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Abstract 

Background:  Major depressive disorder (MDD) is a common mental illness, characterized by persistent depression, 
sadness, despair, etc., troubling people’s daily life and work seriously.

Methods:  In this work, we present a novel automatic MDD detection framework based on EEG signals. First of all, 
we derive highly MDD-correlated features, calculating the ratio of extracted features from EEG signals at frequency 
bands between β and α . Then, a two-stage feature selection method named PAR is presented with the sequential 
combination of Pearson correlation coefficient (PCC) and recursive feature elimination (RFE), where the advantages 
lie in minimizing the feature searching space. Finally, we employ widely used machine learning methods of support 
vector machine (SVM), logistic regression (LR), and linear regression (LNR) for MDD detection with the merit of feature 
interpretability.

Results:  Experiment results show that our proposed MDD detection framework achieves competitive results. The 
accuracy and F1 score are up to 0.9895 and 0.9846, respectively. Meanwhile, the regression determination coef-
ficient R2 for MDD severity assessment is up to 0.9479. Compared with existing MDD detection methods with the 
best accuracy of 0.9840 and F1 score of 0.97, our proposed framework achieves the state-of-the-art MDD detection 
performance.

Conclusions:  Development of this MDD detection framework can be potentially deployed into a medical system to 
aid physicians to screen out MDD patients.
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Introduction
Major depressive disorder (MDD) is a debilitating dis-
ease characterized by at least one discrete depressive 
episode lasting no less than 2  weeks, which involves 
clear-cut changes in mood, interests and pleasure, as well 
as changes in cognition and vegetative symptoms [1]. It 
is one of the three major diseases throughout the world, 

and its prevalence is still on the rise [2]. MDD may affect 
a patient’s life severely when it attacks. Patients suffer-
ing from MDD are often accompanied by symptoms 
such as anhedonia, appetite and physical changes, poor 
sleep quality, slow thinking, loss of willpower activity, 
easy fatigue, excessive self-blame, and so on. In clini-
cal practice, the most used methods for MDD diagnosis 
are mainly dependent on professional depression rating 
scales like the 17-item Hamilton rating scale (HAMD-
17) [3]. However, the rating scale assessment conducted 
requires a trained physician available, which is difficult 
for community and township hospitals to provide such 
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kind of MDD detection services. Herewith, developing an 
automatic MDD detection method has great significance.

In recent years, EEG signals are widely being employed 
in brain function research and clinical applications, such 
as Brain-Computer Interfacing (BCI) [4], emotion clas-
sification [5], epilepsy [6, 7], and dementia [8]. Not lim-
ited to these, researchers also utilize EEG signals as a 
tool to build an MDD detection model. EEG signals are 
formed by the summation of postsynaptic potentials 
occurring simultaneously in many neurons in the brain, 
divided into δ , θ , α , β , and γ bands [9]. In addition, it con-
tains rich human physiological information, which can 
be used to discover the features connected to depressive 
disorders. Although the existing methods [10–13] have 
been achieved promising results in MDD detection, these 
methods have not sufficiently been solved the following 
challenges: (1) How to find highly MDD-correlated fea-
tures with medical interpretations. (2) How to reduce the 
feature searching space on high-dimensional data.

Many researchers attempted to generate MDD-related 
features from EEG signals to solve the first challenge. 
Specifically, Hosseinifard et  al. [9] extracted features 
directly from EEG band power and nonlinear features 
of detrended fluctuation analysis (DFA), higuchi fractal, 
correlation dimension and lyapunov exponent from EEG 
signals utilizing signal processing. Acharya et al. [14] pre-
sented an MDD-related feature named depression diag-
nosis index (DDI) through the combination of different 
nonlinear features, including fractal dimension, largest 
Lyapunov exponent, and sample entropy. Mahato et  al. 
[15] derived EEG-based linear features of band power, 
interhemispheric asymmetry, and nonlinear features 
of relative wavelet energy (RWE) and wavelet entropy 
(WE) and fused these features together for depression 
detection. In general, most of the MDD-related features 
presented in their work were derived through signal 
processing or mathematical analysis from EEG signals. 
However, these features were not proven to be directly 
correlated to MDD in prior medical research and MDD 
detection performance. Instead, their correlation needs 
to be deduced backward according to the classification 
results of MDD detection models. Therefore, there is no 
sufficient evidence to show that these features are highly 
correlated with MDD, and how to introduce the prior 
medical research knowledge when extracting the highly 
correlated features of MDD remains to be solved.

For the second challenge, Mohammadi et  al. [16] 
employed the designed feature selection method of 
genetic algorithm (GA) on the features extracted by lin-
ear discriminant analysis (LDA), aiming to achieve the 
optimal MDD detection result. However, GA is a ran-
domized searching method, which is unstable and still 
has the potential risk of falling into the optimal local 

solution. Wajid et  al. [17] utilized a rank-based fea-
ture selection method by assigning weight and a rank-
ordered to an EEG feature matrix. Then, the features 
were ranked-ordered according to the scores calcu-
lated by the area under the curve (AUC). And finally, 
the parts with the highest scores were selected. After-
wards, Wajid et al. [18] further improved their feature 
selection method. They first ranked the extracted fea-
tures in descending order according to receiver oper-
ating characteristics (ROC), then splited the features 
into subgroups to train the classifiers, and ultimately 
selected the subgroup whose features could make the 
classifier achieve the optimal result. However, these 
methods select features based on AUC and ROC met-
rics, which would overemphasize the importance of 
ranking, and thus ignore the information of the recall 
rate. In addition, these wrap-based feature selection 
methods have high feature searching space. Especially 
for high-dimensional data, the computational complex-
ity is quite high.

