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Blood test shows high accuracy in
detecting stage I non-small cell lung
cancer
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Abstract

Background: In a previous study (Goebel et. al, Cancer Genomics Proteomics 16:229-244, 2019), we identified 33
biomarkers for an early stage (I-II) Non-Small Cell Lung Cancer (NSCLC) test with 90% accuracy, 80.3% sensitivity,
and 95.4% specificity. For the current study, we used a narrowed ensemble of 21 biomarkers while retaining similar
accuracy in detecting early stage lung cancer.

Methods: A multiplex platform, 486 human plasma samples, and 21 biomarkers were used to develop and validate
our algorithm which detects early stage NSCLC. The training set consisted of 258 human plasma with 79 Stage I-II
NSCLC samples. The 21 biomarkers with the statistical model (Lung Cancer Detector Test 1, LCDT1) was then
validated using 228 novel samples which included 55 Stage I NSCLC.

Results: The LCDT1 exhibited 95.6% accuracy, 89.1% sensitivity, and 97.7% specificity in detecting Stage I NSCLC on
the blind set. When only NSCLC cancers were analyzed, the specificity increased to 99.1%.

Conclusions: Compared to current approved clinical methods for diagnosing NSCLC, the LCDT1 greatly improves
accuracy while being non-invasive; a simple, cost-effective, early diagnostic blood test should result in expanding
access and increase survival rate.

Keywords: Immunoassay, Early stage lung cancer, Detection, Biomarkers, Proteomics, Diagnostic tests, Non-small
cell lung cancer

Background
Lung cancer is a pervasive disease that is commonly di-
agnosed at a late stage and has a global estimated mor-
tality rate of 84.2% for 2019. The American Cancer
Society predicts about 228,150 new cases and 142,670
deaths for 2019 in the United States. On average, 422
Americans die every day of lung cancer (LC). Non-small
Cell Lung Cancer (NSCLC) accounts for 84% of all LCs,
and exhibits a 5-year survival rate of 23% [1]. However,
if NSCLC is detected at stages I-II, the survival rate sig-
nificantly improves and it may even be cured [2].
NSCLC patients diagnosed at stage I have a 5-year sur-
vival rate between 68 and 92%; at stage II between 53

and 60%; at stage III, it decreases to 26–36%; and for
stage IV detection the survival rate drops precipitously
to 1–10% [1, 2]. Despite significant investment and ad-
vancement in LC research, only 16% of LCs are detected
at the early stages [1].
The research community continues to improve early

LC detection through the use of Computed Tomography
(CT) and Positron Emission Tomography (PET) scans,
improved pulmonary nodule (PN) guideline, biomarkers,
and machine learning algorithms. In our approach, we
combine biomarkers and machine learning. We detect
early stage NSCLC with high sensitivity and specificity
using a simple blood test. Before presenting our results,
we briefly review the state-of-the-art of these
approaches.
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CT scans recommended for diagnosing LC
The US Preventive Service Task Force (USPSTF) recom-
mends that low-dose computed tomography (LDCT)
scans be used as a screening method for LC in high risk
patients age 55–85 with a 30-year smoking history, who
have not quit for more than 15 years. The recommenda-
tion was in part based on the National Lung Screening
Trial (NLST) study which demonstrated that screening
with LDCT reduces LC mortality by 20% compared to
chest x-rays [3, 4]. However, this approach is not ideal.
In the NLST study, a PN was detected in 1 of every 4

subjects that had LDCT scans. Of the 7191 subjects
found to have suspicious nodules on LDCT scans, 88.6%
had a follow-up test (e.g., imaging, 89.8%; biopsy, 1.9%;
and surgery, 4.7%), and only 292 (4.1%) were confirmed
to have LC. Of these 292 cases, 54.1 and 41.1%, turned
out to be Stage I and II, respectively. The LDCT scans
had a false positive rate (FPR) of 96.1% [4]. Obviously,
there is a need for a test with a lower FPR. Deep learning
algorithms show promise to reduce the false positives in
interpreting these images [5].

PET scans increasing in use for LC follow-ups
PET scans have better statistics than LDCT [6]. A multi-
center observational study by Tanner, et al., [7] evaluat-
ing PN management shows an increase in PET scan use
with additional follow-ups of patients with indeterminate
lung nodules. The accuracy rate of PET scans is 74%,
with an overall FPR of 39% (36–55%) and overall false
negative rate (FNR) of 9% (8–10%), depending on node
size. The study concludes that 25% of PNs referred to a
pulmonologist were malignant; 46% had additional sur-
veillance, 33.2% had a biopsy, and 20.4% underwent lung
surgery. About 35% of patients who had surgery had be-
nign masses.

Pulmonary nodule guidelines
Most solitary PNs are detected incidentally by chest radi-
ography and CT scans that were ordered to investigate
other diseases. Approximately 150,000 solitary PNs are de-
tected annually in the United States of America [8].
Recommendations for managing intermediate PNs,

found in PET/CTs using the Lung-RADS [7, 9] or
Fleischner criteria [10], are not always followed. Many
physicians consider other factors, such as age, smoking
status, gender, patient preference, and use their experi-
ence when deciding on follow-up procedures for that pa-
tient’s specific clinical situation. In a multicenter
observational study of 377 patients, Tanner et al., indi-
cated that invasive procedures were performed in 44% of
low risk nodules (< 5% probability of malignancy) [7].
Today, current guidelines for management of lung nod-
ules try to incorporate other factors that may be unique
to a patient [9, 10]. Prospective research on physician

adherence to new guidelines and outcome on performed
PN follow-up procedures will need to be completed.

Evaluating biomarkers to detect LC
There is a growing trend to use genetic and protein bio-
markers for disease diagnosis, prognosis, and the evalu-
ation of treatment efficacy (e.g., Grail, Guardant, Myriad
Genetics) [11, 12]. Biomarkers are defined as ‘any sub-
stance, structure, or process that can be measured in the
body or its products and influence or predict outcome or
disease’ [13]. Thus, a biomarker can be of physical,
chemical, or biological nature, such as measurements of
blood pressure, temperature, inflammatory cytokines
(proteins), genetic (DNA) markers, or metabolites [14].
In this paper, we will limit our discussion to DNA and
protein biomarkers.

