relative signifi-

cance of OAR during the left-sided breast treatment: the heart is

given the highest weight, the ipsilateral lung is the second, and then

the CLB.

2.C | Features extraction and data preprocessing

To train the classifier and predict the optimal position, we extracted

the anatomical features from the CT scan. Since each patient would

have an FB scan, the feature extraction is done from the FB scans.

The following 10 clinically relevant features are extracted and used

as the input for the statistical models, and the mean and standard

deviation of each feature value are reported (See Table 1).

2.C.1 | Volumes of the breast, heart, and ipsilateral
lung

Breast volume has long been used as an important indicator in

selecting the optimal positioning for whole breast treatment.9–11

Heart and ipsilateral lung volume were also selected — the larger

the heart and ipsilateral lung volume are, the more likely they would

be irradiated.

2.C.2 | The distance between heart and breast, and
the distance between ipsilateral lung and breast

The distance between OAR (heart and ipsilateral lung) and breast is

defined as the distance between the mass centers of OAR and the

PTV Breast. All distances were automatically extracted from all

patients using CERR.12 These two distance features are important

because both DIBH and prone positioning can cause a demonstrable

OAR shift, which in some cases, would compromise optimal OAR

sparing.

2.C.3 | In-field heart and ipsilateral lung volumes

These two features are self-explanatory by the names. Figure 3 is an

example.

2.C.4 | Laterality of the heart

As shown in Figure 4, the laterality of the heart is defined as the dis-

tance between the center of the heart and the center of the chest

along the right-to-left direction. The further away the heart is from

the center of the chest, the more likely it will be in the tangent

fields.

TAB L E 1 Mean and standard deviation value of each feature
derived from the patient supine free breathing CT scans.

Features (from FB scans) Mean � SD

Breast volume (cm3) 575 � 299

Heart volume (cm3) 467 � 57

Ipsilung volume (cm3) 1230 � 224

Distance between heart and breast (cm) 10.4 � 3.7

Distance between ipsilung and breast (cm) 10.0 � 2.1

In-field heart volume (cm3) 10.89 � 3.74

In-field ipsilung volume (cm3) 154.56 � 58.01

Laterality of heart (cm) 6.9 � 1.1

Ratio of heart volume to ipsilateral lung volume 0.39 � 0.09

Breath-hold motion (cm) 1.3 � 0.4
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2.C.5 | The ratio of heart volume to ipsilateral lung
volume

Inspired by Zhao et al.,13 this feature was chosen to address the

concern that when both heart and lung volumes are large, the heart

volume alone might not be an effective feature, so we need to nor-

malize the heart volume to ipsilateral lung volume.

2.C.6 | Breath-hold motion

As shown in Figure 5, when the patient took a breath hold, the motion

of the anterior chest was 2.14 cm. Usually, this feature is correlated

with how much the heart is being moved away from the chest wall.

2.D | Statistical learning algorithms

The following nine statistical learning algorithms were used to

develop the predictive models: nearest neighbors, support vector

machine (SVM) with linear and radial basis function (RBF) kernel,

Decision Tree, Random Forest, AdaBoost, Naive Bayes, linear and

quadratic discriminant analysis (QDA).

2.D.1 | Nearest neighbors classification

The principle behind nearest neighbor methods is to find a prede-

fined number. A most common way of metric measurement is Stan-

dard Euclidean distance. Nearest Neighbors is often successful in

classification situations where the decision boundary is irregular. In

this current analysis, the classification based on the k nearest neigh-

bors of each query point was implemented, where k is an integer

value specified by the user.