To solve the above challenges, in this study, we propose 
a novel EEG-based framework for MDD detection and 
severity assessment with a two-stage feature selection. 
First of all, 92 participants at Shenzhen Traditional Chi-
nese Medicine Hospital with a signed consent form were 
recruited to collect EEG signals with assessing MDD 
severity with the HAMD-17 scale by a physician. Then, 
highly MDD-correlated features are derived based on the 
ratio of extracted features from EEG signals at frequency 
bands between β and α . Subsequently, a two-stage fea-
ture selection method called PAR with the combination 
of Pearson correlation coefficient (PCC) and recursive 
feature elimination (RFE) is presented with the advan-
tage of minimizing the feature searching space. Finally, 
we employ widely used machine learning methods of 
LR, SVM, and linear regression (LNR) for MDD detec-
tion and MDD severity assessment with the merit of well 
feature interpretability. Experiment results show that our 
proposed framework can obtain promising results, where 
the best F1 score and regression determination coefficient 
R2 are 0.9846 and 0.9479, respectively. Differed in the 
multi-modal method [19] requiring multiple inputs such 
as facial expressions, heart rate, and posture, the input of 
our framework is based on EEG signals, which is much 
more convenient for community/township hospitals to 
implement. The main contributions of this study can be 
summarized as follows: 

1.	 We derive highly MDD-correlated features called β/α 
ratio features calculated by the ratio of extracted fea-
tures from EEG signals at frequency bands between β 
and α , which can greatly improve the MDD detection 
performance and strong medical interpretation.
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2.	 To further minimize the feature searching space, we 
present a two-stage feature selection method with 
the combination of PCC and RFE.

3.	 We utilize widely used machine learning methods of 
LR, SVM, and LNR for MDD detection and MDD 
severity assessment with well interpretability.

4.	 Extensive experiment results show that the proposed 
MDD detection framework has superiority to the 
state-of-the-art methods with a big margin.

The remained contents of this paper are organized as 
follows. In “Related work” section , the literature review 
of MDD detection is presented. In “Methods” section, 
the details of the proposed framework are briefly intro-
duced, including the data collection, data preprocessing, 
two-stage feature selection, and MDD detection model. 
In “Results” section, MDD detection experiment results 
are presented. In “Discussion” section, hyper-parameters, 
limitations and future work are discussed. Finally, this 
study is summarized in “Conclusion” section.

Related work
In recent years, physiological signals, including EEG 
[6], ECG [20, 21] and EMG [22], have been widely used 
in disease detection. With the development of machine 
learning (ML) technology, many researchers have made 
outstanding contributions to automatic MDD detection 
using ML. Various deep learning methods [23, 24] have 
been proposed. Specifically, Sharma et al. [25] presented 
an EEG-based network for depression screening with 
CNN and LSTM. Seal et  al.  [26] proposed a designed 
deep CNN framework for detecting depression using 
EEG signals. Although these deep learning methods can 
achieve high accuracy, their selected features lack inter-
pretability, which is a big defect in medical applications 
where interpretability is highly valued. Although tradi-
tional machine learning methods are slightly inferior to 
deep learning methods in the accuracy of MDD detec-
tion, MDD-related features for both machine use and 
human analysis are selected through feature engineering 
combined with prior knowledge of humans, and these 
features are accessible to humans to understand.

There have been several machine learning methods 
employing feature engineering to detect MDD. Akbari 
et  al. and Mohammadi and Moradi  [27, 28] utilized 
the reconstructed phase space (RPS) of EEG signals 
and geometrical features for training the SVM classi-
fier and KNN classifier for depression recognition. Jiang 
et al.  [29] extracted features from spatial information of 
EEG signals to detect MDD. Sadiq et al. [30] introduced 
a unified algorithm to classify neural diseases from two 
distinct EEG domains. However, most of their proposed 
models have only used mathematical or signal processing 

methods to extract EEG-related features, which are less 
correlated with MDD, resulting in poor performance of 
MDD detection. Therefore, how to extract MDD-related 
features from EEG signals for better detection remains to 
be solved.

Some previous researchers [24, 31, 32] attempt to 
improve the performance of ML methods by extract-
ing MDD-related features from EEG signals. Ciarleglio 
et al. [31] derived features from EEG by a brain function 
measure named Frontal power asymmetry (FA). Avots 
et  al.  [32] tried different linear and nonlinear EEG fea-
tures, including relative band power, spectral asymmetry 
index, Higuchi fractal dimension, and Lempel–Ziv com-
plexity. Bailey et  al.  [33] extracted features by exploring 
the resting EEG θ connectivity or α power to the pre-
dictors of response to rTMS treatment. Although the 
aforementioned MDD detection methods could extract 
MDD-related features, they generally employ one-stage 
feature selection, which tends to search local optimal 
selected features from high dimensional feature search 
space, whose MDD detection performance still exists an 
improvement margin.

Methods
The proposed framework mainly consists of data pre-
processing, feature selection, MDD detection and sever-
ity prediction. Figure 1 shows the whole pipeline of our 
framework.