DNA biomarkers
DNA biomarkers have been used to assess risk for devel-
oping specific diseases or response to therapy. DNA pro-
vides genetic information of the individual. Nonetheless,
the path from DNA to an observable physical trait (e.g.,
disease) is complex. For instance, somatic mutations in
the TP53, EGFR, and KRAS genes are commonly found
in LC patients [15]; yet, somatic mutations are often due
to increased exposure to carcinogens (e.g., smoking,
radon), environmental factors (e.g., pollution, second-
hand smoke), age, and health history (e.g., chronic
COPD). Inherited mutations following an autosomal
dominant pattern predispose an individual to be at high
risk, but need not always predict the development of LC.
The pattern of inheritance, penetrance, and expressivity
of genetic mutations, in addition to lifestyle, environ-
mental factors, and even ethnicity, are important compo-
nents in assessing cancer risk [16].

Protein biomarkers
In contrast, protein reflects phenotype: the observable
end-trait (e.g., tissue) resulting from the interaction of
genome and the environment [17]. Protein biomarkers
provide quantitative data that can be compared be-
tween a healthy and a diseased individual. Proteomics
has its own challenges. Proteins, like genes, are pleio-
tropic: meaning the same protein markers may con-
tribute to different immune-related pathways for
different diseases. For example, IL-8 is a pleiotropic
cytokine and has also been linked to breast, prostate,
lung, colorectal, and skin cancer [18]. Hence, using a
single biomarker, protein or DNA, would not be suffi-
cient for clinical diagnostic use.
Protein levels can fluctuate due to physiological

stressors (e.g., disease, strenuous exercise) and samples
(i.e., serum, plasma) are sensitive to environmental factors
(i.e., pH, temperature) and degrade faster than DNA.
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Moreover, analytic protein platforms require the use of
antibodies which, in turn, exhibit lot-to-lot variations due
to the idiosyncratic nature of antibodies.
Despite the intricacies, genome and protein bio-

markers, have proven to be essential tools in the discov-
ery of predictive, prognostic, and diagnostic markers in
LC [19–21].

Machine learning in medicine
Advances in computing combined with an increase in
the amount of data collected has enabled the application
of various machine learning techniques, such as Neural
Networks and Random Forests, to tease out complex
and non-linear relationships in data. These methods can
also assist radiologists to interpret x-rays, CAT scans,
PET scans and other diagnostic imaging methods; diag-
nose patients with disease; and may lead to a general im-
provement in patient care [22].
While machine learning methods are powerful, they

have drawbacks. No machine learning method can com-
pensate for poor data (i.e., dirty data). Machine learning
is unable to provide causal information on its own; they
are simply a set of advanced statistical techniques that
can improve our ability to find complex, non-linear rela-
tionships in data [23, 24].
Further, statistical models can be impacted by bias,

human error, sample population, poor technical de-
sign, misapplication, and disparate systems. It is im-
portant that appropriate machine learning techniques
and algorithms are applied to each study, that the data
is collected, cleaned and processed in a consistent
manner, and that bias are scrutinized from all angles
[25].
Our preliminary studies identified protein biomarkers

that may significantly improve our ability to identify
NSCLC so this study was undertaken to prospectively
test that hypothesis.

Methods
This study is a continuation of our previous research
that used 33 biomarkers [11]. Here we reduced the num-
ber of biomarkers to 21, ensured successful transfer of
reagents, and retrained our algorithm.

Study population
This study was performed on biobank plasma samples
from 486 subjects distributed into 5 cohorts (Table 1).
In previous studies, we demonstrated that our method
detected early to late stage NSCLC. In this study, our
focus was to detect stage I-II LC. Therefore, samples
from patients with Stage I-II NSCLC (Table 2) were
used to train the LCDT1 algorithm and, subsequently,
only Stage I NSCLC samples (Table 2) were used in a
blind set to validate clinical efficacy.

Sample collection and handling
Human plasma samples were obtained from five blood
banks: Asterand, BioReclamation, BioSource, Geneticist,
and Proteogenex. All cancer samples were confirmed by
histology. All samples were collected through an IRB ap-
proved protocol (e.g., Protocol #AST-FPB-003, Western
IRB) or a signed Waiver of Consent form. Individuals
under the age of 18 or those who cannot consent for
themselves were not included in the study. Samples were
collected in the United States between 2013 and 2015.
Clinical information such as age, gender, pathology

and stage, race, origin, smoking status, and sample col-
lection dates were obtained. Whole blood samples were
collected in EDTA tubes and stored at − 80 °C according
to the biobank’s protocol. Plasma samples were trans-
ported on dry ice overnight to our sample storage site in
Michigan City, Indiana, USA. Vials were inspected visu-
ally for damage upon receipt and stored at − 80 °C until
analysis.

Table 1 Sample Criteria

Cohort Inclusion Exclusion

All cohort M/F, 18 y/o or older, sample collected in the USA Pregnant, incarcerated, lack of capacity to consent, samples collected
outside of sthe United States

Asthma Smoker or non-smoker Any cancer diagnosis

Non-Smoker Healthy Smokers, any cancer diagnosis

NSCLC,
(Stage I-II)

Stage I-II; smoker or non-smoker Stage III-IV lung cancer

Smoker 10 pack years Any cancer diagnosis

Other
Cancers

Breast, colon-rectal, pancreatic, and prostate cancer, all stages;
smoker or non-smoker

The non-smoker and NSCLC served as negative and positive control for lung cancer, respectively. Asthma sufferer and COPDs were included to test whether the
diagnostic test can differentiate lung cancer from those who may have other respiratory diseases which share similar symptoms. The smokers consisted of high-
risk population for LC who were not diagnosed with any cancer. Other cancers (i.e., breast, prostate, pancreatic, and colon-rectal) were included to ensure that the
diagnostic test was specific to NSCLC
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Multiplexed immunoassay procedure
This study used a custom-made multiplexed immuno-
assay to measure the concentration of 21 biomarkers in
human plasma samples. Sample collection and handling,
and immunoassay procedure are consistent with our
previous study (1, Supplementary Figure 1). Sample pro-
cessing was performed by Eve Technologies Corporation
(Calgary, Alberta, Canada). This assay reagent and for-
mat was validated against the 33-biomarker reagent used

in the previous study [11] to ensure that all biomarkers
performed similarly and maintained its congruity with
the algorithm.