2.D.2 | Support vector machine

SVM searches for the linear hyper-plane that can separate binary

classes optimally. The optimized hyper-plane is the one that pro-

duces the maximal margin between two classes. Given training vec-

tors in two classes xi 2 ℜp, where i = 1,2,. . .,n, and a vector y 2 {1,

�1}n, SVM solves the following problem14:

min
w;b;f

1
2
wTw þ C

Xn

i¼1

fi (1)

Subject to

yiðwT/ðxiÞ þ bÞ�1� fi; fi �0; i ¼ 1;2; � � � ; n (2)

The SVM model can be applied to both linearly and nonlinearly

separable data. For nonlinearly separable data, the SVM first maps

the data with a kernel function and then searches for a linear opti-

mally separating hyper-plane in the new space. Prediction is made

according to which side of the hyper-plane the subject lies on. In

this study, the SVM was implemented with a linear and RBF kernel.

2.D.3 | Decision tree

Decision Trees predicts the value of a target variable by learning sim-

ple decision rules inferred from the data features. Input data are split

F I G U R E 3 . An illustration of the lung and heart volumes in the
treatment field. The green contour is the amount of the heart in the
field, and magenta is the amount of the ipsilateral lung in the field.

L

F I G U R E 4 . Illustration of the laterality (L in the figure) of the heart
to the chest wall.

2.14 cm

F I G U R E 5 . An illustration of the breath hold motion between free
breathing and DIBH position of a patient. The pink body contour is
FB, and the green is DIBH.

LIN ET AL. | 221



into two or more subgroups according to the best split in input vari-

ables. The splitting continues until stop conditions are met. For train-

ing data, given training vectors xi 2 ℜp, where i = 1, 2, . . ., l and a

class vector y 2 ℜl, a decision tree is built using recursive partitioning

algorithm such that the samples with the same labels are grouped.14

For each candidate split h = (j, tm) consisting of feature j and threshold

tm, the data Q at the node is split into Ql(h) and Qr(h), where

QlðhÞ ¼ ðx; yÞ xi � tmj (3)

QrðhÞ ¼ QnQlðhÞ (4)

The impurity at the node can be evaluated by using an impurity

function H. One of the typical choices is called Cross-Entropy, where

H is defined as

HðxmÞ ¼ �
X
k

pmk logðpmkÞ (5)

m refers to the current node, and pmk are fractions that represent

the percentage of each class shown in the child node that results

from a split in the tree.

2.D.4 | Random forest

In random forests, multiple trees are built to classify an object based

on features. A sample of training set taken at random but with

replacement is used to build a tree. When growing the tree, the best

split is chosen among a random subset of the input features. As a

result of this randomness, the model selects the classification/regres-

sion results that get the most votes from trees in the forest, and

thus help reduce the variance of the final model.

2.D.5 | AdaBoost

An AdaBoost classifier is an ensemble technique that fits a classifier

on the training data and then creates a second model which

attempts to correct the weights of incorrectly classified instances.

The core principle of AdaBoost is to utilize multiple weak classifiers

on repeatedly modified versions of the data so that a strong classi-

fier can finally be generated.

2.D.6 | Naive Bayes

Given a class variable y and a dependent feature vector x1 through

xn, Bayes’ theorem states the following relationship14:

Pðy x1; � � � ;j xnÞ ¼ PðyÞPðx1; � � � ; xn yj Þ
Pðx1; � � � ; xnÞ (6)

The major difference of different naive Bayes classifiers is the

assumptions they make regarding the distribution of P(xi|y). The

Naive Bayes classifier used in this study is Gaussian Naive Bayes,

where the likelihood of the features is assumed to be Gaussian:

Pðxi yj Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

y

q e
�ðxi�ly Þ2

2r2y (7)

2.D.7 | Discriminant analysis

The linear/quadratic decision boundary of the classifier is generated

by fitting class conditional densities to the data using Bayes’ rule.

Assuming all classes share the same covariance matrix, the model fits

a Gaussian density to each class.

2.E | Dimension reduction and feature selection

Due to the limited training and testing dataset, dimension reduc-

tion technique was employed to reduce the data dimensionality

while retaining most variance of the data. PCA is a statistical pro-

cedure that transforms the original n coordinates of the dataset

into a new set of m (m < n) coordinates through linear combina-

tion. After transformation, the first principal component accounts

for the largest variance and each succeeding principal component

accounts for the highest possible variance if it is orthogonal to

the preceding components. Since PCA is sensitive to the relative

scaling of the original data, data normalization needs to be applied

before PCA.