Data collection
92 participants with depression lasting more than two 
weeks, who were conscious, and did not get aphasia or 
mental retardation, were recruited from the Shenzhen 
Traditional Chinese Hospital and signed informed con-
sent forms (IRB No. 2017-8) to collect EEG signals and 
corresponding HAMD-17 scores. A 10–20 system of 
electrode placement was placed on the scalp of the par-
ticipants, and smooth EEG signals were acquired with the 
Nerron-spectrum-5 EEG device for 30 seconds under the 
condition of eyes closed. The Nerron-spectrum-5 EEG 
device has a total of 19 channel leads, which are FP1-A1, 
FP2-A2, F3-A1, F4-A2, FZ-A2, C3-A1, C4-A2, CZ-A1, 
P3-A1, P4-A2, PZ-A2, O1-A1, O2-A2, F7-A1, F8-A2, 
T3-A1, T4-A2, T5-A1, and T6-A2. Each channel-lead can 
automatically obtain EEG-related features based on the 
information of rhythm waveform amplitude indexes and 
rhythm indexes. Both indexes possess frequency bands 
of δ , θ , α , and β . Therefore, 152 EEG-related features are 
obtained from each participant. With additional demo-
graphic features of gender and age, a total of 154 features 
are derived for subsequent processing and analysis.
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Data preprocessing
Clinically, frequency band β in EEG is associated with an 
alert or excited state of mind and frequency band α is more 
dominant in a relaxed state, both of them are associated 
with brain inactivation. Previous studies [34, 35] were also 
shown that the β/α ratio features are potentially correlated 
with MDD, which are derived with EEG frequency bands 
of α and β . Thus, in this work, the β/α ratio features are 
derived by calculating the ratio between frequency bands 
of β and α on each channel-lead in terms of EEG waveform 
amplitude indexes and rhythm index information, which 
are defined to be:

(1)FA =
FA−β

FA−α

(2)FR =
FR−β

FR−α

where features of FA and FR are the β/α ratio features, 
derived from extracted features of EEG waveform ampli-
tude indexes and rhythm indexes respectively. FA−β and 
FA−α are features from EEG waveform amplitude indexes 
on frequency bands of β and α in EEG signals, respec-
tively. FR−β and FR−α are features from EEG rhythm 
indexes on β and α frequency bands, respectively. After 
calculation, a total of 38 β/α ratio features are derived, 
which are combined with the extracted feature set of EEG 
waveform amplitude index and rhythm index. Totally, 
there are 192 features obtained for feature selection.

In the MDD detection task, participants are divided 
into two groups according to the HADM-17 score to 
reflect the severity of MDD. Those with a HADM-17 score 
greater than 17 are defined as MDD, labeled as 1; those 
with a HADM-17 score no more than 17 are defined as 
mild depression or without depression, labeled as 0. In the 
MDD severity assessment task, the real HAMD-17 scores 
are compared with the predicted ones in the LNR-related 

Fig. 1  Proposed framework for MDD detection and severity prediction: Firstly, in the input module of the framework, the raw EEG signals are 
derived by Nerron-Spectrum-5 to obtain the EEG rhythm features, and the subjects are diagnosed and scored by a physician to get the HAMD-17 
score. Then, in the data processing module, the β/α features are extracted from the EEG rhythm features and are Z-score standardized together with 
the rhythm features to obtain standardized features. Subjects with HAMD-17 scores greater than 17 are labeled as MDD, and those with HAMD-17 
scores less than or equal to 17 are labeled as non-MDD. Moreover, the HAMD-17 score directly served as an indicator of MDD severity assessment. 
Then, in the feature selection module, PCC carries out the first stage feature selection on standardized features, and RFE carries out the second stage 
feature selection on reserved features. Finally, LR and SVM are used as classification models to classify subjects into MDD and non-MDD. LNR is used 
as the regression model to assess the severity of MDD, and the HAMD-17 score predicted by LNR is used as the severity indicator of MDD
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model. As reported in [10, 17, 18], z-score standardization is 
widely used in EEG-based MDD detection task. Therefore, 
in order to minimize the impact of different feature scales, 
we standardize the data on each feature using z-score stand-
ardization for numerical data, making different features to 
be in a uniform distribution. Since the obtained EEG fea-
tures might not be centered and unequally distributed, 
z-score standardization is more suitable than min-max nor-
malization, which can be affected by possible outliers in the 
dataset. Z-score standardization is defined to be:

where µ is the mean value of a feature and σ is the vari-
ance of it. In addition, for the non-numerical feature of 
gender, male is marked to be 1 and female is to be 0.

Two‑stage feature selection
After data preprocessing, directly using the obtained high-
dimensional features as input usually cause poor perfor-
mance in the classification task and the regression task. In 
addition, in feature selection, if the features with the high-
est correlation with MDD can be selected while reducing 
the feature searching space, the model can achieve the 
best results. Therefore, selecting an appropriate algorithm 
to conduct feature selection is essential before build-
ing a specified model. Typical single-stage feature selec-
tion methods usually use filters [36] to set thresholds to 
remove low correlation features or use wrappers [37] to 
optimize the given learner directly. Specifically, the filters 
have the advantages of simplicity and efficiency, and the 
wrappers have the advantages of high accuracy in the task 
of ML. However, during the selection process, the former 
can not obtain adequate information from the learner, 
resulting in poor performance of the learner, while the lat-
ter requires multiple iterations in all the input features to 
train the learner, and many low-correlation features are 
also iterated, resulting in high computational cost. There-
fore, it is appropriate to employ the wrappers model on 
the features retained by the filters, which can effectively 
minimize the feature searching space.