Algorithm and statistical analysis
The algorithm considers duplicate measurements of the
biomarkers from a patient and classifies each measure-
ment as having NSCLC or not having NSCLC. If any of
the measurement is classified as being from a subject
with NSCLC, the subject is classified as having NSCLC.
Since the implicit costs of allowing the disease to pro-
gress without treatment is greater than the cost of a false
negative, the LCDT1 algorithm errs on the side of pre-
dicting that a subject has NSCLC.
A 5-PL curve was used to acquire the calibration

curve. Data was cleaned based on preset criteria of ±20%
coefficient of variation and removal of extrapolated and
out of range data. Median, rather than average, was used
to represent the central tendency of the plasma concen-
trations due to the skewed distributions and outliers.
Normalization of diseased cohorts to healthy cohorts
was examined for pattern recognition. P-values were cal-
culated using T-tests, adjusted using Benjamini-
Hochberg’s method for multiple comparisons [26]. The
AUC was calculated for each biomarker and as a com-
bined set of biomarkers. The ROC curve was used illus-
trate the performance of the model. Excel and R Version
3.4.4 were used for data analysis.

Results
Training set for optimizing the LCDT1 algorithm
In this study, we included the 33-biomarker model to
examine congruity in using a higher set of biomarkers
versus a smaller subset. Table 3 illustrates the algorithm
performance using 33 versus 21 biomarkers are analo-
gous. The LCDT1 algorithm was developed with slight
modifications using a smaller subset of biomarkers from
the 21. This information is proprietary and a patent ap-
plication was filed. Patterns of up and down regulation
of biomarkers were similar to our previous study [11].
The median concentration in LC patients compared to
healthy non-smokers, asthma sufferers, and smokers was
more than 200% higher in SAA (771%), MMP-9 (743%),
IL-8 (535%), CXCL9/MIG (482%), TNFRI (406%), Gro
(331%), MPO (300%), Rantes (274%), Resistin (271%),
TNFRII (266), and MIF (219%). IL-2 and IL-7 showed
greater than a 50% reduction in signal (Table 5).

Validation set performance
A novel blinded sample set of 228 (N = 456) subjects
were processed in duplicate using the LCDT1. Of 228
subjects, 55 were Stage I NSCLC samples (Table 2). Our
proprietary algorithm accurately detected 49 of the 55
Stage I LC samples (Fig. 1). There were 6 positive

Table 2 Sample Distribution

African-American Caucasian Hispanic Total

Training Set

Female 37 69 27 133

Asthma 0 10 1 11

Breast Cancer 0 1 0 1

Colon-Rectal Cancer 0 2 0 2

Non-Smoker 15 17 10 42

NSCLC, (Stage I-II) 10 22 10 42

Pancreatic Cancer 0 2 0 2

Smoker 12 15 6 33

Male 49 53 23 126

Asthma 0 4 0 4

Non-Smoker 18 14 9 41

NSCLC, (Stage I-II) 9 17 10 37

Pancreatic Cancer 0 2 0 2

Smoker 22 16 4 42

Total 86 122 50 258

Validation Set

Female 29 88 18 135

Asthma 0 8 0 8

Breast Cancer 5 35 0 40

Colon-Rectal Cancer 0 3 0 3

Non-Smoker 9 12 9 30

NSCLC, Stage I 6 17 4 27

Pancreatic Cancer 0 2 0 2

Smoker 9 11 5 25

Male 25 51 17 93

Asthma 0 3 0 3

Colon-Rectal Cancer 0 2 0 2

Non-Smoker 7 11 9 27

NSCLC, Stage I 5 18 5 28

Pancreatic Cancer 0 1 0 1

Prostate 3 6 0 9

Smoker 10 10 3 23

Total 54 139 35 228

All samples were collected in the United States and proportionately
distributed between genders. The age range was between 21 and 82 years old
with an average age of 56
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samples that were not detected and 4 negative LC sam-
ples that showed up as positive. The 4 samples that were
false positives consisted of 3 breast cancers and 1 asthma
sufferer (Supplementary Table 1). We were unable to
follow-up with the patients to confirm if the breast can-
cer had metastasized into the lungs [27] or whether the
asthma diagnosis was erroneously reached for an indi-
vidual actually suffering of LC [28].
Algorithm 33 and the LCDT1 exhibit a similar accur-

acy rate of 95.6%, sensitivity of 89.1%, and a specificity
of 97.7% in the validation test (Table 4). When only
NSCLC cancers were analyzed, the specificity of both al-
gorithms improved to 99.1%. This validation shows that
the results are comparable using the 33 markers (from
the previous study) versus the 21 or the LCDT1 markers
(Table 4). Additional biomarkers were unnecessary to
achieve the same clinical performance.

ROC curves and P-values
The Area under the ROC Curve (AUC) is the probability
that an observation with a higher probability of being
positive is positive. In our model, a ‘positive’ means that
the model predicts that the subject has NSCLC. Al-
though the discriminatory power, using AUC, for each
individual biomarker was examined, it was not the deter-
mining factor in our selection process. The ROC/AUC
for Algorithm 33, Algorithm 21, and the LCDT1 are
0.965, 0.960, and 0.966, respectively (Fig. 2a). When only
NSCLC cancers were analyzed, the AUC for each algo-
rithm improved by 0.01 (Fig. 2b). Once more, the P-
values (p < 0.05) imply that several biomarkers are able
to discriminate NSCLC from other pathologies to a

degree (Table 5). These results (e.g., patterns, ROC/
AUC, performance) provide a strong foundation for de-
veloping a clinical diagnostic test for NSCLC.