Feature selection is a process of automatically removing unnec-

essary features and selecting a subset of features to be used in the

predictive modeling. In this paper, we applied sequential forward

feature selection (SFFS) algorithm, which employs greedy search to

reduce the original n features to a subset of m features where

m < n.15 Given the whole n-dimensional features as input

F ¼ ff1; f2; L; � � � ; fng (8)

And the output feature is defined as Ym, where

Ym ¼ yi i ¼ 1;2; L � � � ;mj ; yi 2 Ff g;m ¼ ð0;1;2; L � � � ; nÞ (9)

SFFS firstly initializes Ym with an empty subset so that Y0 = {φ}.

Then it adds an additional feature y+ which can maximize the crite-

rion function to the feature subset, where

yþ ¼ argmax Jðym þ yÞ;wherey 2 F � Ym (10)

Ymþ1 ¼ Ym þ yþ (11)

This procedure is repeated until the termination criterion is satis-

fied. In SFFS, the terminal criterion is set as m = p, where p is the

number of desired features that we specified a priori. In this study,

we set p = n so that the SFFS will go through all the features and

select the feature combination that can generate the best perfor-

mance. The best feature combination was discovered by iterating

forwardly from the first feature to the last, determining which

feature combination achieved the best performance during 5-fold

cross-validation.

2.F | Model comparison and evaluation

In this study, k-fold stratified cross-validation was used to test the

model performance as well as picking up the optimal hyper-
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parameters. For small training data size, stratified k-fold cross-valida-

tion is a widely accepted technique to evaluate the generalization

capability of a model. The whole dataset is partitioned into k smaller

subsets, where each subset contains approximately the same per-

centage of samples of each target class. Every time, the model is

trained with the k � 1 folds, while the remaining single fold is used

to validate the model. This procedure repeats k times and the results

are combined to generate an estimation of the model performance.

In our experiments, we used k = 5 and each experiment was

repeated for ten iterations using different random seeds. Prediction

accuracy and receiver operating characteristic (AUROC) were used

TAB L E 2 Mean values of OAR doses and V25 heart, V20 ipsilateral
lung and V5 contralateral breast under three positions.

Variable
Supine in

free breathing DIBH Prone

Mean heart dose (cGy) 325.82 194.17 267.21

V25 heart (%) 3.76 1.59 3.03

Mean ipsilateral lung dose (cGy) 578.12 597.24 154.34

V20 ipsilateral lung (%) 9.04 9.47 2.90

Mean contralateral breast

dose (cGy)

27.66 28.33 32.82

V5 contralateral breast (%) 0.37 0.39 0.51

1st Principle 
Component

2nd Principle 
Component

F I G U R E 6 . Comparison of different classification algorithms based on heart toxicity. The red dots demonstrate DIBH positioning, and blue
dots demonstrate prone positioning. The first subplot (with white background) demonstrates the distribution of the input data, and the blue
and red regions in succeeding subplots show the decision boundaries of each model. The first subplot shows the original distribution of the
dataset, and the others correspond to the classification boundaries of each model.

F I G U R E 7 . Prediction accuracy of the
different statistical model under heart
toxicity-based classification. The results
were averaged over ten iterations.
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for the final evaluation after cross-validation. Accuracy is defined as

the number of correctly predicted samples divided by the number of

total samples in the test data. The AUROC is a common method to

assess the power of a statistical learning model as its discrimination

threshold is varied across all cut-off values. AUROC takes a value

between 0 and 1, with 1 represents a perfect classification predic-

tion, 0.5 represents a classification with discrimination no better than

random, and 0 represents a model with all validation instances pre-

dicted with a wrong label.

3. | RESULTS

3.A | Statistics of the selected features and OAR
doses in the treatment plan

The mean and standard deviation of the feature values derived from

the patient supine free breathing CT scans are shown in Table 1.