To take advantage of the low resource consumption of 
the filter and the high performance of the wrapper simul-
taneously, in this work, we present a two-stage feature 
selection method named PAR with the combination of 
filter method PCC [38], and wrapper method RFE [39]. 
Specifically, we first define the PCC threshold as τ , and 
RFE selected feature number as ζ , then the PCC method, 
which is a simple tool to calculate the correlation coeffi-
cient between the EEG features and HAMD-17 scores, is 
selected for the first stage of feature selection. We employ 
PCC to calculate the absolute correlation coefficient (val-
ues between 0 and 1) between the features and the labels 

(3)z =
x − µ

σ

(the values of labels are 1 for MDD, and 0 for non-MDD) 
as PCC values, and then sort the corresponding features 
according to the PCC values in reverse order. Then, the 
features with PCC values less than τ are removed, and the 
features with PCC values greater than τ will be retained 
for the second stage of feature selection. The second-stage 
feature selection method is employed with the RFE, which 
has the advantage of utilizing the supervision information 
to select optimal features. In the second stage, RFE first 
recursively eliminates the features selected by PCC and 
deletes the number of features to the specified number 
ζ . Then it builds the model based on the remaining fea-
tures and calculates the average score ( F1 score in MDD 
detection and R2 in MDD severity assessment) through 
five-fold cross-validation. Finally, the feature combina-
tion that contributes the most to the prediction results 
and its corresponding hyper-parameters τ and ζ are saved. 
The final selected features and hyper-parameters τ and ζ 
are determined by the grid search technique described in 
the Algorithm 1. In general, in grid search, we determine 
the hyper-parameters τ and ζ that can make the model 
perform best in five-fold cross-validation through a two 
loop. The former hyper-parameter is the threshold value 
used by PCC to select features, and the latter is the num-
ber of features used by RFE to select features. Employing 
RFE feature selection on the features selected by PCC 
first can improve computing efficiency. Finally, the fea-
tures obtained through two-stage feature selection are not 
only MDD high related, but also can be better utilized by 
the learners (LR, SVM, and LNR). To better describe our 
feature selection algorithm PAR, we write a pseudo-code 
which is described in detail in Algorithm 1.
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In Algorithm 1, we first define the final selected feature 
matrix as MT , and the maximum measurement score 
of the current iteration as SMax . Then, we calculate each 
PCC value between input EEG features X and their corre-
sponding label Y (MDD or non-MDD) and combine the 
PCC values to form the PCC matrix MA . And then, in a 
two loop, the hyperparameter τ of the outer loop is tuned 
from 0 to 1 with a step of 0.01, controlling the correla-
tion of the retained features filtered by PCC in the first 
stage of feature selection, and the selected features are 
saved as matrix MP . The hyperparameter ζ of the inner 
loop is tuned from 192 to 1 with a step of 1, controlling 
the number of features selected by RFE in the second 
stage of feature selection, and the selected features are 
saved as matrix MR . The retained EEG features are then 
used to train the model (SVM and LR in MDD detection, 
and LNR in MDD severity assessment), and the average 
score SCurr ( F1 score in MDD detection, and R2 in MDD 
severity assessment) is calculated using 5-fold cross-vali-
dation. Next, the calculated SCurr is compared with SMax , 
and if the value of SCurr is greater than the value of SMax , 
it will be assigned to SMax , and the features of MR will be 
assigned to MT . The next iteration of the loop is then car-
ried out. Finally, the EEG features that make the model 
perform best are saved as matrix MT for MDD detection 
or severity assessment, and feature analysis.

MDD detection
MDD detection task can be essentially transformed into a 
binary classification problem, by classifying patients with 
MDD and non-MDD. After two-stage feature selection, 
the widely used machine learning methods LR and SVM 
are used for MDD detection in this work.

LR [40] is a widely used classification method, which 
utilizes the Sigmoid function as a posteriori probability 
distribution to identify patients with MDD or not. Mean-
while, LR is with merits of less computation, interpret-
ability, and easy implementation, the equation  [41] is 
defined to be:

where θ is the weight importance of the LR model, y = 1 
denotes patients with MDD as well as y = 0 denotes 
patients not with MDD.

SVM [42] is a binary classification method originally, 
and its decision boundary is the maximum-margin 
hyperplane, the equation [43] is defined to be:

(4)P(y = 1|x) =
exp(θTx)

1+ exp(θTx)

(5)P(y = 0|x) =
1

1+ exp(θTx)

where w is weight importance and b is bias. The SVM 
uses the hyperplane to discriminate patients into MDD 
or not. Owing to the merit of human-interpretability, the 
SVM used in this work is with a linear kernel function 
[43], which is defined to be:

where xi and xj are vectors of different EEG rhythm signal 
samples, c is an optional constant.

MDD severity assessment
The MDD severity assessment can be transformed into 
a linear regression problem, and the HAMD-17 score is 
used as an indicator of depression severity, because the 
more severe the depression, the higher the corresponding 
HAMD-17 score will be. Therefore, we need to use the 
features obtained through two-stage feature selection to 
fit the measurement metric, to realize the assessment of 
the depression severity in patients. LNR [44] has a rapid 
modeling ability and is very effective for input data with a 
small sample size. In addition, it has a good explanation 
for each variable, which has been widely used in the med-
ical field. LNR uses the minimum square function called 
linear regression equation [45] to model the relationship 
between one or more independent variables and depend-
ent variables, which is defined as follows:

where β is the parameter of the model, x is the vector 
of the EEG rhythm signal sample, and d is an optional 
constant.