Discussion
Protein biomarkers have been extensively examined for
diagnostic, prognostic, and therapeutic assessment of
diseases and its treatments. Yet, many lab-developed as-
says never fully mature to penetrate the clinical setting
[29]. Apart from the regulatory hurdles, there are many
factors, such as sample collection, reagent manufactur-
ing, and the acquisition of data, that may cause variabil-
ity of end-results, which affects robustness and
consistency, ~a requisite of any biological test used for
clinical utility [30, 31]. Reducing the number of bio-
markers was an important component of the present
study as decreases complexity and the number of inter-
actions between the antibodies, simplifies reagent pro-
duction, and is more cost-effective [32].
In narrowing our list, the biological justification for

the selection of biomarkers was critical in avoiding nu-
merical quirks that may mask the true driver of a
physiological process [11]. To elaborate, the statistical
model in the previous study was a Random Forest (RF)
model. When an RF model is fit, a measure of the vari-
able’s importance is calculated. In this case, the variables
are the biomarkers. The variable’s importance is defined
as how well, on average, the biomarker increases the dis-
tinction of groups in the model (in our case NSCLC and
not-NSCLC). Here, the Node impurity (how well the
trees partition the data at each step in the algorithm) is
measured using the Gini index [33].

Table 3 Results of Algorithm Models. Results of Optimized Algorithm Models (Training Set)

Biomarker Algorithm 33 Algorithm 21 LCDT1 Algorithm

SE (95% CI) 92.8% (87.9, 96.1%) 97.4% (92.0, 99.5%) 92.4% (89.2, 94.3%)

SP (95% CI) 97.2% (95.5, 98.8%) 98.3% (95.4, 99.5%) 96.9% (95.2, 98.0%)

The LCDT1 algorithm was developed with slight modifications using a smaller subset of biomarkers from the 21. This information is proprietary and a patent
application was filed

Fig. 1 Validation Test Result
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Due to the naturally occurring relationships between
the biomarkers examined, depending on variable’s im-
portance as the sole factor in determining if a biomarker
should stay in the smaller set of biomarkers to develop
the new model, is not viable. If any two biomarkers are
highly correlated, then the ‘importance’ of one bio-
marker is masked by the other biomarker. This is be-
cause both biomarkers would provide the same
information to the model thereby making the excluded
biomarker redundant. Therefore the ‘redundant’ bio-
marker, seeming insignificant, could have served as a
substitute for the included biomarker [34].
However, if the two biomarkers are statistically corre-

lated, but only one is biologically related to the disease,
we may not be able to determine which biomarker is
truly more important to the underlying biological mech-
anisms. Thus, biological relevance and patterns weighed
heavily.
Many of the markers in our set have been studied for

decades and have been shown to have potential for diag-
nosing LC [35–39]. In our studies, certain biomarkers
were elevated at higher levels or depressed depending on
whether we were looking at early stage (I-II) or late stage
(III-IV) NSCLC patients, e.g., the upregulation of CEA
and CYFRA-21-1 (common cancer markers widely stud-
ied) [36] were not as prominent in early stage NSCLC.
The occurrence of a lower expressed CYFRA in the early
stages of NSCLC has been indicated by Guergova-Kuras
M, et al. [37] using monoclonal antibodies to detect
early stage NSCLC. This phenomenon of varying marker
levels at different stages of NSCLC is not surprising as
protein abundance reflects current physiological state of
the disease.
Examples of the markers that were elevated in stage I-

II NSCLC were IL-8, MMP-9, and SAA. The synergistic
regulation and pathways of these markers correlates with

previous scientific findings: For example, IL-8 is a multi-
functional chemokine that induces chemotaxis and
phagocytosis, promotes angiogenesis, and aids in main-
tenance of mesenchymal features in carcinoma cells [40,
41]. Robust upregulation of CXCL8 (aka IL-8) has been
observed in erlotinib-resistant cell lines [41] which also
makes it a cancer therapy target. A study by Liu et al.
using 141 NSCLC patients indicated that IL-8 may have
up-regulated MMP-9 in lymph node metastasis of
NSCLC patients [38].
MMP-9 is a widely studied protease that cleaves extra-

cellular matrix (ECM) proteins to regulate ECM remod-
eling [42]. MMP-9 is involved in basement membrane
degradation that furthers tumor invasion and metastases
[42]. Past studies showed that MMP-9 s are highly ele-
vated in LC patients, especially stage III-IV [43, 44]. We
also observed a correlation between IL-8 and MMP-9
levels in LC patients.
SAA is an apolipoprotein that is secreted during acute

phase inflammation and is a known LC biomarker. Sung
et al. measured 180 healthy and 170 lung adenocarcin-
oma plasma or serum samples and found a 14-fold in-
crease of SAA levels in the LC patient [45]. Another by
Biaoxue, R. et al. indicated that SAA alone could detect
LC with 0.59 sensitivity and 0.92 specificity [39]. We
measured a six-fold increase in SAA levels at all stages
of NSCLC compared to healthy controls.
Proteins such as IL-8, MMP-9, and SAA are involved

in physiological inflammatory processes. Some of these
proteins are highly expressed in specific cancers, while
others are inhibited. Independently, each protein has the
ability of discriminating healthy from disease patients.
When LC biomarkers are multiplexed and combined
with an algorithm and additional demographic data, its
diagnostic capability increases and could serve as a
powerful clinical tool.