The comparisons of the mean dose to OAR and the mean value

of V25 heart, V20 ipsilateral lung and V5 CLB under Supine-free,

1st Principle 
Component

2nd Principle 
Component

F I G U R E 8 . Comparison of different classification algorithms based on all OAR overall toxicity. The red dots demonstrate DIBH positioning,
and blue dots demonstrate prone positioning. The first subplot (with white background) demonstrates the distribution of the input data, and
the blue and red regions in succeeding subplots show the decision boundaries of each model. The first subplot shows the original distribution
of the dataset, and the others correspond to different classification methods.

F I G U R E 9 . Prediction accuracy of the
different statistical model under weighted
OAR toxicities-based classification. The
results were averaged over ten iterations.
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DIBH and Prone positioning are summarized in Table 2. Highest

mean heart dose and V25 heart were observed in supine free posi-

tion and the dose differences among supine-free, DIBH and prone

positioning were statistically significant. The mean ipsilateral lung

dose and the corresponding V20 ipsilateral lung are significantly

better in the prone position compared to the supine-free and

DIBH. For the CLB, the mean dose and V5 CLB were statistically

better in two supine positions in comparison with the prone

position.

3.B | Performance evaluation of the prediction
algorithms after dimension reduction

Initially when we designed the study, we have taken all the three

positions into consideration, and the position that introduces least

OAR doses was selected as the patient output label. However, after

observing the treatment plan results, no patients in this dataset were

labeled as supine FB, so in the following model training and valida-

tion process, only two classes (DIBH and Prone) exist.

F I G U R E 10 . Heart toxicity-based classification performance variations of each statistical model with different feature combination as the
input. The horizontal axis showed the number of features involved in the current training and the vertical axis showed the predictive
accuracy.
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Figure 6 visualized the classification boundaries of all models for

the heart toxicity-based classification. All features were normalized

and PCA was applied for dimension reduction. Prediction accuracy

and AUROC were utilized to evaluate the model performance. Con-

sequently, SVM with RBF kernel with cost parameter C = 1.0 and

c = 0.6 achieved the highest accuracy – 0.88 and the highest

AUROC – 0.80. The comparisons of prediction accuracy of these

nine models were demonstrated in Figure 7.

Figure 8 compared the classification boundaries of all models for

the weighted OAR toxicities-based classification. All features were

normalized and PCA was applied for correlation removal. Conse-

quently, QDA achieved the highest accuracy – 0.90 and the highest

AUROC – 0.84. The comparisons of prediction accuracy of these

nine models were demonstrated in Figure 9.

3.C | Performance evaluation of the prediction
algorithms after sequential forward feature selection

To provide more insights on what are the causal features should be

used to determine the optimal positioning of left-sided breast treat-

ment, SFFS technique were applied to outweigh the important feature

combinations that can generate the best performance. Figure 10

demonstrated the accuracy fluctuation using different feature combi-

nations as the input to the statistical model for heart toxicity-based

classification. The best feature combination of one specific statistical

model was conducted when the accuracy arrived the peak value at the

first time. Although introducing extra features into the model can

result in the same accuracy as the first peak, those succeeding fea-

tures are excluded from the feature selection result, since they cannot

prompt the model performance anymore — the model accuracy has

already been saturated with the feature combination that leads to the

first accuracy peak. Furthermore, using more features with a small

dataset would reduce the generalization of the machine learning

model, in other words, cause overfitting problem. We have counted

the frequency of each feature being selected by the SFFS, and the

selected combinations were shown in Table 3.

Upon feature selection, the model that yields the best predictive

accuracy for heart toxicity-based classification is QDA, where the

accuracy is 0.93. By counting the occurrences of each feature, we

can observe that for heart toxicity-based classification, Breast vol-

ume was accounted in the best feature combination of every statisti-

cal model. The succeeding feature that frequently appeared in the

best feature combination was the distance between Heart and

Breast. These two features, breast volume and distance between

Heart and Breast, were suggested as important indicators for heart

toxicity-based optimal treatment position selection by our study.