MDD detection performance metrics
Typical classification metrics, including sensitivity (Sen), 
specificity (Spec), precision (Prec), recall (Rec), accu-
racy (Acc), and F1 score are used for each class. They are 
defined as:

(6)wTx + b = 0

(7)k(xi, xj) = xTi xj + c

(8)ŷ = βTx + d

(9)Sen =
TP

TP + FN

(10)Spec =
TN

TN + FP

(11)Acc =
TP + TN

TP + FP + FN + TN

(12)Prec =
TP

TP + FP
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where TP refers to the number of actual MDD patients 
classified to be MDD, FP refers to the number of actual 
non-MDD patients classified to be MDD, FN refers to 
the number of actual MDD patients classified to be non-
MDD, and TN refers to the number of actual non-MDD 
patients classified to be non-MDD.

MDD severity assessment performance metrics
Typical regression metrics, including mean absolute 
error ( LMAE ) [46], mean squared error ( LMSE ) [47], deter-
mine coefficient R2 [48] are employed to evaluate the per-
formance of LNR. They are defined as:

where yi is the actual HAMD-17 score for each individ-
ual, ŷi is the corresponding predicted score, and ȳ is the 
mean value of all HAMD-17 scores.

Results
Experimental environment
The proposed framework is implemented with python 
3.6.11 and scikit-learn 0.21.3. All the experiments are 
performed on a laptop equipped with an AMD Ryzen 7 
4800U CPU and 16 GB memory.

MDD detection performance
In this work, two widely used machine learning methods 
of LR and SVM, with the merit of good feature interpret-
ability, are employed to build the MDD detection model. 
Furthermore, to evaluate the MDD detection model 
generality, the five-fold cross-validation technique is 
used. With the hyperparameters of LR and SVM keeping 
default, experiment results show that the LR with derived 
β/α features (LR-DF for short) achieved 0.5677, 0.6182, 
0.5984, and 0.5050 in terms of sensitivity, specificity, 
accuracy, and F1 score, respectively. For the SVM with 
derived β/α features (SVM-DF for short), its MDD detec-
tion performance is comparable to the LR-DF, which 

(13)Rec =
TP

TP + FN

(14)F1 =
2 ∗ (Prec ∗ Rec)

Prec + Rec

(15)LMAE =
1

n

n

i=1

yi − ŷi

(16)LMSE =
1

n

n
∑

i=1

(

yi − ŷi
)2

(17)R2 = 1−

∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − ȳ)2

achieved a sensitivity of 0.5333, specificity of 0.6894, 
accuracy of 0.6318, and F1 score of 0.5144. With the two-
stage feature selection, the MDD detection performance 
of both LR-DF and SVM-DF are improved greatly. The 
SVM-DF with the two-stage feature selection obtained 
the best MDD detection performance, which are 0.9714, 
1.0000, 0.9895, and 0.9846 in terms of sensitivity, speci-
ficity, accuracy, and F1 score, respectively. It means that 
the SVM-DF with two-stage feature selection can be 
potentially deployed into a medical system to provide an 
automatic MDD detection service.

MDD severity assessment performance
To further help physicians to obtain patients’ MDD 
severity, the specified HAMD-17 score should be pro-
vided. In this work, the LNR is used for MDD sever-
ity assessment with default hyperparameters in the 
machine learning framework scikit-learn. As shown in 
Table  1, the LNR with the derived β/α features (LNR-
DF for short) achieves better performance for MDD 
severity assessment than that without the derived β/α 
features, which means that the derived features can 
boost the performance of MDD severity assessment 
as well as MDD detection. Since the input parameter 
matrix required by LNR fitting is a nonsingular matrix, 
and we only have 92 data, there are 154 features of LNR 
and 192 features of LNR-DF without feature selection, 
which leads to the result that input rank is higher than 
the number of experimental data. Therefore, the LMAE , 
LMSE , and R2 value of the LNR and LNR-DF model 
without feature selection cannot be calculated. Com-
pared with the LNR, the LNR-DF achieved better MDD 
severity assessment performance, whose determine 
coefficient is 0.0927 with PCC selection, and 0.8962 
with RFE selection. In PCC feature selection, the fea-
tures selected by LNR are FFZ−A2

A−δ  , FCZ−A1
A−δ  , and Gen-

der, and the features selected by LNR-DF are FFP2−A2
R−θ  , 

FF3−A1
A−δ  , FFZ−A2

A−δ  , FCZ−A1
A−δ  , FO2−A2

A−δ  , FT4−A2
A−δ  , FFP2−A2

R−β/α  , and 
Gender. These features generally have a strong cor-
relation with each other, resulting in that the learn-
ing region of the model can only be limited to a small 
range, and cannot make good use of other features with 

Table 1  MDD severity assessment performance

Feature selection Model LMAE LMSE R
2

PCC LNR 3.6917 21.6649 0.0644

LNR-DF 3.5198 20.9566 0.0927

RFE LNR 1.5306 3.4942 0.8474

LNR-DF 1.2450 2.3995 0.8962

PCC and RFE LNR 1.2799 2.7388 0.8812

LNR-DF 0.9123 1.2012 0.9479
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less close correlation, eventually lead to poor perfor-
mance. Furthermore, with the two-stage feature selec-
tion, MDD severity assessment performance of both 
LNR and LNR-DF is improved a lot. It can be observed 
that the LNR-DF has much superiority over the LNR on 
the task of MDD severity assessment, whose determine 
coefficient can be up to 0.9479. It means that LNR-DF 
with two-stage feature selection can regress the ground 
truth of the HAMD-17 score very well and can be a 
reference for physicians to assess the patients’ MDD 
severity.