Table 4 Blind Test Performance for the 33, 21, and LCDT1 Algorithm (Validation Set)

Model

Statistics Algorithm 33 Algorithm 21 LCDT1 Algorithm

Accuracy 95.6% (92.4, 97.7%) 94.3% (90.7, 96.8%) 95.6% (92.4, 97.7%)

Sensitivity 89.1% (78.9, 95.3%) 89.1% (78.9, 95.3%) 89.1% (78.9, 95.3%)

Specificity 97.7% (94.6, 99.2%) 96.0% (92.2–98.2%) 97.7% (94.6, 99.2%)

Positive Predictive Value (PPV) 92.5% (83.0, 97.4%) 87.5% (77.0, 94.2%) 92.5% (83.0, 97.4%)

Negative Predictive Value (NPV) 96.6% (93.1, 98.6%) 96.5% (93.0, 98.5%) 96.6% (93.1, 98.6%)

NSCLC Prevalence 24.1% 24.1% 24.1%

True Positive (TP) 49 44 49

True Negative (TN) 169 166 169

False Positive (FP) 4 6 4

False Negative (FN) 6 7 6

All entries show the statistical (95% CI). *Other cancer types were included in the analysis. Each subject consisted of two replicates (N = 2) or two data points
processed by the algorithm. If one data point was positive, then the subject was considered positive for LC. Table was generated using R Version 3.4.4
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Using biomarkers for diagnosing diseases requires
constant revalidation to ensure that it remains applicable
to the intended population. Like any method, bio-
markers have limitations as they are affected by sample

origin, ethnicity, gender, environmental and carcinogenic
exposure, and reagent and platform variations. Strict
quality assurance and processes from the bench (e.g., de-
veloping reagents) to the clinic (e.g., collecting samples)

Fig. 2 ROC/AUC Curves. a. ROC/AUC Curves with other cancers types included. b. ROC/AUC Curves with only NSCLC cancers. Figures were
generated using R version 3.4.4
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Table 5 Median Biomarker Concentrations and P-Value Using the Training Set

Biomarker NSCLC Median [Q1-Q3], pg/mL Asthma, Smokers, Non-Smokers Median [Q1-Q3], pg/mL P-Value

CA125 26.4
[13.7–41.7]

13.6
[6.9–36.7]

0.073

CEA 2884.4
[1815.9–5573.8]

2115.3
[1194.8–3242.2]

0.003

CXCL9-MIG 4378.2
[2604.0–6844.5]

908.0
[539.0–1965.8]

< 0.001

CYFRA-21-1 5354.8
[3429.5–8090.4]

5088.3
[2939.9–9770.1]

0.026

GRO 2890.0-
[2076.9–4178.0]

874.4
[507.5–1790.2]

< 0.001

HGF 869.4
[643.9–1647.1]

476.3
[271.9–1177.1]

0.006

IL-10 22.8
[11.7–38.2]

23.8
[14.0–45.8]

0.525

IL-12p70 21.1
[15.5–27.0]

19.9
[16.5–127.4]

0.082

IL-16 693.6
[345.1–1458.7]

717.5
[298.8–1469.4]

0.902

IL-2 11.5
[10.9–16.6]

33.8
[19.7–52.1]

0.005

IL-4 41.7
[25.3–51.6]

33.3
[22.5–50.3]

0.902

IL-5 17.9
[15.7–23.5]

28.7
[12.8–46.8]

0.188

IL-7 10.6
[10.6–10.6]

34.9
[18.9–61.1]

NA

IL-8 126.3
[44.5–323.8]

23.6
[15.9–42.3]

< 0.001

IL-9 11.9
[11.0–20.7]

22.3
[15.2–42.6]

0.016

Leptin 30,408.0
[16,682.6–45,886.3]

22,190.7
[8684.4–54,863.7]

0.224

LIF 45.5
[30.5–79.3]

39.6
[27.1–82.3]

0.511

MCP-1 530.2
[391.363–721.512]

372.8
[279.7–462.0]

< 0.001

MIF 865.6
[453.6–1501.3]

395.0
[196.7–1274.8]

0.752

MMP-7 1978.3
[1184.2–3190.33]

3585.2
[2671.9–5080.6]

< 0.001

MMP-9 93,587.2
[62,827.2–124,300.6]

12,593.8
[8856.8–19,799.6]

< 0.001

MPO 353,987.8
[246,376.2–616,739.2]

117,658.8
[69,768.5–212,726.3]

< 0.001

NSE 7273.5
[3852.3–10,487.8]

6576.1
[3806.6–46,981.4]

< 0.001

PDGF AB/BB 25,169.6
[21,611.8–30,055.0]

41,800.6
[26,115.3–53,016.0]

< 0.001

RANTES 105,356.2
[79,497.9–155,040.2]

38,458.4
[23,423.8–112,641.5]

0.003

Resistin 35,145.6
[25,185.8–53,466.7]

12,966.2
[9521.2–17,533.1]

< 0.001

SAA 6.55e7
[2.52e7–1.2e8]

8.5e6
[4.175e6–1.9825e7]

< 0.001
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to the acquisition of the end result (e.g., data cleaning
and processing) are imperative. Furthermore, statistical
and machine learning algorithms also need to be tested
for bias and refined as new data are collected.
Despite, these limitations, biomarkers in conjunction

with machine learning methods serve as an important
component in fighting cancer as they provide benefits.
Such advantages include a means of a simple, non-
invasive method in detecting cancer; acquiring prognos-
tic information, and assessment of the efficacy of thera-
peutic methods.