Figure 11 demonstrated the accuracy fluctuation using different

feature combinations as the input to the statistical model for OAR

overall toxicities-based classification. The best feature combination

of one specific statistical model was conducted when the accuracy

arrived the peak value at the first time, and the selected combina-

tions were shown in Table 4.

Upon feature selection, the model that yields the best predictive

accuracy for OAR overall toxicities-based classification is Naive

Bayes and QDA, where the accuracy is 0.93. By counting the occur-

rences of each feature, we can observe that for OAR overall toxici-

ties-based classification, the three most frequently selected features

are: the volume of heart (5 times), the volume of breast (4 times)

and the distance between lung and breast (4 times). Thus, the three

selected features above were suggested as important indicators for

OAR overall toxicity-based optimal treatment position selection.

4. | DISCUSSION

Several studies using statistical learning models in the prediction of

optimal positioning in breast cancer treatment have been pub-

lished.16–18 Compared to these studies which have taken the supine

FB and prone free breathing positions into consideration, our study

is the first feasibility study that predicts optimal positioning between

DIBH and Prone positions and indicates important features for the

sake of OAR sparing. DIBH is a position that can efficiently reduce

the cardiac dose for breast radiation therapy,19–21 and many centers

have introduced DIBH to the clinic recently. Our study is timely, as

it provides some quantitative clinical guidance to select between

DIBH and Prone positions.

TAB L E 3 The best feature combinations that yield the highest predictive accuracy of statistical models for heart toxicity-based classification.
Features that are consistently selected by all the models are bold.

Nearest
neighbors

Linear
SVM RBF SVM Decision Trees Random Forest Ada-boost Naive Bayes Linear DA Quadratic DA

Selected

Features

VolB VolB VolB VolB VolB VolB VolB VolB VolB

DisH-B Thickness DisH-B DisH-B VolH

VolipsL

DisH-B

Laterality

Thickness

Accuracy 0.83 0.77 0.83 0.73 0.77 0.73 0.83 0.83 0.93

VolB: Breast Volume; VolH: Heart Volume; VolipsL: IpsiLung Volume; DisH-B: Distance between Breast and Heart; Thickness: Deep breath motion thick-

ness variation.
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We have applied different dose criteria, heart toxicity, and

weighted OAR toxicities, to determine the patient positioning label.

As shown in Figure 6, if heart toxicity was the only factor

influencing the decision, more patients are found to be classified as

DIBH-treated rather than prone-treated. This is consistent with

many previous clinical studies, showing that DIBH is beneficial to

heart dose reduction during left-sided breast treatment. However, if

the weighted OAR toxicities (dose to heart, ipsilateral lung, and CLB)

are the decision factor, the classification result is the opposite. We

believe the reason for this is that the dose to the ipsilateral lung is

significantly lower in the prone position compared to the DIBH.5,22

By using our model, clinicians can also assign their self-defined

weighting factors to OAR which in turn can address their specific

clinical interest or need. In our current study, the largest weighting

factor was assigned to the heart, followed by the ipsilateral lung,

and the least to the CLB to align with the clinical practice of our

institution. These weighting factors can be further optimized and

may reflect prediction results.

The limited size of available data remains an obstacle to machine

learning in the medical domain. Several studies have investigated the

principles to decide the data size required for predictive perfor-

mance,23–26 but in practice, the amount of data required for machine

F I G U R E 11 . OAR overall toxicities-based classification performance variations of each statistical model with different feature combination as
the input. The horizontal axis showed the number of features involved in the current training and the vertical axis showed the predictive
accuracy.
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learning model training depends on many factors, including (1) the