Discussion
MDD detection performance analysis
To verify the effectiveness of the derived β/α features and 
two-stage feature selection, extensive experiments are 
performed in this study. As shown in Table 2, both LR-DF 
and SVM-DF, with the derived β/α features, achieve bet-
ter MDD detection performance than those methods of 
LR and SVM without the derived β/α features. It dem-
onstrates that the derived β/α features have high cor-
relations with the MDD detection task. Meanwhile, it 
can also be observed that MDD detection methods of 
LR, SVM, LR-DF and, SVM-DF raise their performance 
greatly no matter single-stage or two-stage feature selec-
tion. More importantly, the MDD detection methods 
with the RFE achieve better performance than those with 
the PCC, which is the reason why we choose the RFE as 
the core feature selection in the presented two-stage fea-
ture selection method.

Specifically, as shown in Table 2, the derived β/α fea-
tures can help MDD detection methods to improve their 

performance more or less. Take MDD detection models 
of LR, SVM, LR-DF, and SVM-DF with the two-stage fea-
ture selection for example, the LR and SVM which are 
not with the derived β/α features achieved F1 scores of 
0.7803 and 0.9581, respectively. The LR-DF and SVM-
DF which are with the derived β/α features obtained F1 
scores of 0.8713 and 0.9846, which outperform the LR 
and SVM with margins of 11.66% and 2.77%, respec-
tively. What’s more, it can be observed that MDD detec-
tion methods of LR, SVM, LR-DF, and SVM-DF improve 
their performance a lot with feature selection, especially 
with the two-stage feature selection. For example, the 
SVM-DF with single-stage feature selection achieved F1 
scores of 0.5766 and 0.9667 when the PCC and RFE are 
employed respectively, which obviously outperform the 
SVM-DF without feature selection. Regarding the pre-
sented two-stage feature selection, the MDD detection 
performance of SVM-DF increases significantly to the 
SVM-DF without feature selection or with single-stage 
feature selection, which is up to F1 score of 0.9846. It 
means that the presented two-stage feature selection is 
effective in the task of MDD detection.

Comparison of MDD detection performance
In addition, the proposed framework is compared with 
state-of-the-art methods. Table  3 shows the perfor-
mance comparison of MDD detection between the pro-
posed framework and cutting-edge methods published 
in recent years. Here, we have to point out that the test 
datasets used in this work and cutting-edge methods are 
different because the datasets in the medical domain are 
often private and difficult to be accessed publicly. Even 

Table 2  MDD detection performance of the proposed framework

Feature selection Model Sen Prec Spec Acc F1

– LR 0.4476 0.3776 0.6167 0.5557 0.4005

SVM 0.4524 0.4809 0.7061 0.6139 0.4510

LR-DF 0.5667 0.4728 0.6182 0.5984 0.5050

SVM-DF 0.5333 0.5000 0.6894 0.6318 0.5144

PCC LR 0.5619 0.5061 0.6530 0.6207 0.5235

SVM 0.5381 0.5444 0.7591 0.6782 0.5306

LR-DF 0.6238 0.6083 0.7394 0.6961 0.5988

SVM-DF 0.5619 0.6442 0.7727 0.6969 0.5766

RFE LR 0.7381 0.8571 0.9106 0.8466 0.7803

SVM 0.9143 0.9667 0.9833 0.9579 0.9385

LR-DF 0.8524 0.8298 0.8955 0.8800 0.8386

SVM-DF 0.9429 1.0000 1.0000 0.9789 0.9667

PCC and RFE LR 0.7381 0.8571 0.9106 0.8466 0.7803

SVM 0.9714 0.9464 0.9652 0.9678 0.9581

LR-DF 0.8238 0.9417 0.9636 0.9127 0.8713

SVM-DF 0.9714 1.0000 1.0000 0.9895 0.9846
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so, it still makes significant sense when cutting-edge 
methods are compared on a general level. As shown in 
Table 3, the best model SVM-DF of the proposed frame-
work has obvious superiority to cutting-edge methods in 
terms of sensitivity, accuracy, and F1 score. Regarding the 
specificity, the SVM-DF achieves 0.98, which is still com-
parable to the best specificity of 1.0 reported by [17].

MDD severity assessment performance analysis
To further verify the effectiveness of the MDD sever-
ity assessment model, 19 records from individuals are 
randomly selected for validation. As shown in Fig. 2, it 
is the MDD severity fitting performance chart with the 
two-stage feature selection, where the x-axis and y-axis 
refer to the record and HAMD-17 score, respectively. 
Most of the cases, the LNR and LNR-DF can well pre-
dict the MDD severity represented by the HAMD-17 
score. However, there exists a big difference in MDD 
severity assessment performance on the records 18 and 
19. Throughout the whole Fig. 2, the results of LNR-DF 
are closer to the ground truth than those of the LNR. 
It demonstrates that the presented two-stage feature 
selection has positive effects on the task of MDD sever-
ity assessment and the MDD severity assessment model 
can improve its performance with the derived β/α 
features.