Conclusions
We aimed to develop an accurate test that was specific
to early stage NSCLC. A multi-cancer test, though re-
markable, could increase patient anxiety and fiscal ex-
pense due to additional (possibly unnecessary) follow-up
procedures. These concerns are mirrored in medical
practitioners’ reluctance to order full body imaging in
asymptomatic patients [46].
This study shows that we were able to successfully re-

duce the number of biomarkers from 33 to 21, while
maintaining a high performance in detecting early stage
NSCLC. The LCDT1 is 97.7% specific for Stage I
NSCLC even when other cancer types were present. An
estimated 9 out of 10 (89.1% sensitive) early stage LC
patients would be detected by the LCDT1. The LCDT1
is 95.6% accurate.
As a diagnostic test, physicians prefer tests with high

sensitivity and sacrifice specificity. The argument is that
not detecting “a” cancer is more detrimental than a false
negative. A highly sensitive diagnostic test is important
where the test is used to identify a serious but treatable
disease; and a highly specific test avoids further subjec-
tion of the patient to unnecessary follow-up medical
procedures. In the case of LC, current diagnostic
methods (i.e., CT, PET) have high sensitivity but low
specificity. If patients who are suspected to have a lung

nodule on a CT are given a second test with a low (or
high) sensitivity and high specificity, then nearly all of
the false positives could be identified as disease free.
Our clinical goal is to decrease risks and unnecessary

procedures to patients without delaying curative treat-
ment [47] and increase access to communities with so-
cial and economic barriers. The LCDT1 is a simple
blood test with great potential for clinical applications in
detecting Stage I NSCLC. When used with gold stan-
dards such as the CT/PET scans in conjunction with al-
gorithms and improved PN guidelines, could mean a
significant reduction in the number of false negatives
and an increase in early stage detection.
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sCD40L 381.8
[155.9–752.5]

219.9
[110.285–628.7]

0.018

sEGFR 654.9
[544.0–1175.5]

936.5
[543.2–1943.2]

< 0.001

sFasL 229.8
[78.2–498.2]

263.7
[135.9–573.4]

0.03

sICAM-1 150,304.6
[123,699.9–187,843.8]

145,329.4
[117,164.7–182,796.7]

0.519

sTNFRII 15,477.5
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5818.1
[4574.8–7295.3]

< 0.001

TNFRI 2514.8
[1748.7–3743.5]

619.5
[413.9–860.2]

< 0.001

Table was generated using R Version 3.4.4

Goebel et al. BMC Cancer          (2020) 20:137 Page 9 of 11

https://doi.org/10.1186/s12885-020-6625-x
https://doi.org/10.1186/s12885-020-6625-x


Funding
This study was sponsored by Lung Cancer Proteomics LLC.

Availability of data and materials
The data analysed during the current study are available from the
corresponding author upon reasonable request and with permission of Lung
Cancer Proteomics. Due to proprietary rights, restrictions may apply to the
availability of these data and so are not publicly available. Datasets, including
supplementary information, during this study are included in this published
article and from a previous study as noted on the article.

Ethics approval and consent to participate
All samples were collected through an IRB approved protocol (e.g., Protocol
#AST-FPB-003, Western IRB) or a signed Waiver of Consent form. Individuals
under the age of 18 or those who cannot consent for themselves were not
included in the study. Our manuscript does not contain any individual
person’s data such as individual details, images or videos. All samples were
collected in the United States between 2013 and 2015.

Consent for publication
All authors read and approved the final manuscript.

Competing interests
C.G. and C.L.L. are consultants. T.L. serves as the Chief Executive Officer and
Chief Financial Officer for Lung Cancer Proteomics LLC.

Author details
1Goebel Consulting Inc., Mountain View, 780 Montague Expressway, Suite
703, San Jose, CA 95131, USA. 2Louden Consulting, San Antonio, TX, USA.
3Providence Saint John’s Health Center/John Wayne Cancer Institute, Santa
Monica, CA, USA. 4Southern California Institute for Respiratory Diseases, Los
Angeles, CA, USA. 5Lung Cancer Proteomics LLC, Hebron, IN, USA.

Received: 4 November 2019 Accepted: 11 February 2020

References
1. American Cancer Society (ACS). Cancer Facts & Figures 2019. https://www.

cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-
facts-figures-2019.html. Accessed 23 Oct 2019.

2. The International Early Lung Cancer Action Program Investigators (IELCAP).
Survival of patients with stage I lung Cancer detected on CT screening. N
Engl J Med. 2006;355(17):1763–71. https://doi.org/10.1056/nejmoa060476.

3. U.S. Preventive Services Task Force. Final Update Summary: Lung Cancer:
Screening. July 2015. https://www.uspreventiveservicestaskforce.org/Page/
Document/UpdateSummaryFinal/lung-cancer-screening. Accessed 23 Oct
2019.

4. National Lung Screening Trial Research Team. The National Lung Screening
Trial: overview and study design. Radiol. 2011;258(1):243–53. https://doi.org/
10.1148/radiol.10091808.

5. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening
with three-dimensional deep learning on low-dose chest computed
tomography. Nat Med. 2019;25(6):954–61. https://doi.org/10.1038/s41591-
019-0447-x.

6. Silvestri GA, Gonzalez AV, Jantz MA, et al. Methods for staging non-small
cell lung cancer: Diagnosis and management of lung cancer, 3rd ed:
American College of Chest Physicians evidence-based clinical practice
guidelines. Chest. 2013;143(5Suppl):e211S.

7. Tanner NT, Aggarwal J, Gould MK, et al. Management of pulmonary nodules
by community pulmonologists: a multicenter observational study. Chest.
2015;148(6):1405–14. https://doi.org/10.1378/chest.15-0630.

8. Erasmus JJ, Connolly JE, McAdams HP, Roggli VL. Solitary pulmonary
nodules: part I. morphologic evaluation for differentiation of benign and
malignant lesions. RadioGraphics. 2000;20(1):43–58. https://doi.org/10.1148/
radiographics.20.1.g00ja0343.

9. American College of Radiology. Lung-RADS™ Version 1.0 Assessment
Categories Release date: April 28, 2014. https://www.acr.org/-/media/ACR/
Files/RADS/Lung-RADS/LungRADS_AssessmentCategories.pdf. Accessed 23
Oct 2019.

10. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of
incidental pulmonary nodules detected on CT images: from the Fleischner

society 2017. Radiol. 2017;284(1):228–43. https://doi.org/10.1148/radiol.
2017161659.

11. Goebel C, Louden C, McKenna R Jr, Onugha O, Wachtel A, Long T.
Diagnosis of non-small cell lung cancer for early stage, asymptomatic
patients. Cancer Genomics Proteomics. 2019;16(4):229–44. https://doi.org/10.
21873/cgp.20128 http://cgp.iiarjournals.org/content/16/4/229.long. Accessed
23 Oct 2019.