complexity of the problem, nominally the number of input features

and the complexity of the unknown function that fits input data to

the output, (2) the complexity of the machine learning model, nomi-

nally the extent of the model’s nonlinearity and number of parameters

need to be tuned within the model, (3) techniques used to preprocess

the data, such as dimension reduction methods and data augmenta-

tion. All these factors are problem or data-specific, so there is really

no one-for-all rule can simply tell how large the data size is sufficient

for a specific machine learning problem. In this study, to address the

limited data issue, we have employed dimension reduction techniques

including PCA and forward feature selection to extract essential prop-

erties from the data and in the meantime, reduce the dimensionality

of the input to the machine learning models. After applying PCA, we

have found that the first two principal components can describe

nearly 90% of the variance in the dataset (the first principal compo-

nent represented 61% of the variance). This clear pattern can also be

recognized through Figures 6 and 8, where class DIBH and class

Prone have demonstrated a clustering mode after PCA. From the

aspect of model selection, we are also cautious not picking up

machine learning models with high complexities, since although a

complex model may depict the nonlinearity of the data better, it may

also introduce higher risks of overfitting with a limited dataset.

Upon PCA, SVM with RBF kernel and QDA are most likely to be

the best-performing models for the prediction of left-sided breast

treatment optimal positioning. Models like linear SVM, linear discrim-

inant analysis (LDA) and Decision Tree can provide clear and reason-

ably unambiguous hyper-plane but failed to improve prediction

accuracy substantially, mainly because of their inadequacy to deal

with nonlinear inputs as shown in our data. Random forest, which

was considered as a superior machine learning model in the context

of some predictive studies in radiotherapy,27 only provided modest

performance in this study.

Compared to PCA, feature selection can provide more insights

into causal features that affect the selection of optimal positioning.

Some previous studies13,28 have shown that forward feature selec-

tion can narrow down the input features while achieving better

results than applying the entire features set. The same phe-

nomenon was also demonstrated in our experiment, where in Fig-

ures 10 and 11, for all the statistical models, it can be observed

that the predictive accuracy firstly increased, reached the peak per-

formance and then decreases when more features were added.

Some models even can generate fair predictions by relying on only

one feature, but this does not mean a single feature is sufficient —

as illustrated by the results of QDA, the highest predictive perfor-

mance was still produced by combing multiple features. This sug-

gests that when performing the optimal positioning of left-sided

breast treatment in the clinic, it is beneficial to select multiple fea-

tures so that their joint contributions may maximize the OAR spar-

ing effect.

5. | CONCLUSION

This study demonstrates the feasibility of predicting the optimal

treatment position of left-side breast radiotherapy using anatomical

features extracted from supine free breathing CT scans with multiple

machine learning models and outweighed the important features that

affect the optimal positioning prediction. The challenge to improve

predictive models for left-breast treatment positioning remains open.

Specifically, the availability of strong features is always the key to

constructing better predictive models. For ongoing work, we are

applying for clinical trials to produce more experimental data and

improving the predictive models by utilizing powerful feature extrac-

tion techniques, such as Convolutional Neural Networks and atlas-

based organ segmentation.
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TAB L E 4 The best feature combinations that yield the highest predictive accuracy of statistical models for OAR overall toxicities-based
classification. Features that are consistently selected by all the models are bold.

Nearest
neighbors

Linear
SVM

RBF
SVM Decision Tree Random Forest Ada-boost Naive Bayes Linear DA Quadratic DA

Selected

features

VolH VolB VolH DisL-B VolB VolH VolB VolH VolB

VolipsL DisL-B VolH

DisL-B VolipsL

DisH-B

DisL-B

Laterality

Thickness

VolH/VolL

Accuracy 0.87 0.80 0.80 0.80 0.87 0.87 0.93 0.80 0.93

VolB: Breast Volume; VolH: Heart Volume; VolipsL: IpsiLung Volume; DisH-B: Distance between Breast and Heart; DisL-B: Distance between Breast and

ipsilateral Lung; VolH-in-field: Volume of heart in the treatment field; Thickness: Deep breath motion thickness variation; VolH/VolL: Rate of heart volume

to lung volume.
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