Meanwhile, we draw a scatter plot (Fig. 3) of LNR and 
LNR-DF with the two-stage feature selection, where 
the x-axis and y-axis refer to predicted and ground 
truth HAMD-17 score, respectively. As shown in Fig. 3, 
most of the scatter points are nearby the diagonal line 
which means the presented two-stage feature selection 
method improves the MDD severity assessment perfor-
mance very well, particularly with the combination of 
the derived β/α features.

Hyperparameters tuning
In this section, the tuning of two key hyperparameters of 
the proposed framework is introduced briefly, where the 
two hyperparameters of the proposed framework are the 
threshold value τ for PCC feature selection and the num-
ber of features ζ selected by RFE. To obtain the optimal 
hyperparameters, the grid search technique is utilized for 
searching the optimal combination of τ and ζ . Specifically, 
the hyperparameter τ is tuning from 0 .01 to 0.07 with a 
step of 0.01 while the hyperparameter ζ from 192 to 1 
with a step of 1. As shown in Fig. 4, take LR-DF, SVM-DF, 
and LNR-DF for example, and it is noted that the hyper-
parameter τ is 0.01 for LR-DF and LNR-DF, and 0.015 for 
SVM-DF, while the hyperparameter ζ is different among 
them. The optimal hyperparameters ζ are 26, 36, and 63 
in terms of LR-DF, SVM-DF, and LNR-DF, respectively, 
when they achieved the best performance. Furthermore, 
the key hyperparameters of τ and ζ of all MDD detection 
models and MDD severity assessment models are listed 
in Table 4 used in this work.

Table 3  Performance comparison with cutting-edge MDD 
detection methods

Method Sen Spec Acc F1

[9] – – 0.9000 –

[10] 0.9490 0.8090 0.8790 –

[11] 0.9444 – 0.8912 –

[12] – – 0.8500 –

[17] 0.9666 1.0000 0.9840 –

[18] 0.9990 0.9500 0.9800 0.9700

[13] – – 0.7927 –

[49] – – 0.8833 –

SVM-DF 0.9714 1.0000 0.9895 0.9846

Fig. 2  MDD severity assessment performance on random selected 
10 records

Fig. 3  Scatter chart of LNR and LNR-DF with two-stage feature 
selection
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Statistical analysis
In order to more reasonably explain the significance 
of the β/α features and two-stage feature selection to 
model improvement, we repeat the experiment 5 times 
and conduct statistical power analysis in MDD detec-
tion and MDD severity assessment by calculating the P 
value between the method with the best performance 
and other methods in our framework respectively. Here, 
we leverage three levels to mark the significance (*,**,***), 
which represent the P value greater than or equal to 
0.05, the P value between 0.05 and 0.01, and the P less 
than 0.01. As shown in Table  5, it is demonstrated that 
the SVM-DF with two-stage feature selection is supe-
rior to the compared methods significantly, especially 

in F1 score, where P value between methods are much 
less than 0.01. Similarly, Table  6 shows that the LNR-
DF with two-stage feature selection is superior to other 
methods that do not employ β/α features and two-stage 
feature selection simultaneously. The statistical analysis 
results mean that the β/α features and two-stage feature 
selection employed in our framework are effective and 
necessary.

Selected feature analysis
Figure  5 shows the shared selected features by MDD 
detection model SVM-DF and MDD severity assess-
ment model LNR-DF. Obviously, we can see that the 
weight importance of selected features is quite different 
between SVM-DF and LNR-DF due to the difference in 
their principles for defining models. However, the direc-
tion of weight importance is identical between SVM-DF 
and LNR-DF, which means that the selected features have 
similar effects on the performance of MDD detection 
and MDD severity assessment. Meanwhile, it is observed 
that three derived β/α features of FP4−A2

R−β/α  , FCZ−A1
R−β/α  , and 

FFP2−A2
R−β/α  are selected by both MDD detection and MDD 

severity assessment models, which are more than 21 %. It 
further verifies our findings of derived features are quite 
effective in the models of MDD detection and severity 
assessment.

Limitations
Since the size of the dataset used in this study is 92, our 
study is a pilot study, and we employ the SVM, LR, and 
LNR as the base model for MDD detection and MDD 
severity assessment, with the merits of small-size build-
ing models. To further conquer the over-fitting risk, the 
cross-validation technique is also utilized. Even so, it still 
potentially has the over-fitting risk for MDD detection 
and MDD severity assessment models.

Fig. 4  The process of determining τ and ζ according to LR, SVM, and LNR respectively in feature selection: a LR, b SVM, c LNR

Table 4  Hyper-parameter of feature selection

Feature selection Method τ ζ F1 R
2

– SVM – 154 0.4510 –

SVM-DF – 192 0.5144 –

LNR – – – –

LNR-DF – – – –

PCC SVM 0.055 – 0.5306 –

SVM-DF 0.055 – 0.5766 –

LNR 0.210 – – 0.0644

LNR-DF 0.185 – – 0.0927

RFE SVM – 43 0.9385 –

SVM-DF – 53 0.9667 –

LNR – 53 – 0.8474

LNR-DF – 66 – 0.8962

PCC and RFE SVM 0.040 38 0.9581 –

SVM-DF 0.015 36 0.9846 –

LNR 0.010 59 – 0.8812

LNR-DF 0.010 63 – 0.9479
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On the other hand, the original EEG signals cannot be 
obtained from the commercial EEG device named Nerron-
spectrum-5 as the data format for medical devices is usu-
ally commercial confidence. Herewith, the features used 
in this study are extracted by the EEG device directly. The 
noise would be introduced into extracted features due to 
the uncertainty of EEG signals quality, which would reduce 
the generality of the proposed framework potentially.