12. Knight SB, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and
prospects of early detection in lung cancer. Open Biol. 2017;7(9):170070.
https://doi.org/10.1098/rsob.170070.

13. WHO International Programme on Chemical Safety. Biomarkers in risk
assessment: validity and validation. (EHC 222,2001). http://www.inchem.org/
documents/ehc/ehc/ehc222.htm. Accessed 23 Oct 2019.

14. Biomarkers and surrogate endpoints: Preferred definitions and conceptual
framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/
mcp.2001.113989.

15. National Institute of Health. Lung cancer inheritance pattern. 2019. https://
ghr.nlm.nih.gov/condition/lung-cancer#inheritance. Accessed 23 Oct 2019.

16. Garber J, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol.
2005;23(2):276–92. https://doi.org/10.1200/jco.2005.10.042.

17. Miko I. Phenotype variability: penetrance and expressivity. Nat Educ. 2008;
1(1):137 http://origin.www.nature.com/scitable/topicpage/phenotype-
variability-penetrance-and-expressivity-573. Accessed 23 Oct 2019.

18. Liu Q, Li A, Tian Y, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine
Growth Factor Rev. 2016;31:61–71. https://doi.org/10.1016/j.cytogfr.2016.08.
002.

19. Cho WC. Application of proteomics in non-small cell lung cancer. Expert
Rev Proteomics. 2015;13(1):1–4. https://doi.org/10.1586/14789450.2016.
1121813.

20. Glas AM, Floore A, Delahaye LJ, et al. Converting a breast cancer microarray
signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:
278. https://doi.org/10.1186/1471-2164-7-278.

21. Zhang Z. An in vitro diagnostic multivariate index assay (IVDMIA) for ovarian
cancer: harvesting the power of multiple biomarkers. Rev Obstet Gynecol.
2012;5(1):35–41.

22. Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine
learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–9. https://
doi.org/10.1056/nejmp1606181.

23. Chetverikov D, Demirer M, Duflo E, Hansen C, Newey WK, Chernozhukov V.
Double machine learning for treatment and causal parameters. 2016.
https://doi.org/10.1920/wp.cem.2016.4916.

24. Grimmer J. We are all social scientists now: how big data, machine learning,
and causal inference work together. PS: Political Sci Polit. 2014;48(1):80–3.
https://doi.org/10.1017/s1049096514001784.

25. Hastie J, Tibshirani R, Friedman J. The elements of statistical learning: data
mining, inference, and prediction. New York: Springer; 2001.

26. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol.
1995;57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

27. Gennari A, Conte P, Rosso R, Orlandini C, Bruzzi P. Survival of metastatic
breast carcinoma patients over a 20-year period: a retrospective analysis
based on individual patient data from six consecutive studies. Cancer. 2005;
104(8):1742–50. https://doi.org/10.1002/cncr.21359.

28. Qu YL, Liu J, Zhang LX, et al. Asthma and the risk of lung cancer: a meta-
analysis. Oncotarget. 2017;8(7):11614–20. https://doi.org/10.18632/
oncotarget.14595.

29. Polanski M, Anderson NL. A list of candidate cancer biomarkers for targeted
proteomics. Biomark Insights. 2006;1:1–48. https://doi.org/10.1177/
117727190600100001.

30. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the
long and uncertain path to clinical utility. Nat Biotechnol. 2006;24(8):971–83.
https://doi.org/10.1038/nbt1235.

31. U.S. Food and Drug Administration. Draft Guidance for Industry, Food and
Drug Administration Staff, and Clinical Laboratories: FDA Notification and
Medical Device Reporting for Laboratory-developed Tests (LDTs). https://
www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/
guidancedocuments/ucm416685.pdf. Accessed 23 Oct 2019.

32. Qoronfleh MW, Lindpaintner K. Protein biomarker immunoassays:
opportunities and challenges. Precision Med. 2010; https://www.ddw-online.
com/precision-medicine/p142790-protein-biomarker-immunoassays:-
opportunities-and-challenges.html. Accessed 23 Oct 2019.

Goebel et al. BMC Cancer          (2020) 20:137 Page 10 of 11

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html
https://doi.org/10.1056/nejmoa060476
https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/lung-cancer-screening
https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/lung-cancer-screening
https://doi.org/10.1148/radiol.10091808
https://doi.org/10.1148/radiol.10091808
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1378/chest.15-0630
https://doi.org/10.1148/radiographics.20.1.g00ja0343
https://doi.org/10.1148/radiographics.20.1.g00ja0343
https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/LungRADS_AssessmentCategories.pdf
https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/LungRADS_AssessmentCategories.pdf
https://doi.org/10.1148/radiol.2017161659
https://doi.org/10.1148/radiol.2017161659
https://doi.org/10.21873/cgp.20128
https://doi.org/10.21873/cgp.20128
http://cgp.iiarjournals.org/content/16/4/229.long
https://doi.org/10.1098/rsob.170070
http://www.inchem.org/documents/ehc/ehc/ehc222.htm
http://www.inchem.org/documents/ehc/ehc/ehc222.htm
https://doi.org/10.1067/mcp.2001.113989
https://doi.org/10.1067/mcp.2001.113989
https://ghr.nlm.nih.gov/condition/lung-cancer#inheritance
https://ghr.nlm.nih.gov/condition/lung-cancer#inheritance
https://doi.org/10.1200/jco.2005.10.042
http://origin.www.nature.com/scitable/topicpage/phenotype-variability-penetrance-and-expressivity-573
http://origin.www.nature.com/scitable/topicpage/phenotype-variability-penetrance-and-expressivity-573
https://doi.org/10.1016/j.cytogfr.2016.08.002
https://doi.org/10.1016/j.cytogfr.2016.08.002
https://doi.org/10.1586/14789450.2016.1121813
https://doi.org/10.1586/14789450.2016.1121813
https://doi.org/10.1186/1471-2164-7-278
https://doi.org/10.1056/nejmp1606181
https://doi.org/10.1056/nejmp1606181
https://doi.org/10.1920/wp.cem.2016.4916
https://doi.org/10.1017/s1049096514001784
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1002/cncr.21359
https://doi.org/10.18632/oncotarget.14595
https://doi.org/10.18632/oncotarget.14595
https://doi.org/10.1177/117727190600100001
https://doi.org/10.1177/117727190600100001
https://doi.org/10.1038/nbt1235
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm416685.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm416685.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm416685.pdf
https://www.ddw-online.com/precision-medicine/p142790-protein-biomarker-immunoassays:-opportunities-and-challenges.html
https://www.ddw-online.com/precision-medicine/p142790-protein-biomarker-immunoassays:-opportunities-and-challenges.html
https://www.ddw-online.com/precision-medicine/p142790-protein-biomarker-immunoassays:-opportunities-and-challenges.html


33. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.
1023/A:1010933404324.

34. Kullback S. Information theory and statistics. Mineola, NY: Dover
Publications; 1997.

35. Lee HJ, Kim YT, Park PJ, et al. A novel detection method of non-small cell
lung cancer using multiplexed bead-based serum biomarker profiling. J
Thorac Cardiovasc Surg. 2012;143(2):421–7. https://doi.org/10.1016/j.jtcvs.
2011.10.046.

36. Doseeva V, Colpitts T, Gao G, Woodcock J, Knezevic V. Performance of a
multiplexed dual analyte immunoassay for the early detection of non-small
cell lung cancer. J Transl Med. 2015;13(1):55. https://doi.org/10.1186/s12967-
015-0419-y.

37. Guergova-Kuras M, Kurucz I, Hempel W, et al. Discovery of lung cancer
biomarkers by profiling the plasma proteome with monoclonal antibody
libraries. Mol Cell Proteomics. 2011;10(12). https://doi.org/10.1074/mcp.
m111.010298.

38. Liu Z, Xu S, Xiao N, et al. Overexpression of IL-8 and MMP-9 confer high
malignant phenotype in patients with non-small cell lung cancer.
Zhongguo Fei Ai Za Zhi. 2010;13(8):795–802. https://doi.org/10.3779/j.issn.
1009-3419.2010.08.09.

39. Biaoxue R, Hua L, Wenlong G, Shuanying Y. Increased serum amyloid a as
potential diagnostic marker for lung cancer: a meta-analysis based on nine
studies. BMC Cancer. 2016;16(1):836. https://doi.org/10.1186/s12885-016-
2882-0.

40. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling
plays a critical role in the epithelial-mesenchymal transition of human
carcinoma cells. Cancer Res. 2011;71(15):5296–306. https://doi.org/10.1158/
0008-5472.can-11-0156.

41. Fernando RI, Hamilton DH, Dominguez C, David JM, McCampbell KK, Palena
C. IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib.
Oncotarget. 2016;7(27):42031–44. https://doi.org/10.18632/oncotarget.9662.

42. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and
MMP-9 biosensors: recent advances. Sensors. 2018;18(10):3249. https://doi.
org/10.3390/s18103249.

43. Blanco-Prieto S, Barcia-Castro L, Cadena MPDL, et al. Relevance of matrix
metalloproteases in non-small cell lung cancer diagnosis. BMC Cancer. 2017;
17(1):823. https://doi.org/10.1186/s12885-017-3842-z.

44. El-Badrawy MK, Yousef AM, Shaalan D, Elsamanoudy AZ. Matrix
metalloproteinase-9 expression in lung cancer patients and its relation to
serum mmp-9 activity, pathologic type, and prognosis. J Bronchology Interv
Pulmonol. 2014;21(4):327–34. https://doi.org/10.1097/lbr.0000000000000094.

45. Sung HJ, Ahn JM, Yoon YH, et al. Identification and validation of SAA as a
potential lung cancer biomarker and its involvement in metastatic
pathogenesis of lung cancer. J Proteome Res. 2011;10(3):1383–95. https://
doi.org/10.1021/pr101154j.

46. Dracup K, Bryan-Brown CW. Doctor of nursing practice—MRI or total body
scan? Am J Crit Care. 2005;14(4):278–81.

47. Treatment with curative intent for NSCLC: selection of patients with NSCLC
for treatment with curative intent. In: The Diagnosis and Treatment of Lung
Cancer (Update). Cardiff: National Collaborating Centre for Cancer (UK);
2011.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Goebel et al. BMC Cancer          (2020) 20:137 Page 11 of 11

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jtcvs.2011.10.046
https://doi.org/10.1016/j.jtcvs.2011.10.046
https://doi.org/10.1186/s12967-015-0419-y
https://doi.org/10.1186/s12967-015-0419-y
https://doi.org/10.1074/mcp.m111.010298
https://doi.org/10.1074/mcp.m111.010298
https://doi.org/10.3779/j.issn.1009-3419.2010.08.09
https://doi.org/10.3779/j.issn.1009-3419.2010.08.09
https://doi.org/10.1186/s12885-016-2882-0
https://doi.org/10.1186/s12885-016-2882-0
https://doi.org/10.1158/0008-5472.can-11-0156
https://doi.org/10.1158/0008-5472.can-11-0156
https://doi.org/10.18632/oncotarget.9662
https://doi.org/10.3390/s18103249
https://doi.org/10.3390/s18103249
https://doi.org/10.1186/s12885-017-3842-z
https://doi.org/10.1097/lbr.0000000000000094
https://doi.org/10.1021/pr101154j
https://doi.org/10.1021/pr101154j

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	CT scans recommended for diagnosing LC
	PET scans increasing in use for LC follow-ups
	Pulmonary nodule guidelines
	Evaluating biomarkers to detect LC
	DNA biomarkers
	Protein biomarkers

	Machine learning in medicine

	Methods
	Study population
	Sample collection and handling
	Multiplexed immunoassay procedure
	Algorithm and statistical analysis

	Results
	Training set for optimizing the LCDT1 algorithm
	Validation set performance
	ROC curves and P-values

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