Conclusions
In this study, we propose an automatic EEG-based MDD 
detection framework. In the proposed framework, the 
high MDD correlation features named β/α features are 
derived; a two-stage feature selection method is employed 

Table 5  Statistical power analysis between SVM-DF with two-stage feature selection and other MDD detection methods in the 
framework

*P ≥ 0.05; **0.05 > P ≥ 0.01; ***P < 0.01

Feature selection Model P value

Sec Prec Spec Acc F1

– LR 1.47e−05*** 9.73e−06*** 7.91e−06*** 1.58e−06*** 9.40e−06***

SVM 1.52e−05*** 7.80e−06*** 1.67e−04*** 6.50e−06*** 2.80e−06***

LR-DF 8.90e−07*** 6.39e−06*** 2.43e−05*** 3.95e−06*** 4.27e−06***

SVM-DF 2.72e−04*** 4.82e−05*** 3.28e−05*** 1.70e−06*** 3.67e−05***

PCC LR 4.81e−05*** 7.46e−06*** 2.64e−05*** 1.53e−06*** 3.66e−06***

SVM 6.10e−06*** 2.76e−06*** 3.39e−04*** 1.11e−05*** 7.80e−07***

LR-DF 8.37e−06*** 1.44e−05*** 1.90e−04*** 5.78e−06*** 1.30e−07***

SVM-DF 4.61e−04*** 2.99e−06*** 2.30e−04*** 2.44e−06*** 1.26e−05***

RFE LR 3.88e−04*** 1.42e−03*** 3.99e−04*** 2.88e−04*** 4.41e−04***

SVM 8.64e−03*** 2.59e−03*** 4.07e−03*** 2.55e−03*** 2.61e−03***

LR-DF 1.97e−03*** 1.88e−02** 2.18e−02** 7.23e−05*** 1.28e−04***

SVM-DF 1.61e−02** 3.74e−01* 3.85e−01* 5.37e−02* 2.86e−02**

PCC and RFE LR 1.44e−04*** 5.34e−04*** 1.78e−04*** 5.68e−05*** 1.21e−04***

SVM 2.08e−01* 1.70e−01* 1.84e−01* 9.50e−03*** 3.60e−03***

LR-DF 3.16e−03*** 4.47e−03*** 3.99e−03*** 7.74e−04*** 9.18e−04***

Table 6  Statistical power analysis between LNR-DF with two-
stage feature selection and other MDD severity assessment 
methods in the framework

*P ≥ 0.05; **0.05 > P ≥ 0.01; ***P < 0.01

Feature selection Model P value

LMAE LMSE R
2

– LNR 7.43e−06*** 4.61e−05*** 2.43e−04***

LNR-DF 4.07e−06*** 5.48e−05*** 9.15e−05***

PCC LNR 4.00e−08*** 6.00e−08*** 4.00e−08***

LNR-DF 7.90e−07*** 1.40e−07*** 3.00e−08***

RFE LNR 1.60e−02** 1.81e−02** 1.63e−02**

LNR-DF 3.79e−03*** 7.15e−03*** 2.78e−03***

PCC and RFE LNR 1.25e−02** 1.44e−02** 1.10e−02**

Fig. 5  Weight importance of selected features shared by SVM-DF and LNR-DF
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for well-selected correlated features to improve the model 
performance; three sample-sized machine learning meth-
ods of LR, SVM, and LNR as base models are utilized for 
MDD detection and MDD severity assessment. Experi-
ment results show that the proposed framework achieves 
an optimal F1 score of 0.9846 in MDD detection, and 
achieves an optimal R2 of 0.9479 in MDD severity assess-
ment. Meanwhile, the findings of the derived EEG-based 
β/α features can greatly improve the performance of MDD 
detection and MDD severity assessment. For MDD detec-
tion, the derived features would improve the F1 score by 
over 2 % and 11 % in terms of SVM and LR, respectively. As 
for MDD severity assessment, the derived features would 
improve the R2 of LNR from 0.8812 to 0.9479. Meanwhile, 
the base models used in this study are LR, SVM with lin-
ear kernel, and LNR, all of which are linear and with the 
merits of small sample size and interpretability. It means 
that the proposed framework can be potentially deployed 
into a medical system to provide MDD detection services 
to help physicians to screen out MDD patients.

Concerning the sample size of our experimental data is 
not big enough, in future work, we are intended to con-
tinue collecting more samples to expand our dataset and 
time retrain the model in the case of data added incre-
mentally [50], which will better improve the generaliza-
tion of our framework. In addition, more samples can be 
generated using sophisticated augmentation methods like 
Generative Adversarial Networks (GANs) [51]. Further-
more, we will consider using interpretable deep learning 
models [52] to improve the interpretability of our frame-
work, to better assist clinical diagnosis.
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